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Clinical trial and individual patient treatment outcomes have produced

accumulating evidence that effective primaquine (PQ) treatment of

Plasmodium vivax and P. ovale liver stage hypnozoites is associated with

genetic variation in the human cytochrome P450 gene, CYP2D6. Successful

PQ treatment of individual and population-wide infections by the Plasmodium

species that generate these dormant liver stage forms is likely to be necessary to

reach elimination of malaria caused by these parasites globally. Optimizing safe

and effective PQ treatment will require coordination of efforts between the

malaria and pharmacogenomics research communities.
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Introduction—malaria, primaquine and human
genetics

In 2021, 241 million clinical cases and approximately 627,000 deaths were attributed

to malaria (World Health Organization, 2020). Plasmodium vivax and P. falciparum are

the most prevalent human malaria parasites, with an estimated 2.5 billion people at risk

(Gething et al., 2011; Gething et al., 2012). While P. falciparum is currently recognized as

the most lethal malaria parasite, P. vivax is the most geographically dispersed species.

Furthermore, a now well-established body of literature describes severe, life-threatening

clinical illness caused by P. vivax involving severe anemia (Tjitra et al., 2008), respiratory

distress (Genton et al., 2008; Fernandez-Becerra et al., 2009), liver dysfunction (Barcus

et al., 2007; Kochar et al., 2009), and renal failure (Siqueira et al., 2010). P. vivax-

attributable mortality has been reported and confirmed globally (Beg et al., 2002; Kochar

et al., 2005; Genton et al., 2008; Tjitra et al., 2008; Alexandre et al., 2010). In addition to the

contribution that P. vivax contributes to significant morbidity and mortality, infections

come with special complexity because the parasite can form a dormant hypnozoite stage
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in the liver that does not cause illness, but can re-emerge to cause

a relapse infection from weeks to more than 1 year later, without

mosquito transmission (Krotoski et al., 1982; Krotoski, 1985,

1989). Therefore, eliminating the hypnozoite(s) from infected

people, termed radical cure, is essential for controlling P. vivax

malaria. Achieving this requires a specific treatment as almost all

approved antimalarials lack activity against hypnozoites

(Thriemer et al., 2017). If P. vivax infection is treated without

additional targeting of the liver-stage hypnozoite, the parasite is

free to cross a broad geographic range, to persist across seasonal

changes where mosquito vectors are absent, and to cause

repeated clinical attacks, resulting in substantial cumulative

morbidity. Thus, the chronic nature of P. vivax infections,

mediated by hypnozoites, means that this parasite’s burden is

harder to estimate (Anstey et al., 2012; Battle et al., 2016). Radical

cure of P. vivax at the population level, therefore requires

eliminating the hypnozoite reservoir to reach worldwide

malaria elimination.

Currently, two drugs can kill hypnozoites and achieve radical

cure, primaquine (PQ) and tafenoquine (TQ). Both drugs are 8-

aminoquinoline (8AQ) derivatives (Wells et al., 2010; White,

2019). Although TQ has been approved by two national

regulatory agencies (Australia in 2018; United States in 2019),

PQ remains the only WHO-recommended drug to achieve

radical cure (WHO approved in 1952 (Hill et al., 2006; World

Health Organization, 2015).While effective against the liver stage

hypnozoite, these 8AQ drugs are known to induce acute

hemolytic anemia (AHA) in individuals who inherit the

X-linked glucose-6-phosphate dehydrogenase enzyme

deficiency (G6PDd); G6PDd is the most common human

enzyme deficiency (Howes et al., 2012; Luzzatto et al., 2016),

and it is in particularly high frequency in malaria endemic

regions as it confers protection from severe malaria (Bienzle

et al., 1979; Ruwende et al., 1995; Sirugo et al., 2014). As PQ is

taken daily over 2 weeks (5 h half-life), treatment (0.25–0.5 mg

base/kg body weight) can be stopped if any signs of AHA are

observed; PQ can also be administered once each week over 8-

week (0.75 mg base/kg body weigh) for G6PDd individuals

(males or females with less than 30% G6PD enzyme activity

(World Health Organization, 2016). Because of a much longer

half-life (15 days), TQ is administered via a single dose,

observation of AHA cannot be mitigated, and thus the

elevated potential for harm to G6PDd individuals supports

restricted use protocols and limited approvals (White, 2019).

