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Previous studies have shown that Salt-induced kinase-2(SIK2) is involved in the regulation
of various energy-metabolism-related reactions, and it also can regulate angiogenesis after
cerebral ischemia-reperfusion. However, it is unclear whether SIK2 can regulate energy
metabolism in cerebral ischemia-reperfusion injury. As mitochondria plays an important
role in energy metabolism, whether SIK2 regulates energy metabolism through affecting
mitochondrial changes is also worth to be explored. In this study, rats were treated with
adeno-associated virus-SIK2-Green fluorescent protein (AAV-SIK2-GFP) for the
overexpression of SIK2 before middle cerebral artery occlusion (MCAO). We found that
SIK2 overexpression could alleviate the neuronal damage, reduce the area of cerebral
infarction, and increase the adenosine triphosphate (ATP) content, which could promote
the expression of phosphorylated-mammalian target of rapamycin-1 (p-mTORC1),
hypoxia-inducible factor-1α (HIF-1α), phosphatase and tensin homologue-induced
putative kinase 1 (PINK1) and E3 ubiquitinligating enzyme (Parkin). Transmission
electron microscopy revealed that SIK2 overexpression enhanced mitochondrial
autophagy. It is concluded that SIK2 can ameliorate neuronal injury and promote the
energy metabolism by regulating the mTOR pathway during cerebral ischemia-
reperfusion, and this process is related to mitochondrial autophagy.
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INTRODUCTION

Ischemic stroke accounts for 80–85% of the cerebrovascular diseases, and it has a high disability and
mortality rate, which seriously affects the quality of human life. The reconstruction of blood flow is
the most effective method to treat cerebral ischemia. However, in some cases, restoring blood
aggravated the development of the disease, which is called Cerebral Ischemia-Reperfusion Injury
(CIRI) (Eltzschig and Eckle, 2011). In recent years, some studies have confirmed that the damage
involves energy metabolism disorder, autophagy, oxidative stress and so on. Mitochondria are the
energy factory of the body and the mitochondrial respiratory chain is the main source of reactive
oxygen species (ROS) (Tang et al., 2016; Yang et al., 2018). Therefore, once the mitochondrial
structures and functions are destroyed, the energy metabolism will be out of balance, and if the
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damaged mitochondria can’t be removed in time, excessive ROS
will be produced which will eventually cause irreversible cell
damages. Severely damaged mitochondria will induce the cell
death and many diseases including cerebral ischemia will be
aggravated (Bhat et al., 2015). Hence maintaining the
mitochondrial integrity is important to resist cerebral
ischemia-reperfusion injury.

According to different degradation ways of substrates entering
lysosomes, autophagy can be divided into three categories:
macroauto-phagy, microautophagy and chaperone-mediated
autophagy (CMA). Macroauto-phagy is what we commonly
called autophagy and is the most easily induced, which refers to
a membrane derived from endoplasmic reticulum wraps around
the biodegradable materials to form autophagosomes, fused with
lysosomes and degrading their contents (Parzych and Klionsky,
2014). Mitochondrial autophagy is a selective macroauto-phagy,
which can remove dysfunctional mitochondria (Liu et al., 2017).
The mitophagy will be induced by the starvation (nutritional
deficiency) or stress damage (Bravo-San Pedro et al., 2017; Pei
et al., 2019), then the damagedmitochondria will be wrapped in the
double membrane which are shed from the non-ribosome
attachment zone of the rough endoplasmic reticulum to form
autophagosomes, which are fused with lysosomes to form
autophagolysosomes to degraded the mitochondria content
(Yorimitsu and Klionsky, 2005; Wang et al., 2015). Some
studies have shown that mitochondrial autophagy is also
involved in the regulation of cerebral ischemia-reperfusion
injury, but the role it plays remains unclear (Bhat et al., 2015;
Flannery and Trushina, 2019). These experiments prove that some
interventions play a protective role and can alleviate the cerebral
ischemia-reperfusion injury in rats and the OGD/R injury in
neurons by promoting mitochondrial autophagy (Sun et al.,
2018; He et al., 2019). However, in other experiments, over-
activation of mitochondrial autophagy causes delayed cell death
and aggravates cerebral ischemia reperfusion injury (Shi et al.,
2014; Cui et al., 2020).

