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Drug delivery systems (DDSs) have recently gained widespread attention for
improving drug loading and delivery efficiency in treating many cancers. Elastin-
like polypeptides (ELPs) are synthetic peptides derived from a precursor of elastin
(tropoelastin), reserving similar structural and physicochemical properties. ELPs have
gained a variety of applications in tissue engineering and cancer therapy due to their
excellent biocompatibility, complete degradability, temperature-responsive
property, controllable sequence and length, and precisely tuned structure and
function. ELPs-based drug delivery systems can improve the pharmacokinetics
and biodistribution of therapeutic reagents, leading to enhanced antitumor
efficacy. In this review, we summarize the recent application of ELPs in cancer
treatment, focusing on the delivery of functional peptides, therapeutic proteins, small
molecule drugs, and photosensitizers.
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1 Introduction

Recent cancer statistics indicate about 19.3 million new cancer cases and 10.0 million deaths
caused by cancer worldwide in 2020 (Ferlay et al., 2021). The rising incidence and mortality of
cancers promote the urge to develop effective cancer treatments. Surgery, radiotherapy,
chemotherapy, targeted therapy, and immunotherapy are common strategies against
cancers (Mun et al., 2018). Despite the good outcome of surgery and radiotherapy in
treating primary tumors, their applications were greatly limited in treating nonmetastatic
tumors (Otake and Goto 2019). Clinical anticancer drugs for chemotherapy, targeted therapy,
and immunotherapy have significantly improved the prognosis and survival of cancer patients
(Tibau et al., 2018). However, some disadvantages of anticancer drugs, such as poor solubility,
inadequate endocytosis, unwanted distribution, and severe side effects, lead to compromised
clinical outcomes in some cancers.

Drug delivery systems (DDSs) have shown great potential in improving cancer treatment
efficacy through high drug loading capacity, increased cell internalization and tumor distribution,
and prolonged circulation time (Dang and Guan 2020; Yang, Wang, and Guan 2022). Many
materials, including polymers, lipids, proteins, nucleic acids, and inorganicmaterials, have been used
to construct various delivery platforms to improve the tumor suppression effect (Cheng et al., 2021;
Hossen et al., 2019; Patra et al., 2018). Among variousDDSs, naturally derivedmaterials-basedDDSs
attract more and more attention due to their good biocompatibility, excellent biodegradability, and
low immunogenicity (Huang and Fu 2010). Elastin, which is widely distributed in mammalian
tissues including lung, bladder, blood vessel, skin, and cartilage, helps maintain the elasticity of
tissues (Mithieux and Weiss 2005). Elastin-like polypeptides (ELPs), a series of synthetic polymers
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according to elastin’s amino acid sequence, have shown promising
potential in drug delivery for tissue engineering and cancer therapy
(Milligan et al., 2022; Shi et al., 2022). This review summarizes the
physicochemical properties and the recent applications of ELPs as delivery
platforms for cancer treatments.

2 Structural and physicochemical
properties of ELPs

ELPs, derived from tropoelastin (a precursor of elastin), are
synthetic pentapeptide repeats composed of (VPGXG)n, while X
can be any amino acid except for Pro (Figure 1A). (Megeed,
Cappello, and Ghandehari 2002). Due to their naturally derived
materials, ELPs have excellent biocompatibility, prolonged
circulation, and good elasticity in vivo, which make them ideal
materials for biomedical application (Suhar et al., 2020). Moreover,
precisely adjusting amino acids in the guest residue (X) and repeat
numbers (n) make ELPs fine-tuned biomaterials with thermal
sensitivity and satisfying mechanical properties for tissue
engineering and drug delivery (Ciofani et al., 2014; Gagner, Kim,
and Chaikof 2014). In addition, ELPs have a unique temperature-
responsive phase-transition property: ELPs undergo from the soluble
phase at a lower temperature to ELPs aggregates when the temperature
is above the phase transition temperature (Tt), and ELPs aggregates
can resolubilize in aqueous solution when the temperature is lower
than the Tt (Figure 1B) (Smits et al., 2015). The inverse transition
cycling (ITC) property of ELPs has been used to rapidly purify ELPs-
fused recombinant proteins with satisfied purity (Floss et al., 2010;
Heidari-Japelaghi et al., 2019; Sweet et al., 2021).

ELPs can be fused with bioactive peptides or proteins as fusion
proteins by genetic engineering. Functional peptides or proteins are
displayed on the surface of protein assemblies and exert their unique
functions (Varanko et al., 2020). Moreover, a linker peptide can be

fused at the C-terminus of the ELPs sequence for conjugating cytotoxic
drugs (McDaniel et al., 2013). In addition, as a block architecture,
ELPs can self-assemble into nanoparticles encapsulating drugs by
chemical conjugation or physical absorption (Figure 1C)
(Rodríguez-Cabello et al., 2016). ELPs-based platforms have
demonstrated many advantages for improved delivery efficiency in
cancer treatment (Figure 1D) (Shi et al., 2013).

