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Breast cancer is the second leading cancer among all types of cancers. It accounts for
12% of the total cases of cancers. The complex and heterogeneous nature of breast
cancer makes it difficult to treat in advanced stages. The expression of various enzymes
and proteins is regulated by several molecular pathways. Oxidative stress plays a vital role
in cellular events that are generally regulated by nuclear factor erythroid 2-related factor 2
(Nrf2). The exact mechanism of Nrf2 behind cytoprotective and antioxidative properties is
still under investigation. In healthy cells, Nrf2 expression is lower, which maintains
antioxidative stress; however, cancerous cells overexpress Nrf2, which is associated
with various phenomena, such as the development of drug resistance, angiogenesis,
development of cancer stem cells, and metastasis. Aberrant Nrf2 expression diminishes
the toxicity and potency of therapeutic anticancer drugs and provides cytoprotection to
cancerous cells. In this article, we have discussed the attributes associated with Nrf2 in the
development of drug resistance, angiogenesis, cancer stem cell generation, and
metastasis in the specific context of breast cancer. We also discussed the therapeutic
strategies employed against breast cancer exploiting Nrf2 signaling cascades.
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1 INTRODUCTION

Breast cancer is a deadly disease affecting the majority of the female population. In 2020,
approximately 2.26 million cases were recorded globally, and 6,85,000 deaths were reported. Out
of 2,81,591 reported cases, 48,407 deaths were observed in the United States, while with a similar
number (2,54,881) of cases in India, 1,24,975 deaths were reported (https://www.who.int/cancer/
country-profiles/en/). According to GLOBOCAN (2020), 2.2 million cases were reported, and it is
the second most prevalent cancer among women. Breast cancer is diagnosed in one in four women
globally (Morphology). According to immunohistochemical markers, breast cancer has five subtypes
that differ in prognosis and therapeutic targets: 1) luminal A (ER positive and/or PR positive and
HER2 negative), 2) luminal B (estrogen receptor positive and/or progesterone receptor positive and
HER2 positive), 3) HER2 overexpressing (estrogen receptor and progesterone receptor negative and
HER2 positive), 4) basal like (estrogen receptor/progesterone receptor/HER2 negative, cytokeratin 5/
6 positive, and/or epidermal growth factor receptor positive), and 5) normal breast like. TNBC is a
type of breast cancer in which estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor-2 (HER2) are not expressed. Gene expression in triple-negative
breast cancer often classifies it as a subtype of basal-like breast cancer (Kumar and Aggarwal, 2016).
Approximately 15–20% of cases represent TNBC, which has a more aggressive phenotype, rapid
onset of metastasis, shorter response duration to therapies, and worse prognosis (Yin et al., 2020).
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The complex and heterogeneous nature of breast cancer and
the contribution of Nrf2 are currently under investigation, and
limited data are available to justify the major role of Nrf2 in breast
cancer progression (Oshi et al., 2020). Several studies have
proposed a link between the enhanced activity of Nrf2 and the
potentiation of breast cancer metastasis. Nrf2 is present in the
cytoplasm, where it binds to Kelch-like ECH-associated protein 1
to form a complex with Cul3 and Rbx1, which degrades the Nrf2
proteasomal enzyme (Bellezza et al., 2018). However, the stable
Nrf2 heterodimerizes with Maf proteins in nuclei, enhancing the
antioxidant property to protect the target gene (Pandey et al.,
2017). Nrf2 is also associated with Notch pathways, which
enhance the survival, invasion, and chemoresistance associated
with tumor cells with abnormal expression of Nrf2 (Lamy et al.,
2017). Moreover, Nrf2 has a key role in the activation of HIF1α,
which is followed by enhanced glycolysis, which enhances breast
cancer progression (Zhang et al., 2018).

Redox mechanism-based therapy is known to play an
important role in cancer treatment; however, its utility is
compromised with the inherent tendency to develop resistance
over time. Here, Nrf2 is responsible for the regulation of
antioxidant and cytoprotective properties through the
activation of several genes involved in glutathione (GSH)
synthesis and chemoresistance (Raghunath et al., 2018). The
recent literature is flooded with multiple outputs by various
researchers on the role of Nrf2 and its exact involvement in
biological functions. In this article, we discuss the role of Nrf2 in
the specific context of breast cancer, its development,
angiogenesis, chemoresistance, stem cell generation, and
metastasis. The effective treatment strategies are also
elaborated and explained here for the treatment of breast
cancer with abnormal Nrf2 expression.

2 NUCLEAR FACTOR ERYTHROID
2-RELATED FACTOR 2: GENERAL
MECHANISM/PATHWAYS
Nrf2 is an omnipresent transcription factor that is essential for
maintaining cellular homeostasis. It promotes the activity of
cytoprotective genes such as glutamate cysteine ligase (GCS)
and NAD(P)H:quinone oxidoreductase-1 (NQO1). Generally,
Nrf2 is a transcription factor of the Cap n Collar (CNC)
family and contains a basic leucine zipper region (bZip). Nrf2
is made up of 650 amino acid residues and has a molecular weight
of 96–118 kDa because of posttranslational changes such as
phosphorylation (Moi et al., 1994; Pi et al., 2007). Nrf2 tends
to promote the transcription of genes by heterodimerizing with
Maf proteins or other homologs to a cis-acting DNA
transcriptional regulator, specifically the antioxidant response
element (ARE) (Zhu et al., 2016). Nrf2 contains seven Neh
domains (Neh1-Neh7) that are considered crucial for its
action and suppression (Itoh et al., 1999). Neh2 and Neh6 are
degron sections that are targeted by Keap1 and TrCP via
29DLG31/79ETGE82 motifs and 343DSGIS347/
382DSAPGS387 motifs, respectively (McMahon et al., 2004;
Chowdhry et al., 2013). Ablation or diminution with time is

associated with an increase in oxidative stress and cellular death
(Lee et al., 2003; Suh et al., 2004; Silva-Islas and Maldonado,
2018).

Nrf2 is considered the key regulator of the oxidative cellular
state through the interaction of the proteins CHD6, CBP, and
RAC3; Neh3, Neh4, and Neh5 are transactivation domains
(Katoh et al., 2001; Nioi et al., 2005; Kim et al., 2013) Finally,
the Neh7 domain is linked to the RXRα protein for Nrf2
suppression (Wang et al., 2013). Nrf2 is expressed everywhere
(Moi et al., 1994) and regulates the expression of approximately
1,055 genes (Malhotra et al., 2010) that contain the cis-acting
antioxidant response element (ARE, 5′-GTGACNNNGC-3′)
(Rushmore et al., 1991). They ARE sequence is located in the
regulatory regions of genes involved in cellular growth, oxidation
and detoxifying response, metabolic, immunologic response, cell
survival, signaling, and cellular cycle (Figure 1).