Salt-induced kinase (SIK) is a serine/threonine protein
kinase, and SIK2 may have similar functions of the
adenosine monophosphate-activated protein kinase (AMPK)
as a member of its family (Lizcano et al., 2004; Zhao et al.,
2020). Studies have found that SIK2 plays an important role in
many aspects such as energy metabolism, cell metabolism and
tumor. These experiments prove that SIK2 inhibits the
anabolism of 3T3-L1 adipocytes (Du et al., 2008). In recent
years, other studies have found that SIK2 is located in the
centrosome and plays a key role in mitosis initiation, which
can affect the sensitivity of ovarian cancer to paclitaxel (Gao
et al., 2020). In addition, a report reveals that SIK2 plays an
important role in autophagosome maturation and autophagy
process, providing a new evidence for the regulatory role of
SIK2 in cell nutrition and energy metabolism (Dai et al., 2021).
But there are few studies on whether SIK2 also plays a role in
regulating energy metabolism in neurons. In this study, we
proved that SIK2 could promote the level of energy
metabolism and mitochondrial autophagy-related proteins
after cerebral ischemia-reperfusion in rats, and increase the
level of ATP in brain tissue, which indicates that it plays a

protective role in brain injury. We hope this study can provide
a new perspective for the clinical treatment of ischemic stoke.

MATERIALS AND METHODS

Animals
Adult male Sprague Dawley (SD) rats weighing 240–260 g were
supplied by Changsha Tianqin Biotechnology Co., Ltd. This
study was performed under the supervision of Animal Care
and Ethics Committee of Wannan Medicial College.

Experimental Design
100 rats were randomly divided into five groups (20 rats/
group) as follows: (1) Sham group: no plug after vessel
separation; (2) Ischemia group: plug into vessel for 2 h; (3)
Reperfusion group: plug into vessel for 2 h followed by 24 h
reperfusion; (4) adenovirus non-load group (Ad-GFP + R):
adenovirus non-load inject into rat ventrical followed by
Ischemia-Reperfusion; (5) SIK2 overexpression group (Ad-
hSIK2+R): 8 days before Ischemia-Reperfusion, adenovirus
loaded SIK2 is injected into rat lateral ventricle.

MCAO and SIK2 Overexpression Model
Construction
After 8–10 h of fasting, rats were anesthetized by an intraperitoneal
injection of 10% chloral hydrate (0.3–0.5 ml/100 g) and then placed
in a supine position. The modified Zea-Longa method (Longa et al.,
1989) was referred to for buildingMCAOmodel. Rats were placed in
the stereotactic device after anesthesia. The rat’s bregmawas taken as
the origin, and the localization of ventricle followed by AP = −1mm,
VD = 4.5mm and the right side opening was 2 mm (George and
Charles, 2001). Make a mark at the location, then drill a hole with a
syringe needle, and inject the virus with a microsyringe finally.

Hematoxylin–Eosin Staining and
2,3,5-Triphenyltetrazolium Chloride
Staining
The obtained brain tissue samples were fixed in 4% neutral-
buffered formalin and subsequently embedded in paraffin. Tissue
sections (5 μm thick) were stained with HE and analyzed by light
microscopy. The fresh brain tissues were frozen for 30 min at −20
°C before being cut into five sections (2 mm thick) along the
coronal plane, then these tissues were stained with TTC in 37°C
water for 15 min and analyzed by ImageJ.

