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Ginsenoside Re is a protopanaxatriol-type saponin extracted from the berry, leaf, stem,
flower bud, and root of Panax ginseng. In recent years, ginsenoside Re (Re) has been
attracting attention as a dietary phytochemical. In this review, studies on Re were compiled
by searching a combination of keywords, namely “pharmacology,” “pharmacokinetics,”
and “toxicology,” in the Google Scholar, NCBI, PubMed, and Web of Science databases.
The aim of this review was to provide an exhaustive overview of the pharmacological
activities, pharmacokinetics, and toxicity of Re, focusing on clinical evidence that has
shown effectiveness in specific diseases, such as diabetes mellitus, nervous system
diseases, inflammation, cardiovascular disease, and cancer. Re is also known to eliminate
virus, enhance the immune response, improve osteoporosis, improve skin barrier function,
enhance intracellular anti-oxidant actions, regulate cholesterol metabolism, alleviate
allergic responses, increase sperm motility, reduce erectile dysfunction, promote cyclic
growth of hair follicles, and reduce gastrointestinal motility dysfunction. Furthermore, this
review provides data on pharmacokinetic parameters and toxicological factors to examine
the safety profile of Re. Such data will provide a theoretical basis and reference for Re-
related studies and future applications.
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INTRODUCTION

Ginseng is a perennial herb belonging to the family Araliaceae and genus Panax (P.). The plant has
been used as a tonic in Chinese traditional medicine for more than 2000 years. It is also extensively
used as a medicinal supplement across Asia and America (Jiang et al., 2020; Xu et al., 2020). P. ginseng
Meyer (Asian ginseng), P. quinquefolium L. (American ginseng), and Eleutherococcus senticosus
(Siberian ginseng) are the most common types of ginseng (Kiefer and Pantuso, 2003). All of these
species are in the Araliaceae plant family. Extensive preclinical and clinical evidence in scientific
literature support the significant beneficial effects of P. ginseng and P. quinquefolius L. in significant
central nervous system, metabolic, infectious, and neoplastic diseases (Mancuso and Santangelo,
2017). Active components of most P. ginseng species include ginsenoside, polysaccharide, peptide,
polyacetylenic alcohol and fatty acids (Dong et al., 2017). Of the active components, ginsenoside
(i.e., ginseng saponin or triterpene saponin) is an important component responsible for many
biochemical and pharmacological properties of the herb (Gillis, 1997). Currently, more than 30
natural ginsenosides have been extracted and their chemical structures have been identified. The
main active ginsenosides are categorized into two groups based on the types of aglycone. The 20(S)-
protopanaxadiol group includes ginsenosides Rb1, Rb2, Rb3, Rc, Rd, Rh2, compound K, and Rg3,
and the 20(S)-protopanaxatriol group (PPT) comprises ginsenosides Re, Rf, Rg1, Rg2, and Rh1 (Ma
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et al., 2005). Of these, Re (C48H82O18, PubChem CID: 441921)
is a major component (0.15%) of P. ginseng. We chose Re in the
present study because of its high concentration in a number of
commercially available P. ginseng extracts (Harkey et al., 2001).

This water-soluble compound (Xie et al., 2005b) accounts for 23%
of total saponins and is abundant in the leaves, stems, flower buds,
berries, and roots of the plant (Joo et al., 2010; Bae et al., 2012;
Kim et al., 2009). Previous research has shown that Re is more

TABLE 1 | Summary of anti-diabetes effects of Re.

Inducer Experimental Model Outcome and Proposed
Mechanism

Reference(s)

C57BL/6J ob/ob mice FBG↑, IPGTT↑ Attele et al. (2002)
C57BL/6J ob/ob mice BG↑, FBG↑ Xie et al. (2005a)

HFD Wistar rats IR↑, GLUT4↑ Han et al. (2012)
HFD, GPL C57BL/6J mice, HepG2

cells
p-LKB1↑, p-AMPK↑, SHP↓, SREBP1c↓, FAS↓, SCD1↓ Quan et al. (2012)

HFD, DII Wistar rats, 3T3-L1
adipocytes

Glucose uptake↑, p-IRS-1↑, p-PI3K↑, Akt/PKCγ/λ↑, p-JNK↓, NF-κB↓ Zhang et al. (2008)