Chemopreventive drugs activate Nrf2 (Fahey et al., 2002; Iida
et al., 2004; Sussan et al., 2009) and pharmacological stimulation of
Nrf2 has been extensively supported as a primary method for
cancer and other illness prevention (Kwak et al., 2004; Zhang et al.,
2004). Moreover, recent research reveals that Nrf2 activity may be
elevated in cancer cells, and its cytoprotective action may promote
cancer cell survival and proliferation, implying that inhibition of
Nrf2 during cancer treatment may be essential (Lau et al., 2008;
Kang et al., 2020). The mechanism by which chemopreventive
drugs activate Nrf2 is, however, poorly understood. While most
research has shown that chemopreventive drugs activate Nrf2 by
preventing its protein degradation, there is also some research
implying that Nrf2 gene transcription may be promoted (Kwak
et al., 2002; Pi et al., 2003).

Keap1 reactive cysteine residues have a negative impact on Keap1-
mediated Nrf2 enzymatic activity, which results in Nrf2
accumulation/activation and cytoprotection by enhanced ARE
transcriptional genes (Dinkova-Kostova et al., 2005a). Furthermore,
chemical alteration of Keap1 cysteines has been found to cause its own
ubiquitination and destruction, sparing Nrf2 from destruction (Hong
et al., 2005). Nonetheless, some studies suggest that chemically
changing Keap1 cysteines are inadequate to interrupt the Nrf2
interaction with Keap1 (D. D. et al., 2004; Eggler et al., 2005),
while others state that phosphorylation of Nrf2 (at Ser40) by
protein kinase C or extracellular protein kinase PERK increases
Keap1 dissociation (Huang et al., 2002).

Nrf2 has a key role in redox homeostasis through NADPH and
ROS regeneration and glutathione (GSH) and thioredoxin (TXN)
antioxidant synthesis. The regulation and maintenance of GSH
synthesis is controlled by Nrf2 and by the expression of two types
of subunits, the catalytic subunit (Gclc) and the modifier subunit
(Gclm), which help in the synthesis of glutamate-cysteine ligase
(Gcl) (Moinova and Mulcahy, 1999; Dinkova-Kostova and
Abramov, 2015). Nrf2 regulates several GSHs (Gsta1/2/3/5,
Gstam1/2/3, and Gstp1) and other ROS detoxifying enzymes
(Thimmulappa et al., 2002). The TXN-based antioxidation
system is also controlled and regulated by Nrf2. Nrf2 controls
thioredoxin reductase 1 (Txnrd1) and sulfaredoxin, which are
essential for the oxidized protein thiol reduction mechanism. The
NADPH enzyme is an important factor for cytoprotection. Nrf2
positively regulates NADPH-generating enzymes, such as 6-
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phosphogluconate dehydrogenase (Pgd), isocitrate
dehydrogenase 1 (Idh1), glucose-6-phosphate dehydrogenase
(G6PD), and malic enzyme 1 (Me1) (Tonelli et al., 2018).
Moreover, Nrf2 is also associated with the regulation of other
cytoprotective enzymes. Hmox1 is a part of the heme oxygenase
enzyme, which is involved in ferritin production by oxidizing free
Fe2+ into Fe3+. Nrf2 regulates the expression of genes that are
especially encoded ferritin complex constitutions (Wu et al.,
2011). Nrf2 plays a major role in the cellular defense system
by controlling xenobiotic and oxidative stress conditions by
controlling the expression of antioxidants and detoxifying
genes in normal cells (Tonelli et al., 2018).

The cellular Nrf2 level is quite low in normal unstressed
situations, but it substantially increases when exposed to
electrophilic compounds or reactive oxygen species (ROS)
(Itoh et al., 1997). In Keap1, electrophiles alter reactive
cysteine residues (Dinkova-Kostova et al., 2005b). Murine
Keap1 has 25 cysteine residues, which are classified into
different classes based on their reactivity to different
electrophiles (Zhang and Hannink, 2003).

Cysteine 151 (C151) and C288, for example, have been proven
to sense definite sets of electrophiles generated endogenously or
exogenously (Eggler et al., 2008). Although particular cysteine
residues changed by ROS have yet to be identified, oxidative
alteration of Keap1 has been reported to reduce its binding to
Nrf2 or CUL3. These electrophilic and oxidative changes
inactivate Keap1, allowing Nrf2 to be stabilized. As a result,
the rise in Nrf2 in response to electrophiles and ROS is not a
precise induction but rather a process known as depression (from

rapid degradation-based repression) (Taguchi and Yamamoto,
2017) (Figure 2).

3 NUCLEAR FACTOR ERYTHROID
2-RELATED FACTOR 2 IN BREAST
CANCER
Nuclear factor erythroid 2-related factor 2 (Nrf2) is primarily
responsible for the cytoprotection of normal cells by detoxifying
mechanisms through oxidation, electrophilic stress, or xenobiotic
processes. The abnormal expression of Nrf2 in cancer cells leads
to a pro-oncogenic program that stimulates the malignancy of
cancerous cells/tissue. An increased level of Nrf2 expression
resulted in lower survival and increased cancerous cell
progression and proliferation in breast cancer patients
(Almeida et al., 2020). Convening evidence from recent
decades indicates that Nrf2 can exert chemopreventive
properties on normal cells through an ROS-dependent
oxidation process. However, aberrant expression in breast
cancer imparts cytoprotective effects to cancerous cells by
suppressing ROS-dependent DNA damage and carcinogenicity.

Nrf2 has dual roles as a pro-oncogenic and anti-oncogenic in
breast cancer cells and healthy cells, respectively. The dual role
contributed by the transcription factors depends on metabolic
adaptation, cell proliferation, and induction of Nrf2 (Lee et al.,
2018; Aliyev et al., 2021). For example, De Blasio and his co-workers
demonstrated that Nrf2 upgraded both the proliferation and
antioxidant capacity in triple-negative breast cancer (TNBC) cells

FIGURE 1 | Nrf2, through its targeted genes, has an anti-carcinogenic role in the case of normal cells and a pro-carcinogenic effect in the case of transformed
malignant cells. The image was acquired from (Zimta et al., 2019). Under creativecommons.org/licenses/by/4.0/.
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by downmodulating miR-29b-1-5p expression. miR-29b-1-5p is a
prognostic biomarker in basal-like breast cancer that produces
cytotoxic events through decreased levels of p-AKT and p-Nrf2
and inhibition of N-methyltransferase expression. Thus, it helps to
reduce cell proliferation and invasion. They showed in their research
that the activation of miR-29b-1-5p expression inhibits the
expression of AKT, which could suppress Nrf2 (De Blasio et al.,
2020). Nrf2 could be one of the major hallmarks in the development
and regulation of breast cancer. It was also suggested that Nrf2 is
highly expressed in ER-negative breast cancer. Nrf2 downregulates
CXCL13, which suppresses breast cancer proliferation. The
increased level of CXCL13/CXCR5 coarticulation in ER (+)
breast cancer cells with lower Nrf2 levels helps advance tumor
intrusion and metastasis (Aliyev et al., 2021).