Q-PCR Analysis
The obtained brain tissue samples were stored at −80°C condition,
then the expression of each protein wasmeasured at themRNA level
for Q-PCR analysis, and lastly the protein level forWestern blot was
measured. Total RNA was extracted by Trizol. cDNA was prepared
by reverse transcription kit. Themixture of cDNA, primer and SYBR
Green was subjected to real-time PCR analyses. Primer sequence:
SIK2 (5′-TCCTGCTTCCTGTCACTAT -3′ 3′-TCCACGGCTTCT
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ACCATT-5′), HIF-1α (5′-GGAAATGCTGGCTCCCA TT-3′ 3′-
CTGTAACTGGGTCTGCTGGA-5′), mTORC1 (5′-
GCTTTGACGC AG GTGCATAG-3′ 3′-TGTCCCCATAAC
CGGAGTAGG-5′), PINK1 (5′-TGATCG AGGAGAACGAGGC-
3′ 3′-GCTTCATACACAGCGGCATT-5′), Parkin (5′-TT TGT
CAGGTTCAACTCCAGC-3′ 3′-CCAGAGGCATTTGTTTCG
TGA-5′).

Western Blot
Total protein was extracted from tissues by RIPA, and the
concentration was measured with BCA Protein Quantitative
kit. After denaturing by boiling for 5–10 min, the proteins
were loaded, separated by SDS-PAGE gel electrophoresis and
transferred onto nitrocellulose filter (NC) membranes. After
blocked with 5% skim milk or 5% Bovine albumin (BSA), the
NC membranes were incubated with the following antibodies at
4°C overnight: rabbit anti-SIK2 (Thermo Fisher; 1:1000); rabbit
anti-HIF-1α (Bioss; 1:1000); rabbit anti-mTOR (Cell Signaling; 1:
1000); rabbit anti-p-mTOR (Cell Signaling; 1:1000); rabbit anti-
PINK1(Abcam; 1:1000); mouse anti-Parkin (Abcam; 1:1000).
After rinsed with Tris-buffered saline with Tween (TBST),
these membranes were incubated with goat anti-rabbit or anti-

mouse IgG-HRP (Biosharp; 1:10000), and exposed with ECL
reagent (Biosharp). β-actin was used as the endogenous control.

ATP Content in Brain Tissues
The ATP content in the brain tissue was detected by the
ultraviolet spectrophotometer using the Rat ATP ELISA kit.
Referring to the instructions of the kit, the tissue homogenate
was extracted firstly. Then add the standard sample and HRP-
Conjugate reagent in the pore plates in turn for the incubation
and washing of this mixture. Finally add the chromogenic
solution and the stop solution. Check the OD value of each
hole on the machine within 15 min after adding the stop solution.

Transmission Electron Microscopy
Observation
The preparation of specimens for TEMobservation: Rapidly take the
brain tissue out after it being perfused with paraformaldehyde. The
surface of the tissue was cleaned with glutaraldehyde solution. A
small piece of cortical tissue (with a size of 1 mm3) was quickly
divided with a sharp blade (within 1 min) and immediately placed in
the 2.5% glutaraldehyde solution. Then refrigerate and fix it formore

FIGURE 1 |Overexpression of SIK2 can reduce the pathological damage of rat brain tissue. (A).The pathological damage of the brain tissue in each group. Tissues
of cortex, the upper row is 10 × 10 low-power lens with a scale of 100μm, the lower row is 10 × 40 high-power lens with a scale of 20 μm. (B).The infarct area of each
group. The red area is normal brain tissue, and the white area is the infarcted area tissue. (C).ImageJ analysis of infarct area. Data are the ratio of infarct area to total area
as the means ± SEM of n = 3 samples. * vs. sham group,+ vs. ischemia group, # vs. reperfusion group, △ vs. no-load group.
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than 2 h at 4°C. Samples were made of resin-embedded blocks,
which were cut into 50–70 nm ultrathin sections with an
ultramicrotome. The ultrathin sections were double stained by
uranium lead and examined with transmission electron
microscope operating at 100 kV.