3 Drug-loaded ELPs for cancer therapy

ELPs-based DDSs have proven to be an effective strategy to
improve the pharmacokinetics of a range of drugs (Milligan et al.,
2022). ELPs polymers or nanoparticles could significantly decrease the
blood clearance of drugs by reticuloendothelial system and extend the
half-time of cargo-loaded (Figure 2), leading to the enhanced
antitumor efficacy in vivo (Zhaoying et al., 2022).

3.1 ELPs delivering tumor-targeting peptides

To endow the ELPs with tumor-selectively binding properties,
researchers have decorated many tumor-targeting peptides in ELPs
polymer for improved cancer treatment (Matsumoto et al., 2014).
Simnick AJ et al. prepared NGR tripeptide-fused ELPs micelles by
genetic engineering for tumor vasculature targeting. The self-
assembled NGR-ELP micelles showed selective binding with
CD13 and improved tumor vascular retention and extravascular
accumulation (Simnick et al., 2011). Sarangthem V incorporated
multiple AP1 peptides into the ELP polymer for tumor-targeting
delivery. The AP1 peptide presented by ELP polymer showed a
10000-fold increase of interleukin 4 receptor (IL-4R) binding
affinity compared to the free AP1 peptide (Bhattacharya et al.,
2013). Tumor homing peptide F3, a short peptide derived from

FIGURE 1
The ELPs properties and strategies of developing ELPs-based antitumor drugs. (A) amino acid sequence of ELPs; (B) The inverse transition cycling (ITC)
property; (C) Strategies of developing drug-loaded ELPs by fusion expression and drug conjugation; (D) Schematic illustration of ELPs-based drugs in
systemically circulating and tumor accumulation.
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high-mobility group protein 2, could specifically bind to nucleolin
expressed on tumor endothelial cells and tumor cells. F3-ELP
nanocarriers delivering doxorubicin showed a 4.2-fold increase in
tumor accumulation and a 3.8-fold decreased tumor size compared
with ELP nanoparticles without F3 decoration (Hu et al., 2015). Bld-1
peptide, a bladder tumor targeting peptide, has also been fused with
ELP(B5V60) to improve the tumor distribution in bladder tumor
xenograft mice (Sarangthem et al., 2018). ELPs fused with gastrin
releasing peptide (GRP) could selectively bind with G protein-coupled
receptors (GPCRs) and increase the cellular uptake of nanoparticles
(Zhang et al., 2016). Cheon SH developed melanoma-targeting
ligands-decorated ELPs (M16E108), which accumulated explicitly in
cisplatin-resistant B16F10 melanoma cells and had long retention in
tumor tissues (Cheon et al., 2020). Many cell-penetrating peptides
(CPP) have been incorporated into ELP polymers to improve tumor
cells’ internalization (Massodi, Bidwell Iii, and Raucher 2005). SynB1-
functionalized ELP combined with hyperthermia enhances the
antitumor effects of Taxol in MDA-MB-231 xenograft models
(Ryu, Robinson, and Raucher 2019a). Octa-arginine (R8)
incorporation enhanced the penetration of ELP nanoparticles into
spheroids generated from human glioblastoma U-87 cells (van Oppen
et al., 2019). Therefore, in addition to the high selectivity of tumor-
homing peptides with targeting receptors, ELPs decorated with
targeting peptides have a prolonged half-life in vivo, providing an
ideal platform for the efficient delivery of therapeutics agents to the
tumors.

3.2 ELPs delivering therapeutic peptides or
proteins

During the past two decades, therapeutic peptides have attracted
considerable attention due to their high selectivity in treating many

solid tumors (Fosgerau and Hoffmann 2015; Marqus, Pirogova, and
Piva 2017). However, the existence of peptidases and protease in vivo
significantly limits the application of therapeutic peptides or proteins
in cancer treatment (Strohl 2015). A cell cycle inhibitory peptide
(p21)-fused with ELPs (p21-ELP1-Bac) demonstrated enhanced
cytotoxicity on pancreatic cancer cell lines through cell cycle arrest.
ELPs polymers showed synergistic antitumor effects in
S2013 xenograft models combined with gemcitabine (Ryu and
Raucher 2014). Sarangthem V designed a proapoptotic peptide
(KLAKLAK)2-loaded ELPs delivery system for treating breast
cancer. AP1-ELP-KLAK could significantly enhance tumor
localization and suppress tumor growth in breast cancer and
melanoma xenografts (Sarangthem et al., 2016). Liu N et al.
designed a fluorescent ELPs nanocarrier for targeted delivery of
PCK 3145 peptide to epidermal growth factor receptor (EGFR)-
overexpressed tumors. The multifunctional ELPs nanoparticles
triggered the apoptosis of tumor cells and enhanced antitumor
efficacy in the CT26 tumor xenograft model (Liu et al., 2022). A
Notch inhibitory peptide (dnMAML) conjugated ELP polymer was
developed, showing an enhanced antitumor effect on glioblastoma
cells. SynB1-modified complexes inhibited the growth of D54 and
U251 cells by inducing apoptosis and cell cycle arrest (Ryu, Robinson,
and Raucher 2019b).