The involvement of Nrf2 and its role in different subtypes in
breast cancer are still under investigation. To date, no data have
been published explaining the level of Nrf2 expression in different
subtypes of breast cancer. However, few published studies have
shown that the Nrf2 and keap-1 pathways are more highly
activated in breast cancer, which has ER, PR, and HER receptor
positivity, than in TNBC (Karihtala et al., 2011). The increased
level of Nrf2 causes lower overall survival and disease-free survival
in all breast cancer patients. However, normal cells can exert
chemopreventive effects via Nrf2. Due to the dual role of Nrf2
(pro-oncogenic and anti-oncogenic) in cancer patients, other
factors, such as metabolic genes, proliferative genes, and
angiogenesis genes, should also be considered for inhibiting
Nrf2 through Nrf2 inhibitors (Almeida et al., 2020; Smolková
et al., 2020; Aliyev et al., 2021).

4ROLEOFNUCLEARFACTORERYTHROID
2-RELATED FACTOR 2 IN BREAST
CANCER RESISTANCE
Nrf2 is a leucine zipper protein transcription factor that positively
regulates the expression of antioxidant genes, such as GPX4, HO-
1, SLC7A11, and NAD(P)H quinone oxidoreductase (Qiao et al.,
2020). As discussed above, Nrf2 regulates oxidative stress and
protects cancer cells by the toxic effect of therapeutic drugs/

FIGURE 2 | Nrf2/Keap1 signaling pathway. Adapted from (Wu et al., 2019). Under © 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
https://creativecommons.org/licenses/by/4.0/.

FIGURE 3 | KEAP1-NRF2 system for oxidative stress response. NRF2 is
a transcription activator and regulates many cytoprotective genes. Under
unstressed conditions, Nrf2 is bound by KEAP1 and ubiquitinated for
degradation. Adapted from (Okazaki et al., 2020). Under © 2019 The
Authors. https://creativecommons.org/licenses/by/4.0/.
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anticancer drugs. Nrf2 is a central transcriptional activator with
an active role in cellular defense mechanisms against electrophilic
or oxidative stress (Uruno and Motohashi, 2011) (Figure 3).
Studies have reported that Keap1 constantly degrades Nrf2,
which downregulates Nrf2 by the ubiquitin–proteasome
pathway under normal cellular conditions. At the somatic
mutation stage, Keap1 is inactivated, which enhances Nrf2
expression in the nucleus and induces cytoprotective genes
such as heme oxygenase-1 [HO-1 (HMOX1)] and NAD(P)H:
quinone oxidoreductase 1 (NQO1) (Baird and Dinkova-Kostova,
2011). Nrf2 overexpression in the protein–protein interaction
region compromised the Keap1 checkpoint, resulting in
epigenetic and posttranscriptional modification and enhancing
proto-oncogenes (Sporn and Liby, 2012). Moreover, Nrf2
phosphorylation and polymorphisms in Nrf2 cause poor
prognosis in breast cancer (Hartikainen et al., 2012; Ishikawa,
2014).

Nrf2 overexpression in breast cancer also improves the excess
expression of P53 in an inhibitor protein for stimulating
apoptosis, also known as Rel-A inhibitor, which promotes
cancer development and tumor-associated drug resistance. The
higher P53 level in breast cancer cells restricts the binding of free
Keap1 to free Nrf2; therefore, the level of free Nrf2 is higher in the
nucleus and induces chemoresistance (Ge et al., 2017). Few more
studies have suggested that other proteins, such as p21 or p62,
also restrict the Keap1–Nrf2 interaction and induce Nrf2-
associated drug resistance in tumor cells (Chen et al., 2009;
Lau et al., 2010).

5ROLEOFNUCLEARFACTORERYTHROID
2-RELATED FACTOR 2 IN METASTASIS

In response to various oxidative-driven transcriptional processes,
Nrf2 combines physiological stress signals by interacting with
antioxidant response domains within the regulatory regions of
Nrf2-controlled genes (Itoh et al., 1999; Jaiswal, 2004; Nguyen
et al., 2009). Because of its cytoprotective role, Nrf2 has been
identified as a tumor suppressor, and its activity can also prevent
tumor growth. For example, sulforaphane, a Nrf2 inducer, has
also been found to prevent the development and metastasis of
effectively supported implanted breast cancer cells in female
athymic mice as well as to reduce the growth of human breast
cancer cells (Kanematsu et al., 2011). Moreover, several
researchers have demonstrated abnormally active Nrf2 in
several breast cancer cells (Nioi and Nguyen, 2007; Syed Alwi
et al., 2012; Zhong et al., 2013), and recent genetic investigations
of breast cancers revealed the crucial role of Nrf2 in oncogenesis
(Hayes and McMahon, 2009; Denicola et al., 2011).

In breast cancer, Nrf2 activation enhances Rho expression and
downstream proteins such as focal adhesion kinase 1 (FAK),
modulator of volume-regulated anion channel current 1 (MLC),
and Rho-associated coiled-coil-containing protein kinase 1
(ROCK), whereas it lowers estrogen-related receptor (ERR1)
expression. Nrf2 has a direct interaction with the BRCA1
susceptibility protein, resulting in enhanced BRCA protein
stability. Estrogen improves Nrf2 activation in the absence of

BRCA expression, leading to reduced ROS production and
enhanced cytoprotection (Gorrini et al., 2013). Exogenous
antioxidants such as phospholipid hydroperoxide glutathione
peroxidase (PHGPx) or pro-oxidant 15-lipoxygenase (15-LOX)
decrease the levels of vascular cell adhesion molecule (VCAM)
through an interaction with Nrf2 in the gene promoter of this
locus (Zimta et al., 2019).

RhoA is a member of the Ras superfamily, which regulates cell
migration and invasion of cancer cells (Pertz et al., 2006; Vega
and Ridley, 2008). RhoA GTPases regulate the formation of actin
stress fibers and limit the size of the lamellipodium through their
downstream effectors mDIA and ROCKs, which cycle between an
inactive GDP-bound and an active GTP-bound form (Riento and
Ridley, 2003; Worthylake and Burridge, 2003). The RhoA
regulatory effect is controlled to the extent of protein stability
and deterioration (Nethe and Hordijk, 2010). However, no
constitutively active Rho GTPase mutations have been found
in human cancers (Rihet et al., 2001; Fritz et al., 2002), and
clinical and experimental studies show a link between enhanced
RhoA expression and poor clinical outcome in breast cancer
(Bellizzi et al., 2008; Chan et al., 2010; Ma et al., 2010). High levels
of Nrf2 are associated with tumorigenesis and poor prognosis,
and it promotes RhoA expression by interacting with and
silencing the ERR1 gene, allowing breast cancer cells to
proliferate and metastasize. In conjunction with published
reports, deactivating Nrf2 could be advantageous in breast
cancer treatment in the clinical stage (Zhang C. et al., 2016).