Statistical Methods
All data were presented as mean ± standard error of the mean
(mean ± SEM) and analyzed by the SPSS 13.0 statistical software.
The one-way ANOVA was used for the statistical evaluation of
these data. The level of significance was set at p < 0.05.

RESULTS

The Amelioration Effect of SIK2
Overexpression on the Pathological Injury
Induced by MCAO
The pathological changes of brain tissues determined by HE
staining in each group were shown in (Figure 1A). In the sham

FIGURE 2 |Overexpression of SIK2 can increase the expression of mTOR andHIF-1α. (A) The time screening of SIK2 overexpression. On the 8th day of adenovirus
injection, the expression level was the highest, which was 2.93 times higher as the normal expression level. * vs. Ad-GFP group. (B) The protein andmRNA levels of SIK2
in each brain group. (C) The protein and mRNA levels of mTORC1 in each group. (D) The protein and mRNA levels of HIF-1α in each group. Data are presented as the
means ± SEM of n = 5 samples. * vs. sham group and Control + R group, + vs. ischemia group and Ad + GFP group.

FIGURE 3 | The ATP content of brain tissue increases after SIK2
overexpression. The ATP content in the brain tissue of each group.
Data are presented as the means ± SEM of n = 5 samples. * vs. sham
group, + vs. ischemia group, # vs. reperfusion group, △ vs. no-
load group.
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(S) group, the morphology of nerve cells is regular, the cytoplasm
is rich, the nucleus is clearly visible, and the vacuolar
degeneration is not found. In the ischemia (I) group, the
ischemic area is lightly stained, and a small amount of nerve
cell liquefaction necrosis can be seen in some areas as sieve-
shaped. In the reperfusion (R) group and adeno virus non-load
SIK2+reperfusion (Ad-GFP+R) group, a large area of nerve cell
liquefaction necrosis can be seen, and the entire visual field under
high magnification is covered with vacuolar degeneration. In the
SIK2 overexpression + reperfusion (Ad-hSIK2+R) group, part of
the cortex is lightly stained, some vacuole-like structures can be
seen under high magnification, and the nucleus is clearly visible.
TTC staining was shown in Figure 1B. The brain tissue of the S
group was normal red with no infarcts. The I group showed a
smaller infarct area. The R group and the Ad-GFP + R group
showed a larger infarct area, while the infarct size was reduced in
the Ad-hSIK2+R group. After analysed by ImageJ software, the
difference was statistically significant (Figure 1C).

SIK2 Overexpression Increasing the
Expression of mTOR and HIF-1α
Q-PCR was used to detect the level of adenovirus in rat brain tissues
at different times after injection. We found that the level of
adenovirus was the highest on the 8th day after injection and the
mechanical damage of brain tissue was also restored to normal
(Figure 2A). Therefore, injecting adenovirus 8 days before MCAO
was finally selected to establish the overexpression model. WB and
Q-PCR were used to measure the levels of mTORC1 and HIF-1α in
each group. Compared with the sham group, the level of SIK2
decreased in the ischemia group and the reperfusion group, and the
reperfusion group decreased more significantly than the ischemic
group (Figure 2B). Compared with the sham group, the expression
of p-mTORC1 in the ischemia group and the reperfusion group both
decreased (Figure 2C), while compared with the reperfusion group,
the Ad-GFP+R group did not change significantly, and the Ad-
hSIK2+R group increased significantly (Figure 2C). Compared with
the sham group, the expression of HIF-1α in ischemia group

FIGURE 4 | SIK2 overexpression can stimulate mitochondrial autophagy. (A) The levels of PINK1 and Parkin in sham, ischemia and reperfusion groups. (B)
The level of PINK1 and Parkin in reperfusion, non-load and overexpressin groups. Data are presented as the means ± SEM of n = 5 samples. * vs. sham group
and Control + R group, + vs. ischemia group and Ad + GFP group.
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increased (Figure 2D). While compared with the reperfusion group,
the Ad-GFP + R group had no significant change and the Ad-
hSIK2+R group increased significantly (Figure 2D).