As for therapeutic protein delivery, Huang K and his coworkers
fabricated tumor-targeting ELPs delivering Tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) protein to colon
cancers. ELP-RGD-TRAIL demonstrated a 3-fold increase of
apoptosis than without ELP fusion. Single intraperitoneal
injection of the RGD-targeted ELPs nanomedicine could inhibit
tumor regression in the COLO-205 tumor xenograft model (Huang
et al., 2017). ELPs were used to deliver interferon alpha (IFN-α) for
cancer treatment. The ELP fused IFN-α showed much higher
activity retention than PEGylated IFN-α and IFN-HAS. ELP

FIGURE 2
ELPs deliver functional peptides, therapeutic proteins, small molecule drugs, and photosensitizers for enhanced cancer therapy.
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fusion also significantly prolonged the half-life of IFN-α and
excellent antitumor efficacy in ovarian carcinoma xenografts
(Hu et al., 2015). Liang P fused IFN-α with ELPs to form a
deport injected into the GBM resection cavity. IFN-ELP(V) in
the depot dramatically improved pharmacokinetics and
biodistribution, and significantly inhibited GBM recurrence,
especially combined with temozolomide (TMZ) (Liang et al.,
2021). In summary, combining their unique therapeutic
mechanisms, ELPs fusion prolonged the half-time of therapeutic
peptides or proteins and enhanced their tumor distribution,
contributing to enhanced tumor suppression in vivo.

3.3 ELPs delivering small molecule
chemotherapeutics

Due to the prolonged half-time ability, ELPs have been used to
improve the delivery efficiency of small-molecule
chemotherapeutics for cancer therapy (Bidwell and Gene,
2021). Bhattacharyya J et al. prepared recombinant ELPs
containing eight cysteine residues for paclitaxel (PTX)
conjugation. PTX-conjugated polypeptides could spontaneously
self-assemble into monodisperse nanoparticles, which had
twofold increased cell uptake than Abraxane. PTX-loaded
nanoparticles near-completely inhibit tumor growth after a
single dose in a murine cancer model of human triple-negative
breast and prostate cancer (Bhattacharyya et al., 2015). Mie M and
his coworkers designed a DNA aptamer conjugated ELPs through
a poly-aspartic acid for PTX delivery. PTX-loaded nanoparticles
with DNA aptamer showed increased cytotoxicity with MCF-7
breast cancer cells (Mie et al., 2019). Ryu JS conjugated
doxorubicin (Dox) to the CPP-ELP polymer using a matrix
metalloproteinase (MMP) sensitive linker. CPP-complexed Dox
showed significantly increased cell penetration and cell death,
even in doxorubicin-resistant breast cancer cells (Ryu, Kratz, and
Raucher 2021). Vallejo R prepared docetaxel (DTX) encapsulated,
RGD peptide-decorated ELP nanoparticles, suggesting higher
cytotoxicity on breast cancer than endothelial cells (Vallejo
et al., 2021). Peddi S fused the FKBP12 receptor with ELPs for
selective delivery of Rapamycin (Rapa). The Rapa-loaded
formulation was internalized by MDA-MB-468 breast cancer
cells through macropinocytosis (Peddi, Pan, and MacKay
2018). Avila H prepared an ELPs-based nanocarrier containing
rapamycin-binding domains for targeting glucose-regulated
protein (csGRP78). The targeted carriers significantly enhanced
cellular uptake and reduced mTOR activity by 3-fold compared to
free rapamycin (Avila et al., 2022). Ramamurthi D also prepared
gemcitabine-conjugated ELPs for ovarian cancer therapy
(Ramamurthi et al., 2022). In summary, ELPs delivering
chemotherapeutics greatly enhanced their cellular uptake and
increased the cytotoxicity against tumors in vitro and in vivo,
suggesting the excellent antitumor effect of the ELPs-based
delivery platform.