6ROLEOFNUCLEARFACTORERYTHROID
2-RELATED FACTOR 2 IN TUMOR
ANGIOGENESIS
Due to excessive ROS generation, by interacting with the Notch/
delta-like 4 (Dll4) system, Nrf2 promotes vascular sprouting by
reducing the impairment of vascular signal transduction and
angiogenesis and regulating the production of tip cells (Wei et al.,
2013). Its role inmicrovascular epithelial cell migration and blood
vessel generation has been verified, which suggests the
development of a VEGF-Nrf2 positive loop (Li et al., 2016).
The positive regulation of endothelin receptor B by nitro-oleic
acid (OA-NO2) was substantially regulated by Nrf2, suggesting
that Nrf2 silencing enhanced endothelin-1 levels in the
circulation (Kansanen et al., 2017). ROS have been
demonstrated to be proangiogenic mediators at adequate levels
through a different pathway, including increasing VEGF and
angiopoietin-1/Tie-2 signaling (Harel et al., 2017; Zou et al.,
2019). Under oxidative stress, Nrf2 plays a direct or indirect
role in angiogenesis control (Guo and Mo, 2020).

Disturbances in proliferation and apoptosis have an important
role in tumor and angiogenesis. Past studies indicate that Nrf2 is
required for angiogenesis of normal vasculature. Valcarcel-Ares
et al. published that short interfering RNA (siRNA) and Keap1
were involved in silencing the expression of Nrf2 in coronary
arterial endothelial cells, leading to cellular proliferative capacity
impairment, improper adhesion to extracellular matrix proteins,
reduced migration, and impaired capillary formation (Valcarcel-
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Ares et al., 2012). It is believed that the Nrf2 in breast tumor
angiogenesis affects the biological behavior of intratumoral
endothelial cells (Zhou et al., 2012).

Nrf2 regulates redox homeostasis and is associated with
cellular growth and malignancy (Denicola et al., 2011;
Mitsuishi et al., 2012). Neovascularization is essential for
organ regeneration, tissue repair, and embryogenesis (Hoeben
et al., 2004). Tumor growth is linked to angiogenesis, and in
malignant tumors, the exchange of oxygen/carbon dioxide and
nutrients/waste products depends on blood vessels. Angiogenesis
plays a critical role in the migration and invasion of primary
malignancies to distant areas of the body (Carmeliet, 2005).
Oxidative stress affects angiogenesis in atherosclerosis, ocular
diseases, and tumorigenesis (Chung and Ferrara, 2011; Coso
et al., 2012).

Another important factor in angiogenesis is hypoxia, as it
activates angiogenesis mediators such as HIF and VEGF
transcription factors, which are interlinked to tumor
dissemination, invasion, and metastasis (Lee et al., 2009). In
addition, elevated levels of peroxides also trigger tumor
angiogenesis (Szatrowski and Nathan, 1991). Various studies
have shown that Nrf2 participates in angiogenesis regulation.
Hypoxia triggers the Nrf2/ARE pathway, which promotes tumor
blood vessel development. The forceful blocking of HIF-1
signaling in the absence of Nrf2 can result in a decrease in
capillary density (Zhang et al., 2013). Kweider et al. (2011)
explored the role of VEGF in cancer cell proliferation.
Another study found a link between VEGF and Nrf2
activation, demonstrating that VEGF increased Nrf2
expression in an ERK1/2-dependent manner (Kweider et al.,
2011). Shao et al. reported that curcumin upregulates Nrf2
and GSH and causes ROS scavenging, reduces the expression
of VEGF, and inhibits hepatocarcinoma angiogenesis and
invasion (Shao et al., 2019). As a result, VEGF and Nrf2/HIF-
1 facilitate tumor angiogenesis.

The activation of HIF-1α through Nrf2 also enhances the
angiogenesis and progression of breast cancer. HIF-1α is the
major transcription factor responsible for adaptive hypoxic
conditions and regulates metabolic genes (such as GLUT1,
HK2, and PGK1), angiogenesis genes (such as VEGF and
FGF), and apoptosis genes (e.g., Bax, BCL2, and P53). The
inhibition of the aberrant expression of Nrf2 could be effective
in breast cancer treatment. This experiment was performed by
Zhang and his coworkers in 2018, who found higher levels of Nrf2
and HIF-1α mRNA and proteins in MCF-7 and MDA-MB-231
breast cancer cells than in normal breast cells (MCF-10A). The
knockdown of Nrf2 overexpression decreased HIF-1α mRNA
levels and reduced breast cancer cell proliferation (Zhang et al.,
2018).

7ROLEOFNUCLEARFACTORERYTHROID
2-RELATED FACTOR 2 IN BREAST
CANCER STEM CELLS
The studies found and identified Nrf2 as a major regulator of
chemoresistance in cancer stem cell (CSC)-enriched breast

cancers (Achuthan et al., 2011; Ryoo et al., 2015) as well as
the activation of Nrf2-associated antioxidant genes such as HO-1,
NQO1, Prx1, and others that leads to radioresistance in several
other cancer cells (Zhou et al., 2013). Because breast cancer stem
cells (BCSCs) have low ROS levels and increased antioxidant
defense (Lobo et al., 2009), the involvement of the Nrf2 pathway
in BCSC radioresistance requires further investigation.

For example, an enhancement in ALDH levels in BCSCs
causes higher radioresistance, carcinogenesis, decreased
apoptosis, and regulation of signaling pathways that enhance
mesenchymal–epithelial transition and migration. Moreover,
following fractionated irradiation, tumorigenicity was
increased. Further examination of the involvement of Nrf2 in
radioresistance revealed that following irradiation, Nrf2 and its
related genes HO-1 and NQO1 were significantly elevated. All of
the foregoing pathways of radioresistance in BCSCs were reduced
by shRNA-mediated knockdown of Nrf2 expression. The process
of Nrf2 activation was reported to be regulated by Keap1
silencing, as there was no change in GSK-3 or Bach1, a
negative regulator of Nrf2. We also found no change in the
methylation status of the Keap1 promoter; however, we identified
a substantial rise in the expression of miR200a. This suggests that
miR200a might be a mechanism for Keap1 silencing. This work
offers data for the significance of Nrf2 and its downstream genes
in radioresistance in BCSCs and identifies processes by which the
Nrf2/Keap1 pathway influences radioresistance in BCSCs
(Kamble et al., 2021).