SIK2 Overexpression Leading to Increased
ATP Content
ELISAkitwas used tomeasure theATP content in brain tissues of each
group. The results showed that compared with the sham (S) group, the
ATP contents in ischemia (I) group and the reperfusion (R) groupwere
decreased. And compared with the reperfusion group, ATP content in
adeno virus non-load SIK2+reperfusion (Ad-GFP + R) group did not
change significantly, while increased significantly in the SIK2
overexpression + reperfusion (Ad-hSIK2+R) group (Figure 3).

The Stimulation Effect of SIK2
Overexpression on Mitochondrial
Autophagy
WBandQ-PCRwere used tomeasure the levels of PINK1 and Parkin
in each group. The results showed that compared with the sham
group, the level of PINK1 was significantly decreased in ischemia and
reperfusion group, and the decrease in reperfusion group was more
significant than that in ischemic group (Figure 4A). While compared
with the reperfusion group, the Ad-GFP+R group had no significant
changes, and the Ad-hSIK2+R group increased significantly

(Figure 4A). Then compared with the sham group, significantly
decreased level of Parkin was not found in ischemic group, but the
reperfusion groupwas significantly lower than the sham and ischemic
group (Figure 4B). While compared with the reperfusion group,
significant changes were not found in the Ad-GFP+R group, and the
level of the Ad-hSIK2+R group increased significantly (Figure 4B).

Changes of Mitochondria in Each Group
underTransmission Electron Microscope
The ultrastructure of brain tissue was observed by TEM and
exhibited in Figure 5. In the sham (S) group, the neure had
normal nucleus structure and complete nuclear membrane, with
evenly distributed chromatin and other substances in the nucleus.
Complete mitochondria could be seen in the cytoplasm, and
mitochondrial cristae were clearly visible. In the ischemic (I)
group, the neure also had normal nuclear structure and the
nuclear membrane was relatively intact, but most of the nuclear
material was degraded, the mitochondria in the cytoplasm were
slightly swollen, and themitochondrial cristae was also visible. In the
reperfusion (R) and adeno virus non-load SIK2+reperfusion (Ad-
GFP+R) group, the nuclear boundaries were blurred and nuclear
membrane was broken, while the mitochondria in the cytoplasm
were highly vacuolated, and there was no autophagosome. In the
SIK2 overexpression+reperfusion (Ad-hSIK2+R) group, nuclear
membrane was relatively intact, and the material in nuclear was

FIGURE 5 | Changes of mitochondria in each group under transmission electron microscope. The red arrow in the figure refers to mitochondria. The morphology
and structure of mitochondria in the S group are normal and in the I group are slightly swollen and in the R and Ad-GFP + R groups are highly swollen and vacuolated and
in the Ad-hSIK2 + R group are slightly swollen. The blue arrow points to autophagosomes, the organelles wrapped in autophagosome are mitochondria, which is
mitochondrial autophagy. The figures above are all 25,000 × microscopically, and the scale is 500 nm.
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partially degraded, while themitochondria were slightly swollen, and
mitochondrial cristae and autophagosomes were also visible.

DISCUSSION

In this study, we confirmed that SIK2 could play a similar role to
AMPK in the mTOR pathway, which promoted the phosphorylation
expression of mTORC1 and the energy metabolism, induced the
occurrence of mitochondrial autophagy, and improved the cerebral
ischemia-reperfusion injury. The HE and TTC staining clarified that
the overexpression of SIK2 and the neuronal and mitochondrial
degeneration were alleviated; meanwhile, the brain tissue infarct
size was decreased, the levels of mTORC1 and HIF-1α were
increased as same as the PINK1 and Parkin, and so were the ATP
content. So we conclude that SIK2 can improve the mitochondrial
autophagy restriction which is induced by cerebral ischemia-
reperfusion to promote the occurrence of energy metabolism
through the mTOR pathway in rats.