HSHF; HSHF+AM;
HSHF+STZ

Wistar rats BG↓, TC↓, TG↓, Lp-a↓, VEGF↓, IL-6↓, p-p38↓,insulin levles↑, HDL-C↑ Shi et al. (2016)

STZ SD rats BG↓, MDA↓, TC↓, TG↓, GSH↑ Cho et al. (2006)
STZ SD rats FBG↓, TNF-α↓, MDA↓, GSH↑ Liu et al. (2012)
HFD C57BL/6 mice TG↓, TC↓, LDL-C↓, GOT↓, GPT↓, MDA↓, p-JNK↓, p-IRS↓, p-tau↓, BG↑, HDL-C↑, Ach↑,

GSH↑, SOD↑
Kim et al. (2017)

HFD C57BL/6 mice FG↓, TG↓, TC↓, LDL-C↓, AChE↓, MDA↓ Park et al. (2015)
DII 3T3-L1 cells Glucose uptake↑, GLUT4↑, IRS-1↑, PI3K↑ Lee et al. (2011)
DII 3T3-L1 cells TNF-α↓,TG↑, Glucose uptake↑, PPARγ-2↑, ap2↑, IRS-1↑, GLUT4↑, Adiponectin↑ Gao et al. (2013)
High glucose RF/6A cells LDH↓, MDA↓, p-Akt↓,ROS↑, CAT↑, GSH-Px↑, HIF-1α↑, Caspase-3↑, VEGF↑,

Caspase-9↑
Xie et al. (2020)

TABLE 2 | Summary of nervous system disease effects of Re.

Inducer Experimental Model Outcome and Proposed
Mechanism

Reference(s)

Surgery SD rats, Schwann cell PCNA↑, GAP-43↑, S100↑, p-ERK1/2↓, p-JNK1/2↓ Wang et al. (2015)
MCAO model SD rats SOD↑, GSH-Px↑, Average microviscosity↓, MDA↓ Zhou et al. (2006)
MCAO model SD rats H+-ATPase activity↑, MDA↓ Chen et al. (2008)
TMT IL-6(−/+) C57BL/6 mice c-FOS-IR↑, IL-6↑, p-Akt↑, IFN-γ↓, TNF-α↓, IL-1β↓, MDA↓, ROS↓ Tu et al. (2017)
PCP C57BL/6mice, GPx-1 knockout mice GPx-1↑, PHOX activity↑ Tran et al. (2017)
RIS SD rats BDNF↑, Behavioral deficits↓, TH↓ Lee I et al. (2012)
CRS C57BL/6J mice BDNF↑, Nrf2↑, HO-1↑, SYP↑, PSD95↑, NLRP3↓, ASC↓, Caspase-1↓ Wang et al. (2021)
MPTP C57BL mice Bcl-2↑, iNOS↑, caspase-3↑, TH-positive neurons↑, Bax↓ Xu et al. (2005)
MA PKCδ(+/−) C57BL/6 mice SOD↑, catalase↑, GPx↑, DA↑, dopaminergic degeneration↓, PKCδ↓ Shin et al. (2014)
MA DYN KO mice κ-opioid receptor↓, P-mediated NK1 receptor↓ Dang et al. (2018)
CCl4 Primary dopaminergic cell Neurites of TH cells↑, Neuritic lengths↓ Zhang et al. (2016)
MA SH-SY5Y cell Cell viability↑, GPx↑, GSH↑, TH activity↑, PKCδ↓ Nam et al. (2015)

Dopaminergic neuronal cell, Hsp60 KD cell,
PINK1 null dopaminergic cell lines

Hsp90↑, LRPPRC↑, Hsp60↑ Kim et al. (2012)

Rotenone SH-SY5Y cells SOD↑, GSH/GSSG↑, aconitase↑, Nrf2↑, ROS↓, Caspase-3↓, Bax/
Bcl2↓, Cytochrome c↓

Gonzalez-Burgos et al.
(2017)

6-OHDA SH-SY5Y cells Cell viability↑, GPX4↑, p-Akt↑, p-ERK↑, LDH↓, ROS↓, lipid
peroxidation↓

Lee et al. (2020)

Scopolamine CR mice, Wistar rats Escape latency↓ Wang et al. (2010)
Tg2576 mice Aβ-40↓, Aβ-42↓ Zhou et al. (2020)
CHO 2B7 cells, Aβ-lesioned mice Aβ-40↓, Aβ-42↓ Chen et al. (2006)