Notably, across the globe, G6PDd presents a barrier to universal

implementation of mass drug administration against vivax

malaria.

In the past 10 years, complexities of PQ pharmacogenetics

have emerged as the therapeutic efficacy of PQ appears to be

strongly correlated with activity of the highly polymorphic

metabolic enzyme, cytochrome P450 2D6 (CYP2D6) (Bennett

et al., 2013; Ingram et al., 2014; Silvino et al., 2016; Baird et al.,

2018b; Brasil et al., 2018), an enzyme implicated in metabolism

of >20% of marketed drugs (Gaedigk et al., 2018a). PQ

metabolism involves three predominant pathways: 1)

glucuronide/glucose/carbamate/acetate conjugation; 2)

hydroxylation at multiple positions on the quinoline ring; and

3) oxidative deamination at the terminal amine of the aminoalkyl

side chain (Avula et al., 2018). Despite increasing knowledge of

PQmetabolism and how it is affected by CYP2D6, the active anti-

malarial compound has still not been defined with certainty,

although data now indicates activity is mediated through

hydroxylated metabolites whose formation is

CYP2D6 dependent (Camarda et al., 2019). In contrast, while

pharmacogenetic studies focused on TQ have suggested no

association with CYP2D6, only limited insight into the

metabolism of this drug exists based on a single study (St

Jean et al., 2016).

Building a global population genetic picture of CYP2D6

variation and how it relates to safety and effectiveness of 8AQ

treatment is critical due to the potentially large hypnozoite

reservoir in malaria, but also because these drugs can also

play a role in limiting P. falciparum transmission through

gametocytocidal activity (Single low dose PQ (0.25 mg/kg)

blocks P. falciparum gametocyte transmission without adverse

reactions in G6PDd individuals (Bancone et al., 2016)). Here we

focus on current knowledge of population genetic variation of

CYP2D6 and PQ metabolism in hopes of expanding the

population that can use this drug effectively (Baird et al.,

2018a) to reduce the hypnozoite reservoir. This is consistent

with recent clinical trials to test optimal dosing strategies against

relapse infections (Brito-Sousa et al., 2022; Chamma-Siqueira

et al., 2022). An adjoining article by Stewart et al. focuses on

implications of CYP2D6 and G6PD genetic variation on potential

treatment approaches and limitations for P. vivax as well as P.

ovale (that also produces hypnozoites) liver stage parasites

(Stewart et al., 2021).

CYP2D6 genetic variation and
metabolic Activity Scores

CYP2D6 is the most polymorphic of the CYP genes (Zhou

et al., 2017). Currently, there are 145 known major “star” (*)

alleles and multiple sub-alleles that include at least 128 unique

SNPs (upstream non-coding and coding region), 7 insertions

(one to multiple nucleotides or duplicated nucleotides),

7 deletions (1 to multiple nucleotides), 5 gene deletions, gene

duplication, conversion or hybridization variations that can

together generate more than 1,220 unique genotypes (Gaedigk

et al., 2018b; Luo et al., 2021) (ongoing updates can be followed at

https://www.pharmvar.org/gene/CYP2D6). Many of the

mutations are quite rare (e.g. occurring in single individuals

or isolated populations (Luo et al., 2021) and a significant

number of resulting * alleles occur at frequencies less than 0.

25%, and hence do not substantially affect drugmetabolism at the
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population-level. That said, we have shown, in a study of

CYP2D6 in a Malagasy population, that the unexpected

appearance of some alleles associated with diverse

populations, including new alleles, new allele frequency

patterns, genotype combinations and genotype proportions

may reveal population level patterns of special relevance to

malaria treatment (Mehlotra et al., 2021; Chan et al., 2022).