PINK1 is a protein encoded by the human chromosome 10
homologous deletion phosphatase-tensin gene-induced kalubizyme
1, and its structure contains mitochondrial targeting sequences.
Parkin is an E3 ubiquitin ligase, and its imbalance is related to
Parkinson’s disease and substantia nigra neuron loss (Youle and
Narendra, 2011). In normal cells, PINK1 is rapidly degraded by
proteolysis and maintains a low level. While in damaged
mitochondria, PINK1 hydrolysis is inhibited and it promotes the
recruitment of Parkin to the mitochondria, which inhibits
mitochondrial fusion through ubiquitination of mitochondrial
fusion proteins to activate mitochondrial autophagy (Tanaka
et al., 2010). The autophagy-lysosome process can regulate the
degradation and reuse of damaged organelles in the cell, and the
PI3K/Akt/mTOR pathway is a key regulator which induces
autophagy and regulates autophagosome formation (Liu et al.,
2019). A study has shown that the electroacupuncture reduces the
neuronal damage during cerebral ischemia-reperfusion by improving
the clearance of damaged mitochondria through mitochondrial
autophagy. This process also activates the PI3K/Akt/mTOR
signaling pathway (Wang et al., 2019). Our results showed that
SIK2 overexpression increased the levels of mTORC1, PINK1 and
Parkin, indicating that mitochondrial autophagy could promote the
removal of damaged mitochondria. Bcl2/adenovirus E1b interacting
protein 3 (BNIP3) is amitochondrial outermembrane protein, and it
is also necessary for mitochondrial autophagy clearance (Ney, 2015;
Fu et al., 2018). Studies have shown that increased level ofHIF-1α can
activate BNIP3. And up-regulating the level of HIF-1α and BNIP3
may promote autophagy of myocardial cell after ischemia-
reperfusion injury and H9C2 cells induced by OGD/R. In
addition, down-regulating the level of HIF-1α or BNIP3-siRNA
can reduce the autophagy of H9C2 cells under OGD/R.
Therefore, the HIF-1α/BNIP3 signaling pathway can protect the
myocardial ischemia-reperfusion injury by inducing autophagy
(Zhang et al., 2019). Our results showed that SIK2 overexpression
increased the level of HIF-1α. HIF-1α can promote glycolysis under
hypoxic conditions and increase the production of ATP, which
indicates that HIF-1α may also promote the production of ATP
by regulating mitochondrial autophagy.

Various studies have confirmed that SIK2 participates in cell
growth and metabolism, which is closely related to the
chemotherapy of ovarian cancer (Ahmed et al., 2010). The
experiments we completed before have confirmed that SIK2 had
impact on the brain tissue damage after cerebral ischemia-
reperfusion in rats by regulating angiogenesis. Furthermore, SIK2
can participate in cell energy metabolism. Therefore, this study aims
to explore whether SIK2 can also regulate neuronal damage from
energymetabolism to protect brain tissues. Besides, it is believed that
further investigations and experiments are needed to explore the
broad and far-reaching significance of energy metabolism.

The detection of autophagy is more complicated and diverse, and
TEM is the gold standard for detecting mitochondrial autophagy
(Prachar, 2017). For cell samples, co-localization of lysosomes and
mitochondria can also be used for comprehensive evaluation except
TEM (Park et al., 2015). However, TEM is themost effective method
for tissue specimens at present. Therefore, the process of obtaining
tissue specimens is very important, which is highly possible affect the
results. This point needs further improvement.

CONCLUSSION

It is concluded that SIK2 can be used as a positive regulator of
cerebral ischemia-reperfusion injury to reduce the brain tissue
damage. This result may provide a new target for the ischemic
stroke treatment in clinical.
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