Aβ-25-35 peptide Kunming mice phenylalanine↓, tryptophan↑, hexadecasphinganine↑,
phytosphingosine↑, LPCs↑

Li et al. (2018)

Surgery and
microdialysis

SD rats DA↑, Ach↑, mPFC Shi et al. (2013)

N2a/APP695 cells PPARγ↑, Aβ1-40↓, Aβ1-42↓, β-amyloid, BACE1↓ Cao et al. (2016)
Aβ+serum free PC12 cells LDH↓, cell toxicity↓ Ji et al. (2006)
Aβ SH-SY5Y cells GSH↑, SOD↑, GPx↑, ROS↓, Bcl2/Bax↓, Nrf2↓, Caspase-3/9↓,

Cytochrome c↓, p-ASK-1↓, p-JNK↓, HO-1↓
Liu et al. (2019)

Neuro-2a cells MAP-2↑, p75↑, p21↑, TrkA↑, ChAT/VAChT↑ Kim M et al. (2014)
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abundant in leaves, berries, and flower buds than in roots, and
that it is the major saponin in P. ginseng fruits (Attele et al., 2002;
Xie et al., 2004; Su et al., 2014). The percentage weight of Re
extracts from American P. ginseng were 4.79, 3.5, and 0.4% in
leaves, berries, and roots, respectively (Xie et al., 2005a; Han et al.,
2012). This work showed that P. ginseng leaves and berries had
the highest Re concentration, and that Re is the major ginsenoside
in P. ginseng leaves. These findings also revealed that the Re
content is different in various parts of the P. ginseng plant. In
recent years, Re has been attracting attention as a dietary

phytochemical, likely attributed to advantages such as ease of
availability, low cost, high efficacy, straightforward isolation and
purification techniques, and low side effects and toxicity risks
(Quan et al., 2012). Re is a white crystalline powder that is readily
soluble in methanol and ethanol. Its chemical properties include;
melting point: 201–203°C; boiling point: 1011.8 ± 65.0°C; density:
1.38 ± 0.1 g/cm3; and acidity coefficient: 12.85 ± 0.70 (https://
www.chemicalbook.com/
ProductChemicalPropertiesCB5210824.htm). Previous research
revealed in vivo and in vitro mechanisms that mediated diverse

TABLE 3 | Summary of anti-inflammation effects of Re.

Inducer Experimental Model Outcome and Proposed
Mechanism

Reference(s)

C48/
80, LPS

HMC-1 cell, A549 cell Histamine secretion↓, IL-1α↓, IL-8↓, IL-10↓, RANTES↓ Bae et al. (2012)

TPA BALB/c mice, Raw 264.7 cells NO↓, MDA↓, ear edema↓, inflammatory cell infiltration↓, IL-1β↓, TNF-α↓ Paul et al. (2012)
LPS SD rats, BALB/c mice, RAW264.7 cells WBCs↑, neutrophil counts↑, TNF-α↓, IL-1β↓, IL-6↓, COX-2↓, iNOS↓, NO production↓,

PGE2↓
Su et al. (2015)

LPS, TNBS ICR mice ZO-1↑, claudin-1↑, occludin↑, IL-1β↓, TNF-α↓, COX-2↓, iNOS↓, IL-6↓, colon shortening↓ Lee J et al. (2012)
LPS C57BL/6 mice ERs↑, PI3K/Akt↑, INF-γ↓, MCP-1↓, LDH↓, CK↓, AST↓, TNF-α↓, IL-1β↓, IL-6↓, p-p65↓,

MAPKs↓
Chen et al. (2016)

LPS ICR mice, A549, MH-S cells Neutrophil↓, macrophage infiltration↓, NF-κB↓, MAPKs↓, c-Fos↓ Lee et al. (2018)
LPS N9 microglia cells NO↓, TNF-α↓, NF-κB↓, p-ERK↓, p-JNK↓, p-jun↓, p-IκB-α↓ Wu et al. (2007))
LPS BV2 microglial cells Cell viability↑, iNOS↓, COX-2↓, p-P38↓ Lee K et al. (2012)
LPS RAW264.7 cells and primary rat

hepatocytes
TNF-α↓, IL-6↓, PGE2↓, NO secreation↓, MAPKs↓, NF-κB↓ Quan et al. (2019)

TNF-α EAhy926, HEK 293 cells Cell viability↑, LDH↓, IL-6↓, p-IKK/IKK↓, p-IκB↓, p-NF-κB↓ Li Z et al. (2016)

TABLE 4 | Summary of cardiovascular disease effects of Re.