Evidence gathered to date suggests that the upregulation of
Nrf2 promotes tumor growth and survival by creating a favorable
environment for cancer stem cells. The direct involvement of
Nrf2 in cellular ROS regulation and anticancer drug resistance is a
potential contribution of Nrf2 to CSC biology. Wu et al. (2015)
recently demonstrated that Nrf2 activation was associated with
CSC-enriched spheroid breast cells (Wu et al., 2015). Another
published report demonstrated that Nrf2 activation is
characterized in a CD44-overexpressing breast CSC-like
system and investigated the direct link of Nrf2 with the CSC
phenotype (Ryoo et al., 2018).

Similarly, in another work, it was suggested that intracellular
ROS generation is low and is upregulated by Nrf2-induced GCLC
expression, which allows the self-renewal of CSCs through the
Fork head box O3a-Bmil-axis (Kim et al., 2020). Furthermore, it
has also been demonstrated that hypoxia-driven CSC enrichment
in breast cancer originates from a dedifferentiation process and
that hypoxia-inducible factors (HIFs) are essential for
chemotherapy resistance in breast CSCs (Iriondo et al., 2015).
Surprisingly, differentiating CSCs exhibit multidrug resistance
(MDR) because of the PERK-Nrf2 signaling pathway (Del
Vecchio et al., 2014).

8 STRATEGIES TO OVERCOME BREAST
CANCER RESISTANCE

8.1 Endogenous Molecule Inhibitors
Various endogenous molecules, such as E-cadherin (Kim WD.
et al., 2012), activating transcription factor-3 (ATF3) (Brown
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et al., 2008), tumor protein P53 (Faraonio et al., 2006), BTB and
CNC homology 1 (bach1) (Dhakshinamoorthy et al., 2005),
caveolin-1 (Li et al., 2012), and GSK3 (Chowdhry et al., 2013),
play a role in the downregulation of Nrf2. These molecules
disrupt the Nrf2/ARE pathway and its expression levels.
Specifically, E-cadherin has a role in chemoresistance and
enables Keap1 to reduce endogenous Nrf2 levels by recruiting
Nrf2 via β-catenin. P53 activation causes downregulation of Nrf2
and generates higher levels of ROS, which promotes apoptosis
(Faraonio et al., 2006). These molecules are generally required for
normal cell homeostasis; therefore, disruption of the signaling
pathway would be based on a thorough understanding of cellular
biology and events before beginning this therapy.

8.2 Exogenous Natural Inhibitors
The complex tumor microenvironment limits the application of
endogenous inhibitors; hence, exogenous inhibitors are emerging
molecules. Some exogenous natural inhibitors not only inhibit
Nrf2 but also promote anticancer drug sensitivity in resistant
cancerous cells. For example, vitamin C could decrease oxidative
stress in the tumor microenvironment, which suppresses the
translocation of Nrf2 to the nucleus from the cytoplasm.
Ascorbic acid (vitamin C) is a reducing agent that binds to
ARE, inhibits Nrf2 translocation to DNA, and decreases the
levels of g-GCSl mRNA and GSH. Furthermore, vitamin C in
combination helped in the reversal of drug resistance associated
with imatinib treatment (Tarumoto et al., 2004). Similarly, Xiu
et al. (2007) reported that all-trans retinoic acid (ATRA) prevents
binding of Nrf2 to ARE by forming a complex with RARa (Xiu
et al., 2007). In another example, trigonelline, a coffee-derived
alkaloid, also lowers Nrf2 levels in drug-resistant pancreatic
cancer cell lines by blocking Nrf2-dependent proteasomal gene
expression of s5a/psmd4 and a5/psma5 and reducing proteasome
activities. Trigonelline also reduced basal and tert-
butylhydroquinone-induced Nrf2 activity and reduced the
drug resistance induced by higher levels of Nrf2 (Arlt et al., 2013).

Nrf2-resistant cancer cells were observed to have higher levels
of Nrf2 and other associated genes, such as NQO1, MRP-1, HO-
1, CGLM, and CGLC. The expression of these genes is highly
linked with the development of drug resistance in lung cancer.
Cryptotanshinone treatment was administered in combination
with cisplatin to the cells, and it was found that Nrf2 and its
associated target gene expression were diminished in cisplatin-
resistant lung cancer. Furthermore, it was also observed that
cryptotanshinone affects other signaling pathways, such as the
MAPK, Akt, and Stat3 (Xia et al., 2015). Luteolin, a vegetable-
derived flavonoid, dramatically induces Nrf2 mRNA degradation
and other downstream ARE-driven genes, such as NQO1, HO-1,
and AKR1C (Tang et al., 2011). As a result, luteolin induced cell
death when used in combination with oxaliplatin, bleomycin, and
DOX. In TNBC cells, luteolin-loaded nanoparticles reduced the
Nrf2, HO1, and MDR1 mRNA expression levels. In addition,
luteolin nanoparticles improved doxorubicin sensitivity in MDA-
MB-231 cells (Sabzichi et al., 2014).

A few other flavonoids, such as chrysin (Gao et al., 2013a),
apigenin (Gao et al., 2013b), wogonin, and 30, 40, 50, 5,7-
pentamethoxyflavone (PMF) (Hou et al., 2015), can also inhibit

Nrf2 expression in cancerous cells and produce apoptotic effects.
Flavonoids are known for their antioxidant and cytoprotective
properties, and their Nrf2-inducible effect has been observed in a
few studies (Bai et al., 2016). Nanocarriers entrapping flavonoids
were developed for targeted drug administration, enhancing the
bioavailability of poorly water-soluble medications and delivering
macromolecules to the cell’s site of action.Moreover, by combining
therapeutic agents with imaging tools that can visualize the drug
delivery location and coadministration of two or more medicines,
ADRs can be reduced, and nanotechnology plays a key role in this
(Kumar et al., 2016; Khan et al., 2021).

8.3 Inhibitors of Nuclear Factor Erythroid
2-Related Factor 2 in Cancer Therapy
Nrf2 regulates genes such as transporters, phase II detoxifying
enzymes, and endogenous antioxidants by controlling cellular
defense response mechanisms. The literature shows the role of
Nrf2 in chemoresistance, and its expression has been identified in
many types of cancer (Samadi et al., 2014). High-throughput
screening (HTS) in combination with cell-based assays has
proven to be a potential approach to discover new anticancer
drugs and to identify therapeutic uses of compounds that are
approved by the FDA. Plant extracts and other phytochemicals
have anticancer activity and are under treatment regimens or in
clinical trial investigations.