Gaedigk et al. (2008) and PharmVar collaborators have

further classified CYP2D6 function through metabolism of

dextro-methorphan (DM) to dextrorphan (DX). They

correlated * allele genotypes with DM/DX ratio to define an

Activity Score (AS) metric. Although the AS likely represents a

good approximation of the generation of active anti-malarial

compounds, the challenge of associating CPY2D6 sequence

variation with phenotypic effects is well appreciated (Gaedigk

et al., 2018a; Pey, 2020). One example illustrating the complexity

of the relationship between CYP2D6 genotype and AS was

observed in a study of 270 Trinidadians by Montané et al.

and summarized in Figure 1 (Montane Jaime et al., 2013)

Herein, the most regular association between genotype and AS

was among individuals who were homozygous for the same, or

heterozygous for different nonfunctional alleles, *4 and *5, as

they clearly were poor metabolizers (i.e., AS = 0). For other allelic

combinations the average DMmetabolism is observed to increase

with genotypes categorized with increasing AS (Montane Jaime

et al., 2013). However, the variance of metabolism can be very

large within functional * allelic categories, as individuals with the

same CYP2D6 genotype can differ in their metabolism of (DM)

by up to 4 orders of magnitude (e.g. *1/*1; *1/*4) (Montane Jaime

et al., 2013). Gaedigk et al. have discussed several factors that

FIGURE 1
Variation in metabolism of dextro-methorphan (DM) to dextrorphan (DX) as a function of CYP2D6 * diplotypes. Diplotypes of the same AS and/
or * designation can vary inmetabolic rate by orders ofmagnitude, giving rise to ambiguity of our understanding of likelihood of radical cure based on
these criteria.
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contribute to this AS variability, including SNPs influencing

CYP2D6 gene and protein expression. They further call

attention to missing or incomplete genetic

information—where low or no-function alleles can be

incorrectly assigned as *1 or *2 alleles, if specific SNP

positions are not included in the genotyping strategy used

(Gaedigk et al., 2018a). Of additional relevance, the AS of low

activity CYP2D6*10 has recently downgraded to 0.25 (Caudle

et al., 2020; Crews et al., 2021). These sources of genetic variation

within CYP2D6 and genetic polymorphisms across the human

genome create the potential to modify the phenotypic AS for

probe drugs as well as drugs to treat malaria and other wide-

ranging health conditions (implications are focused on PQ

discussed in sections below).

Pharmacogenomics and
CYP2D6 phenotype

Pharmacogenomics studies are certain to improve as large-

scale sequence data are associated with phenotypic variation.

Developing optimal study designs will require considerable

discussion and beginning this process has been a motivation

for this perspective. Cohort characteristics (size, gender, age-

groups, and ethnicities) and sequencing strategies are key

elements to consider. Ensuring sufficient power for detecting

statistically significant associations between CYP2D6 genotype,

genetic modifiers and AS are necessary to improve specific drug

effectiveness on the population-level.

Recent efforts have begun to address the patterns of genetic

variation in CYP2D6, although given the level of polymorphism

in this gene they are so far limited in their scopes, sizes and

generalizability (Del Tredici et al., 2018; Puaprasert et al., 2018;

Nguyen et al., 2019; Chan et al., 2022). Cramer (Cramer, 2019)

has provided information of how a comprehensive genomic

approach can enhance our understanding of

CYP2D6 pharmacogenomics. Key to future studies will be the

need to determine if a limited number of SNPs can be converted

into more tractable methods for assessing CYP2D6 genetic

predictions of AS and whether these metrics relate only to a

specific population. It will be important to determine if the same

* allele in different populations is associated with AS the same

functional variation, and whether genotype-phenotype

association differences are based on unknown SNPs within

CYP2D6 or result from unique distributions of modifiers in

other genes distributed throughout the human genome.