Inducer Experimental Model Outcome and Proposed
Mechanism

Reference(s)

I/R SD rats Haemodynamic change↑, [Ca2 +]i↓ Kim et al. (2011)
Cardiomyocytes, Guinea pig
ventricular myocytes

I(Ks) ↑, I(Ca,L) ↓ Bai et al. (2003), Bai et al.
(2004)

LADCA
ligation

Wistar rats, SD rat Infarct size↓, MPO↓, PMN infiltration↓, ICAM-1↓ Jing et al. (2010), Li et al.
(2013)

I/R SD rats Hemodynamic parameter↑, QRS complex↓, QT interval↓, R-R interval↓, TNF-α↓ Lim et al. (2013)
Isoproterenol Wistar rats TGF-β↓, p-Smad3↓, collagen I↓ Wang et al. (2019)
MI SD rats Heart rate↑, LVEF↑, LVPWd↑, LVPWs↑, IVSTd↑, IVSTs↑, SOD↑, FAK↑, PI3K↑, Akt↑,

AMPKα↑, LVDd↓, LVDs↓, EDV↓, ESV↓, CK-MB↓, cTnT↓, MDA↓, Ang II↓, ANP↓,
BNP↓, TGF-β1↓, Smad↓

Yu et al. (2020)

tBHP, MI/R H9c2 cells, SD rats miR-30c-5p↑, Apoptosis↓, LDH↓, p53↓ Wang et al. (2020)
GD H9c2 cells Cell viability↑, SOD↑, ATP depletion↑, LC3B-2↑, MDA↓ Zhang et al. (2020)
H/R HL-1 cells Cell viability↑, ATP Levels↑, LC3B-2↑, p-AMPK↑ Sun et al. (2020)

Cat and human cardiomyocytes [Ca2+]i transient amplitude↑, Sarcoplasmic reticulum Ca2+ content↓ Wang et al. (2008b)
Guinea pig ventricular myocytes IKs↑, eNOS↑, PI3K↑, Akt↑ Furukawa et al. (2006)
VSMCs KCa↑, eNOS↑, PI3K↑, Akt↑ Nakaya et al. (2007)
HUVEC [Ca2+]i↑, NO↑, eNOS↑ Leung et al. (2007)
HCAEC Outward currents↑, SKCa currents↑ Sukrittanon et al. (2014)

Balloon SD rats vessel lumen↑, NO↑, cGMP↑, eNOS↑, PCNA positive cells↓ Gao et al. (2018)
PDGF-BB VSMCs cGMP↑, NO↑, p-eNOS/eNOS↑, p21↑, PCNA↓, cyclin D1↓, CDK4↓ Gao et al. (2019)
H2O2 HUVECs NO↑, eNOS↑, SOD↑, GSH-Px↑, LDH↓, MDA↓ Huang et al. (2016)
Ox-LDL HUVECs ERα↑, PI3K↑, PKB↑, LOX-1↓, NADPH oxidase↓, NF-κB↓, p-p38↓ Yang et al. (2018)
bFGF HUVECs, Wistar rats Cell proliferation↑, hemoglobin content in ECMs↑, migration, tube formation↑, neo-

collagen regenerate↑
Huang et al. (2005)

bFGF,
Matrigel

HUVECs, C57/BL6 mice Cell proliferation and migration↑, tube formation↑, neo-vessels density↓ Yu et al. (2007)
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pharmacological activities of Re. Re has anti-diabetic (Table 1),
neuroregulatory (Table 2), anti-inflammatory (Table 3), pro-
cardiac (Table 4), anti-cancer (Table 5), anti-viral, anti-fungal
and anti-oxidant effects. It is also known to improve skin barrier
function, regulate cholesterol metabolism, alleviate allergic
responses, enhance the immune response, improve
osteoporosis, increase sperm motility, reduce erectile
dysfunction, promote cyclic growth of hair follicles, and
reduce gastrointestinal motility dysfunction (Table 6). In this
review, the pharmacological actions and associated molecular
mechanisms, pharmacokinetic characteristics, and toxicology of
Re were summarized after researching major online databases.
This review also describes the limitations of Re.