Procyanidin CCE lowers the levels of Nrf2 expression and
inhibits cell growth in the case of cancer. Another compound
based on a flavonoid, luteolin, present in fruits and vegetables,
inhibits Nrf2 in cancer cells (Choudhari et al., 2020). Similarly,
trigonelline, an alkaloid present in hemp seed, coffee beans, oats,
garden peas, and fenugreek seed, shows high basal Nrf2 activity
that protects against etoposide- or TRAIL-induced apoptosis by
elevating proteasomal gene expression (Panieri and Saso, 2019).
Brusatol, a quassinoid Brucea javanica plant extract, shows
antitumor activity (Yu et al., 2020). Chrysin, a bioflavonoid,
protects against carcinogenesis by decreasing the mRNA and
protein levels of Nrf2 (Wang et al., 2018). Apigenin, a dietary
flavonoid present in fruits and vegetables, is said to exhibit
anticancer effects in vitro and in vivo (Yan et al., 2017).
Oridonin, a diterpenoid derivative, possesses anticancer effects
in solid and hematologic tumors (Lu et al., 2018). Similarly,
Honokiol, a lignan isolated from Magnolia, produces toxicity in
lymphoid cancer cell lines. Honokiol lowers NF-κB activity and
Nrf2 proteins, resulting in higher ROS production and apoptosis
(Ong et al., 2019). Halofuginone inhibits and activates Nrf2
constitutively in resistant cancer cells (Panieri and Saso, 2019).
Another anticancer agent, plumbagin, a naphthoquinone,
induces oxidative stress-dependent Nrf2 activity in cancer cells
(Kapur et al., 2018). Berberine is an alkaloid found in various
medicinal plants. By inducing oxidative stress, berberine has
anticancer properties in breast cancer (Lu et al., 2012).
Parthenolide, a sesquiterpene lactone found in medicinal
plants, shows anticancer effects by modulating ROS (Mathema
et al., 2012). Wogonin, a flavonoid obtained from Scutellaria
baicalensis Georgi, also reduced Nrf2 nuclear content (Zhong
et al., 2013).
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The extract of chestnut leaf works by suppressing the Nrf2-
mediated antioxidant system and may increase ROS production
and thereby promote paclitaxel-induced apoptotic cell death.
The results showed that treatment with chestnut leaf extract
reduced the expression ratio of Bcl-2 and Bax, and an increase in
the amount of cleaved PARP and paclitaxel-treated CSCs
resulted in significant mitochondrial damage compared to
untreated or extract-treated CSCs. This result suggests that
the combination of paclitaxel with chestnut leaf extract can
effectively eliminate paclitaxel-induced CSCs. As a result, when
chestnut leaf extract and paclitaxel are in combination,
synergistic effects are produced; however, to determine
possible adverse effects, such as counteraction or additive
toxicity of the drug because of chestnut leaf extract and
paclitaxel, further studies need to be performed (Scarpa and
Ninfali, 2015; Woo et al., 2017).

The therapeutic role of various polyphenols in breast cancer
has also been established. Curcumin activates Nrf2, which

promotes the expression of antioxidative enzymes such as
NQO1, HO-1, GST, and glutathione reductase (GR) and
induces cellular senescence (Das and Vinayak, 2015).
Curcumin’s activation of Nrf2 relies on the thiol modulation
of KEAP1 (Shin et al., 2020). Similar to curcumin, other
polyphenols induce Nrf2 and downstream genes, primarily
phase II detoxification enzymes (Foygel et al., 2015). In MCF-
7 and MDA-MB-231 breast cancer cells, NRF2 induction by
EGCG was examined using Western blot analysis (Hu et al.,
2010). The biphasic effects of the grapefruit polyphenol
resveratrol are well known. Resveratrol therapy increases cell
growth in breast cancer cells at low doses, while it causes
cytotoxicity at higher concentrations. Similarly, resveratrol
exhibits antioxidant properties at low concentrations while
exhibiting a prooxidant profile at larger doses. Rai et al. used
resveratrol in the 50–400 M concentration range to treat MCF-7
and MDA-MB-231 cells, which displayed high cytotoxicity in a
dose-dependent manner (Rai et al., 2016).

TABLE 1 | Anti-oncogenic and pro-oncogenic mechanisms of Nrf2 with various compounds: in vitro studies.

Mechanism Effect Compound Reference(s)

Anti-oncogenic role
Suppress Nrf2-regulated activity and Nrf2 expression in

human A549 NSCLC cells
Promotes proteasome-independent Nrf2 degradation
through IGFIR phosphorylation

Procyanidins
from CCE

Ohnuma et al. (2015)

Blocks Nrf2 transcriptional activity and sensitizes Kap1-
deficient cells to chemotherapeutics. ML385 interacts
with the DNA-binding domain of NRF2 and most likely
prevents the binding of Nrf2 to AREs

Impairs the DNA interaction of the MAGF–Nrf2 complex ML385 Singh et al. (2016)

Inhibits Nrf2, increasing their sensitivity to several
anticancer drugs

Decreases Nrf2 mRNA and protein levels Luteolin Chian et al. (2014)

Reduces the Nrf2 protein content in a KEAP1-
independent way and decreases the expression of genes
related to the MDR family

Promotes Nrf2 degradation Brusatol Olayanju et al. (2015)

Suppresses Nrf2 nuclear accumulation and the
proteasome activity, abrogating their protective effects

Decreases the nuclear level of Nrf2 Trigonelline Arlt et al. (2013)

Inhibits the proliferation, migration, and invasiveness by
decreasing Nrf2 nuclear translocation and suppressing
the expression of both HO-1 and NQO1

Decreases Nrf2 mRNA and protein content, decreases
Nrf2 nuclear translocation

Chrysin Wang et al. (2018)

Antineoplastic activity in breast cancer by inducing
oxidative stress

Promotes GSK -3β β-TrCP-dependent Nrf2
degradation

Berberine Tang et al. (2009)

Promoting Nrf2 downregulation and increased ROS
production, presumably by enhancing its ubiquitination
and proteasomal degradation

Decreases Nrf2 expression Parthenolide Zunino et al. (2007), Mathema
et al. (2012), Ghantous et al.
(2013)

Prevented the Nrf2 nuclear translocation, promoting
ROS-dependent cell death and increased susceptibility to
common anticancer drugs, by also reducing the activity of
MRPs

Decreases Nrf2 content at the transcriptional level,
increases Keap1 levels

Wogonin Sun et al. (2010), Zhong et al.
(2013)

Reduced Nrf2 levels Decreases Nrf2 mRNA and protein content Apigenin Gao et al. (2013b)
Pro-oncogenic role
Inhibits proliferation and induces apoptosis in many

kinds of cancerous cells
Pro-apoptotic effect has been hypothesized to mainly
include inhibition of the NF-κB signaling pathway,
inhibition of the cell cycle transit from G1 phase to G2
phase, inhibition of tumor angiogenesis by suppressing
the phosphorylation of VEGFR-2, inhibition of
P-glycoprotein

Wogonin Huang et al. (2012)