With these topics in mind, 1,000 Genomes data, have been

used in two studies to illustrate population characteristics of

CYP2D6 variation in association with geographic distribution of

P. vivax malaria (Puaprasert et al., 2018; Cramer, 2019).

Puaprasert showed that simply increasing geographic distance

within Asia from their sampled Karen population on the Thai-

Myanmar border correlated with increasing genetic

differentiation at this locus, indicating that the transferability

of genetic information among diverse populations will likely be

limited (Puaprasert et al., 2018). Cramer has used this global

resource to illustrate first how null and low activity

CYP2D6 alleles and genotypes are dispersed throughout the

world and further characterize a Malagasy population studied

by Mehlotra (Mehlotra et al., 2021) to illustrate how genetic

admixture between Asian and African superpopulations may

have affected CYP2D6 * allele distributions in this understudied

population (Mehlotra et al., 2021). They further used the pattern

of CYP2D6 dispersal to hypothesize how PQmay be metabolized

and hence used to treat malaria in different populations.

Resulting predictions of activity indicate that the use of PQ

following current protocols may be more effective in some

malaria-endemic regions than in others as a result of high

frequencies of poor metabolizer alleles in East Asia. Stewart

et al. have called further attention to similar population-

specific concerns in Central America as summarized

previously (Stewart et al., 2021).

A recent clinical study of 57 Javanese male soldiers who

had P. vivax malaria and received the same PQ regimen has

provided insight into the complexities of CY2D6 genetic

polymorphism, associated AS and P. vivax relapse. Among

21 individuals who relapsed, AS score was <1.5 for

18 and ≥1.5 for 3 individuals whereas of the 36 who did

not relapse 14 had an AS <1.5 and 22 had an AS of ≥1.5. The
results indicate that CYP2D6 genotypes associated with but

did not completely predict PQ efficacy against P. vivax relapse.

The AS did have utility, but the study emphasized the need to

assess how additional variation at CYP2D6 and elsewhere in

the genome, can contribute to PQ metabolism and treatment

efficacy. That the role of genotypes on radical cure is less than

straightforward was further shown in a study conducted by

the Australian Defence Force who returned from Papua New

Guinea and East Timor (Chen et al., 2019). In this study, AS

was not associated with radical cure, except in the case of non-

functional alleles that associated with no cure.

Takeaways from these studies indicate that we need to

better understand the allelic variation within single * alleles

that are used to delineate AS variation and how patterns of

these unknown genetic variants affect gene function. As a

number of different sequencing and PCR-based strategies

have been used to generate the data in these and other

studies, limitations will be encountered in comparing

genotype and phenotype associations both within and

between studies. We also need to know how genetic

variations within CYP2D6 are distributed among human

populations, as well as variation in the genes that interact

with CYP2D6, to optimize PQ treatment and radical cure.

Finally, it will be important to ask if and to what extent

variation in CPY2D6 genotype alters risks associated with

G6PDd. Specifically, would AS <1 require more than 8 weeks

of PQ treatment?
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External confounding factors

Beyond the intricacies of gene-specific and genome-wide

variation, there are examples that other drugs, foods or herbal

treatments can interact with PQ and influence biological

phenotypes. Examples include other antimalarial drugs (e.g.

chloroquine) (Pukrittayakamee et al., 2014; Fasinu et al., 2016),

or medicinal herbal plants commonly found in the tropics and sub-

tropics (e.g.Hyptis suaveolens (bushmint) (Thomford et al., 2018). It

was observed that chloroquine (still used to treat vivax malaria)

administration resulted in increased PQ plasma concentrations

(Pukrittayakamee et al., 2014), and inhibited formation of several

PQ metabolites predicted to be active against hypnozoites (Avula

et al., 2018). Similarly, H. suaveolens can inhibit CYP2D6 in a

reversible and time dependent manner; therefore administration

of PQ for radical cure needs to be done in full knowledge of these

and likely other interacting compounds (Thomford et al., 2018).