3.4 ELPs delivering photosensitizer

Photodynamic therapy (PDT) has attracted considerable
attention in cancer therapy due to precise and non-invasive

treatment (Zhang et al., 2020). Photosensitizers (PS) can absorb
light to generate cytotoxic reactive oxygen species (ROS) for tumor
killing (Shen et al., 2022). PS-loaded ELPs increased tissue
permeation and prolonged half-life without loss of ROS
production ability (Shi et al., 2022). Pille J prepared llama
heavy-chain antibody fragments (VHHs)–decorated ELPs
micelles to deliver photosensitizer (IRDye700DX) to EGFR-
overexpressed cancers. The PS-loaded micelles demonstrated an
EGFR-targeted light-induced tumor cell killing (Pille et al., 2017).
Sun M et al. designed a near-infrared absorbing polymer
(polypyrrole, PPy)-conjugated PPy-ELP-F3 nanoparticles to
treat melanoma. F3-decorated nanoparticles demonstrated
higher cellular uptake than nanoparticles without tumor-homing
functions in human high-mobility group protein 2 (HMGN2)-
overexpressed cancer cells, and they also completely abolish
tumors through the combination of photothermal and chemical
therapy (Sun et al., 2018). Ibrahimova V and his coworkers
conjugated photosensitizer TT1 (a peripherally substituted
carboxy-Zn(II)- phthalocyanine derivative) to ELP polymer
(M1V3-40), which could produce singlet oxygen (1O2) for
photodynamic therapy (PDT) (Ibrahimova et al., 2021). Thus,
the ELPs platform improved the biocompatibility and tumor
accumulation of PS without decreasing their ability to generate
ROS for tumor killing, showing a good candidate for the safe and
efficient delivery of PS to tumors.

3.5 ELPs delivering other drugs

Liu X et al. developed a 131I –labeled ELPs for radiotherapy and
explored their antitumor effect in rabbits with VX2 liver tumors
(Liu et al., 2016). ELPs delivering 131I could improve liver function
and inhibit tumor growth. Rang-Woon Park group designed ELP
nanocarriers containing TAT and AP1 peptides for nucleic acids
delivery. TAT-targeted ELPs nanocarriers could selectively deliver
siRNA into tumors and significantly downregulate the Luciferase
gene expression in the murine breast carcinoma model (Yi et al.,
2020). In addition to siRNA, the same nanocarriers could
efficiently introduce EGFP plasmids into IL-4R-expressed tumor
cells and enhance EGFP expression with low toxicity (Yi et al.,
2022).

4 Conclusion and perspectives

ELPs have shown great potential in delivering various
anticancer drugs for enhanced cancer therapy due to their
excellent biocompatibility, complete degradability, temperature-
responsive property, controllable sequence and length, and
precisely tuned function (Zhaoying et al., 2022). However, many
problems remain to be solved for further application of ELPs for
cancer therapy. For example, the reported ELPs for drug delivery
are prepared using the Escherichia coli expression system, which
lacks post-translational modification ability. Thus, ELPs may not
be suitable for delivering the functional proteins which need
sophisticated protein modification. Moreover, the concrete guest
residue and peptide length of ELPs need to be optimized for drug
delivery to different tumor types. Sarangthem V indicated that
increased molecular weight of AP1-ELPs contributes to better
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tumor penetration and retention in 4T1 tumor-bearing mice
(Sarangthem et al., 2020). Kuna M also demonstrated that the
increased molecular weight of ELPs had longer plasma half-lives
and higher total renal accumulation (Kuna et al., 2018). Due to the
high heterogeneity of tumors, the best guest residue and molecular
weight of ELPs in delivering antitumor drugs for specific cancer
should be investigated in detail. In addition, drug-loaded ELPs
nanoparticles hold great promise for next-generation advancement
in improving the efficacy of cancer treatment. Therapeutic peptides
or proteins could be genetically fused with ELPs for fusion
expression, and small molecule drugs or PS could be attached to
the backbone or linker peptide of ELPs polymers through post-
translational modifications (Milligan et al., 2022). Because of the
numerous potential reaction groups on the protein surface, the
precise conjugation of antitumor drugs to ELPs remains a
significant challenge. Costa SA attached Dox into a nanobody-
targeted ELPs nanoparticle by incorporating an unnatural amino
acid (p-acetylphenylalanine), providing a promising strategy for
targeted conjugation with ELPs polymers (Costa et al., 2018). The
biorthogonal drug attachment strategy could be used to develop
more and more ELPs-drug conjugates with improved efficacy in the
future (Sisila et al., 2022).

In conclusion, ELPs, as flexible and tunable biomaterials, are good
candidates for constructing efficient drug delivery platforms for cancer
treatment. By improving the pharmacokinetics and tumor
distribution, ELPs have enhanced the cytotoxicity of loaded drugs
and significantly inhibited tumor growth in many solid tumor
xenografts. Despite no approved ELPs-based formulation for cancer
therapy, their clinical testing in treating diabetes and heart failure may
accelerate the transformation process. The ELPs-based delivery
platform will likely bring approved drugs for cancer therapy in the
future.
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