Inhibition of proliferation and apoptosis Suppression of pro-carcinogenic regulatory
mechanisms and cell proliferation, modulation of
intercell communication signals, destruction or removal
of tumor cells, and induction of apoptosis

Luteolin Seelinger et al. (2008)

Excellent inhibitory effect on both proliferation and
metastasis of breast cancer

Sphere formation ability, proliferation, and migration are
substantially suppressed, which can be attributed to
the inhibitory effect of CHM-04 on EGFR

Chrysin Moghadam et al. (2020)
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The therapeutic role of melatonin in breast cancer is also known.
Melatonin is an indole pineal hormone. Melatonin synthesis and
secretion have been shown to be substantial contributing factors for
breast cancer growth and progression (Jasser et al., 2006; Hill et al.,
2015). Melatonin’s involvement in the protection and treatment of
breast cancer, particularly the control of oxidative stress, has been
widely researched (Gurer-Orhan et al., 2018), and the regulation of
miRNAs is linked to apoptosis, cellular senescence, and proliferative
genes (Chuffa et al., 2020). According to oxidative stress–mediated
physiological responses, melatonin activates Nrf2 by upregulating
cellular mediators such as PKC (Li et al., 2018), SIRT1 (Shi et al.,
2019), and PI3K/AKT (Zhang et al., 2017).

Specific to breast cancer, metformin has been shown to target
miRNAs, proteins involved in miRNA biogenesis, and target genes
in CSCs. Metformin suppresses breast cancer cell proliferation by
downregulatingmiR-27a (Zhao et al., 2016) and upregulating miR-
193 (miR-193a-3p and miR-193b), which increases AMPK and
decreases FASN levels, respectively (Wahdan-Alaswad et al., 2014).

It also increases the expression of let-7a (a tumor suppressor
miRNA) while decreasing TGF-induced miR-181a (an
oncogenic miRNA) production in MCF7 cells (Oliveras-Ferraros
et al., 2011). Metformin’s anticancer activities in renal and breast
cancer cells have been linked to the overexpression of miR-34a,
which lowers cell proliferation and the Sirt1/Pgc1/Nrf2 pathway,
respectively (Do et al., 2014; Xie et al., 2017; Saini and Yang, 2018).

9 ROLES OF NUCLEAR FACTOR
ERYTHROID 2-RELATED FACTOR 2
INHIBITORS AND INDUCERS IN BREAST
CANCER

In order to enable the readers to understand the anti-oncogenic
and pro-oncogenic mechanisms of Nrf2 with various
compounds, the information from various references been

TABLE 2 | Anti-oncogenic and pro-oncogenic mechanisms of Nrf2 with various compounds: in vivo studies.

Mechanism Effect Compound Reference(s)

Anti-oncogenic role
Induction of phase-2 enzymes

such as GST and UDP-
glucoronosyl transferase

Triggered expression of Nrf2 increased the ARE
binding affinity, which was consequently involved
in the carcinogen detoxification and promoted
oxidative stress

Sulforaphane Kensler et al. (2000)

Induction of HO-1 Curcumin induced the HO-1 and its activity which
alters the Nrf2–Keap-1 interaction which
translocates Nrf-2 to the nucleus and initiates
transcription of genes for detoxifying enzymes
and cyto-protective proteins by ARE

Curcumin Balogun et al. (2003), Pae et al. (2004)

Inhibition of benzo(a)pyrene-
induced enzyme activity,
cytochrome P450 1A1/2

Curcumin exhibits the anticarcinogenic effect by
alteration of phase 1 and phase 2 regulating gene
transcription, which enhances the binding of Nrf2
to ARE in the nucleus and promotes detoxifying
activity

Curcumin Garg et al. (2008)

↑GST, glutathione peroxide,
HO-1

Enhanced the ROS-mediated autooxidation Epigallocatechin-3-gallate Wu et al. (2006)

Induction of phase-2 enzymes 6-HITC–dependent detoxification through ARE
by enhanced Nrf2 localization at the nucleus

Wasabi Morimitsu et al. (2002)

↑level of NQO1 and GST,
UGT1A6 and GCLC mRNA
expression

The upregulation of NQO1 induces oxidative
stress and Nrf2-dependent transcription
activation, which provides detoxification effect

Cafestol and kahweol Cavin et al. (2002), Higgins et al. (2008)

↑Keap1-Nrf2 transcription by
binding Keap1 cysteine residue,
↑level of GST

Carnosic acid induced the oxidative stress and
excitotoxicity to provide cyto-protective effect in
mice

Carnosic acid Satoh et al. (2008)

↑IFN-gamma, ↑COX-2, ↑NQO1 Oleanolic acid suppresses the inducible nitric
oxide synthase and blocks the inflammatory
action by using the ARE-Keap1-Nrf2 signaling
pathways

Oleanolic acid Dinkova-Kostova et al. (2005c)

Pro-oncogenic role
↓ARE binding affinity, ↑ERK

expression
The increased ERK level suppresses the ARE
activity and GCLC level which reduced the role of
Nrf2 and ARE in cancer prevention

Tamoxifen Kim et al. (2008)

↑Nrf2-DNA binding The redox activation by ascorbic acid inhibited
the Nrf-2–mediated gene expression

Vitamin C Tarumoto et al. (2004)

↑ level of Prx1, GPx, and TrxR The aberrant level of HO-1 promotes the Nrf2
downregulating genes, which contributed to the
chemo preventive action and cancer promotion

HO-1 siRNA, Sulforaphane, tert-
butylhydroquinone, and β-
naphthoflavone

Li and Johnson, (2002), Hintze et al. (2003),
Campbell et al. (2007), Rushworth and
MacEwan, (2008)

↓GST, ↓GCLC, ↑NOQ1↑ In the case of aberrant expression, the oxidative
stress inducible genes such as GST and GCLC
cause the drug resistance to the alkylating agents

Alpha-tocopherol-hydroquinone
and ubiquinol

Black and Wolf, (1991), Nioi and Hayes,
(2004)
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collated in Tables 1–3. The information has been segregated
under subheadings of in vitro/in vivo/clinical studies.

9.1 Nuclear Factor Erythroid 2-Related
Factor 2 Inhibitor
Nrf2 exhibits dual roles, such as being pro-oncogenic and anti-
oncogenic. Hence, Nrf2 is involved in the inhibition of cancer
development, and aberrant Nrf2 expression is also involved in
cancer progression. In metastatic cancer, the contribution of Nrf2
to cancer progression could be minimized or eliminated by
exploring some Nrf2 inhibitors. Vitamin C is a potent Nrf2
inhibitor and is used in the suppression of Nrf2 translocation
(Mostafavi-Pour et al., 2017). Following the treatment of breast
cancer cells with vitamin C, there was a substantial decrease in the
expression of Nrf2 mRNA and protein levels. The nuclear/
cytosolic Nrf2 ratio was lowered by 1.7-fold in MDA-MB-231
cells, 2-fold in MDA-MB 468 cells, 1.4-fold in MCF-7 cells, and
1.2-fold in A549 cells after treatment with vitamin C. In a dose-
dependent manner, sequential treatment with vitamin C reduced
endogenous ROS generation (p = 0.027). The findings suggested
that vitamin C treatment could be developed as an adjuvant for
cancer patients with Nrf2 overexpression (Mostafavi-Pour et al.,
2017).