We must also be mindful of the potential that PQ efficacy

may be influenced by the parasite’s genetic constitution.

Traditional approaches for verifying the effectiveness of

antimalarial drugs includes testing genetic signatures of pre-

and post-treatment infections using highly polymorphic parasite

genes (e.g. circumsporozoite protein or merozoite surface protein

(Imwong et al., 2007)). However, approaches based on only one

or two genes limit the ability to distinguish multiple strains, and a

broader genomics strategy has been proposed for detecting

evidence of relapse (Popovici et al., 2019). Regardless of the

molecular marker strategy to decipher strains in complex

infections, assessing recrudescence, reinfection or relapse will

continue to pose a significant challenge to studies monitoring

drug effectiveness (Ferreira et al., 2021). For CYP2D6 studies this

means that it will be important to determine if a relapse has

resulted from lower-than-expected metabolism of PQ by the

infected person, parasite resistance to PQ, and/or reinfection.

Parting thoughts

The primary themes corresponding to genetic polymorphism

associated with safety and effectiveness of PQ treatment are

summarized in Figure 2 and frames the path forward for radical

cure of the hypnozoite reservoir. Treatment safety is the main

concern that has held back the use of PQ for radical cure of

hypnozoite infection globally. Emerging point-of-care

technologies that demonstrate capacity to perform quantitative

assessment of G6PD enzyme activity, have shown promise in

repeatability and reproducibility assessments (Ley et al., 2022). If

greater precision can be achieved in determining G6PD enzyme

activity at the point of PQ treatment, it may become possible to

administer this drug safely to a many more G6PDd individuals

(those with 5–30% enzyme activity; Figure 2, part A2). Better tools

for determining G6PD activity would certainly increase confidence

in treating those with 30–80% enzyme activity (Figure 2, part B).

Regardless of G6PD enzyme activity, the remaining concern is

whether sufficient concentrations of the pharmacologically active

PQ metabolites will be generated to kill hypnozoites.

FIGURE 2
Integration of CPY2D6 Metabolic Function and G6PD Enzyme Activity. Those with a CYP2D6 AS < 1.5 are predicted to have an elevated risk of
relapse. PQ failure with AS>1.5 appears to be less common and for those with AS > 2.0 radical cure success improves substantially following current
standard of care. Integrated across the familiar G6PD enzyme activity benchmarks, potential exists for optimizing treatment strategies for all but
those individuals with <5% G6PD enzyme activity.
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Finally, while current knowledge limits our ability to make

inferences about appropriate dosing, at either the population or

individual levels, it is important to continue to improve knowledge

of the genotype to phenotype map so that we can more accurately

predict PQ metabolism to provide more effective and safer treatment

in line with current Clinical Pharmacogenetics Implementation

Consortium (CPIC) guidelines (Crews et al., 2021). Simply, we

need to consider how genetic and genomics technologies can drive

the future of anti-malarial treatment as the motivation and ability to

genotype is shifting rapidly. This is increasingly evident wheremalaria

is endemic as reports now encourage expanding diversity in genomic

studies (Sirugo et al., 2021; Krainc and Fuentes, 2022) and subsequent

improved implementation (Wonkam, 2021; Chimusa et al., 2022).

Many such practices are already in place in cancer studies around the

world. As a result of these efforts, capacity to perform complex

genotyping has advanced in fields of knowledge, attitudes and practice

(KAP) (Muzoriana et al., 2017; Rahma et al., 2021; Koufaki et al.,

2022), pharmacogenomics (Marsh et al., 2006), diabetes and

hematology (Kountouris et al., 2021) globally. Additionally, studies

focused on understanding patterns of genetic variation are advancing

andwill expand capacity to resolve their health implications in diverse

populations (Taliun et al., 2021; DiCorpo et al., 2022). Given what we

are observing across human genomics investigations, efforts are well

underway to extend the breakthroughs available through genomics

technologies as a global healthmission andmust be included as part of

malaria elimination strategies.
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