Brusatol, another class of Nrf2 inhibitors, diminishes the
protein levels of Nrf2 in MDA-MB-231 breast tumor cell lines
(Ren et al., 2011). In recent studies, it was observed that in
mammospheres obtained from breast tumor cell lines, brusatol
diminishes the protein levels of Nrf2 and deposition of
intracellular ROS due to the increased cytotoxicity of Taxol
(Yuan et al., 2017; Muralimanoharan et al., 2018). Berberine
has recently been discovered to have anticancer properties in
breast cancer by causing oxidative stress (Tang et al., 2009; Kim S.
et al., 2012). Zhang and colleagues focused on BT-474 and AU-

565 breast cancer cells that were resistant to lapatinib, a new
tyrosine kinase inhibitor of HER2/EGFR (epidermal growth
factor receptor) that was used in the study to treat breast
cancer that is HER2-positive. Liquid nanocrystalline
nanoparticles were developed to improve the solubility and
anticancer properties of berberine in MCF-7 breast cancer
cells (Zhang R. et al., 2016).

Parthenolide is a sesquiterpene class of Nrf2 inhibitor with
antitumor and anti-inflammatory activities based on the control
of reactive oxygen species (ROS) (Zunino et al., 2007; Mathema
et al., 2012). By increasing Nrf2 downregulation and enhancing
ROS generation, parthenolide (PN) and its soluble counterpart
dimethyl amino parthenolide (DMPN) have been demonstrated
to diminish mammosphere development in triple-negative breast
cancer (TNBC) cell lines, as well as the survival of
mammosphere-derived CSCs, most likely through increased
ubiquitination and proteasome degradation (Carlisi et al.,
2016). A combination of parthenolide and vinorelbine stealthy
liposomes was developed for the suppression of breast cancer.
Plumbagin, a member of the naphthoquinone class of Nrf2
inhibitors, is well known for its antitumor properties and
redox impairment facilitated by plumbagin, which leads to
ROS-dependent cell death in tumor cells. Loading of
plumbagin in transferrin-bearing liposomes dramatically
increased plumbagin uptake by tumor cells, resulting in
improved anti-proliferative and antiapoptotic activity (Kapur
et al., 2018).

9.2 Nuclear Factor Erythroid 2-Related
Factor 2 Inducers
Activation of Nrf2 has primarily been reported as therapeutic, but
a recent study has indicated that depending on the status of Nrf2
activation, the process can also be pro-oncogenic. According to a

TABLE 3 | Anti-oncogenic and pro-oncogenic mechanisms of Nrf2 with various compounds: clinical studies (Su et al., 2018; Goossens and Bailly, 2019; Robledinos-Antón
et al., 2019; Nandini et al., 2020).

Compound Mechanism of
action

Effect Disease Clinical
trial

Clinical trials
identifier

Ursodiol (Goossens and
Bailly, 2019)

Electrophilic modification
of KEAP1 -Cys-151

It exhibits both pro- and anti-apoptotic properties toward
different cell types. In particular, the UDCA drug can
protect epithelial cells from damages and apoptosis while
inducing inhibition of proliferation and apoptotic and/or
autophagic death of cancer cells

Chronic hepatitis C Phase 3 NCT00200343
Primary biliary
cirrhosis

Phase 4 NCT01510860

Oltipraz (Robledinos-Antón
et al., 2019)

Electrophilic modification
of KEAP1 -Cys-151

NRF2 inducer that enhances GSH biosynthesis and
phase II detoxification enzymes, such as NQO1

Lung cancer Phase 1 NCT00006457
Nonalcoholic
steatohepatitis

Phase 3 NCT0206339

Sulforaphane Electrophilic modification
of KEAP1 -Cys-151

Exerts its anticancer effects by modulating key signaling
pathways and genes involved in the induction of
apoptosis, cell cycle arrest, and inhibition of angiogenesis

Breast cancer Phase 2 NCT00843167
Melanoma Phase 1 NCT01568996

Sulforadex (SFX -01) Electrophilic modification
of KEAP1 -Cys-151

It promotes programmed cell death/apoptosis, induces
cell cycle arrest, inhibits angiogenesis, reduces
inflammation, alters susceptibility to carcinogens, reduces
invasion andmetastasis, and exhibits antioxidant and anti-
inflammatory properties

Breast neoplasm Phase 1/2 NCT02970682
Prostate cancer Phase 1 NCT02055716

NCT01948362

Curcumin (pro-oncogenic
role)

Electrophilic modification
of KEAP1 -Cys-151

The aberrant level of HO-1 promotes the Nrf2
downregulating genes, which results in the
chemopreventive action and cancer promotion

Neoplasms Phase 2 NCT02944578
Prostate cancer Phase 3 NCT01750359
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recent study, oncogenic signaling may influence Nrf2 activity by
raising its mRNA levels. The oncogenic activation of K-RAS and
B-RAF, depending on this, is sufficient to raise Nrf2 mRNA levels
and enable ROS detoxification in human cancer cells. Curcumin,
sulforaphane, and oltipraz, which have been identified as Nrf2
activators, have been discovered to be non–target-specific and
may raise the risk of “off-target” toxicity due to their potential to
interact with the cysteines of other enzymes and proteins.
Molecular instability, decreased membrane permeability, and
poor bioavailability of several Nrf2 modulators are also of
significant concern (Telkoparan-Akillilar et al., 2021). Several
Nrf2 inducers are used to elevate and translocate Nrf2 into the
nucleus and activate the AREmechanism for the detoxification of
the cells.

10 CONCLUSION

Nrf2 plays a crucial role in cellular redox homeostasis in healthy
as well as cancerous cells. In the absence of Nrf2, ROS production
is upregulated, which leads to DNA damage and tumor
development. Nrf2 is directly involved in managing the
expression of GSH, TXN, and NADPH and controls the level

of ROS. Interestingly, under oxidative stress, not only does Nrf2
regulate NADPH but ROS can also produce NADPH oxidase,
which further activates Nrf2. These findings suggest the role of
Nrf2 as an oncogenic factor. The variety of molecules that can be
utilized to create better treatment options for breast cancer
involve Nrf2-associated events. Therefore, a better
understanding of cellular events and signaling cascades would
enable finding a correct therapeutic regimen against breast
cancer.
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