PHARMACOKINETICS OF RE

Pharmacokinetic studies are necessary for observing and
predicting the actions and interactions of drugs and for
determining their efficacy and toxicity. The pharmacokinetics
of Re have been studied in both animals and humans (Table 7),
with major parameters, such as maximum concentration (Tmax),
T1/2, and bioavailability examined. However, there is still little
known about its metabolic and pharmacokinetic profiles.

Absorption and Distribution
The time for saponins to reach Tmax in rat plasma was less than
2 h, indicating that saponins are rapidly absorbed and readily

TABLE 5 | Summary anti-cancer effects of Re.

Inducer Experimental Model Outcome and Proposed
Mechanism

Reference(s)

CDDP LLC-PK1 cells, Wistar rats Cell viability↑, DPPH radical-scavenging activity↑, Caspase-3↑, Renal cortex tissue tubular damage↓ Lee W et al. (2012),
Kim J et al. (2014)

CDDP ICR mice CAT↑, GSH↑, Bcl2/Bax↑, CRE↓, BUN↓, MDA↓, 4-HNE↓, CYP2E1↓, COX-2↓, iNOS Wang et al. (2018c)
CTX BALB/c mice Erythropoietin↑, thrombopoietin↑, TPO↑, RBCs↑, hemoglobin↑, platelets S phase↑, Bcl-2↑, WBCs↓,

thymus index↓, BMNC↓, spleen index↓, Bax↓, Caspase-3↓
Han et al. (2019)

SW480 cells Apoptosis↑, Cell proliferation↓ Xie et al. (2011)
293T, MCF-7, A375, HepG2
cells

LDH release↑, Cell viability↓, ROS↓, Caspase-3↓ Yao et al. (2018)

TABLE 6 | Summary of other disease effects of Re.

Effect Experimental Model Outcome and Proposed
Mechanism

Reference(s)

Anti-viral CVB3, and HRV3 infection HeLa and Vero
cells

Cytotoxicity↓ Song et al. (2014)

Anti-viral and immune response RV-induced ICR mice Splenocyte proliferative↑, IL-4↑, IL-10↑, IL-12↑, IFN-γ↑,
CD4+ cells↓, CD8+ cells↓

Su et al. (2014)

H3N2-induced ICR mice Th1↑, Th2↑ Song et al. (2010)
Anti-viral Avian influenza H9N2 infected HUVEC cells miR-15b↑, Cell viability↑, IP-10↓, DNA damage↓ Chan et al. (2011)
Immune response CD4+ T cells Cell viability↑, IFN-γ↓, IL-13↓, IRGM↓ Son et al. (2010)

OVA-induced ICR mice Th1↑, Th2↑ Sun et al. (2006)
Osteoblast differentiation RANKL-induced Zebrafish ERK↓, TRAP↓, cathepsin K↓ Feng and McDonald,

(2011)
MC3T3-E1 cells and Zebrafish model ALP↑, Runx2↑, Colla1↑, Alp↑, Ocn↑ Park et al. (2016)

Against UVB radiation UVB-induced HaCaT keratinocytes GSH↑, SOD↑, ROS↓, MMP-2↓, MMP-9↓ Kim et al. (2016)
Improve skin barrier function HaCaT keratinocytes Filaggrin↑, Cornified envelope formation↑, Caspase-14↑ Shin et al. (2018)
Anti-oxidant HaCaT keratinocytes GSH↑, SOD↑, ROS, MMP-2↓, MMP-9↓ Oh et al. (2016)

H2O2-induced E.coli Fpg↑, ROS↓ Lim et al. (2016)
H2O2 or ATA-induced chick
cardiomyocytes

Cell viability↑, DCF fluorescence↓ Lee B et al. (2012)

Regulating Cholesterol Metabolism High cholesterol-induced Wistar rats CYP8B1↑ Kawase et al. (2014)
Alleviating allergic response Histamine-induced ICR mice IL-4↓, TNF-α↓, NF-κB↓, c-jun↓ Jang et al. (2012)
Increasing sperm motility Fertile volunteer, Asthenozoospermic

infertile patients
iNOS↑, NO↑ Zhang et al. (2006)

Restoring erectile dysfunction Ethanol-induced SD rats Nitrite↑, cGMP↑, ICP↑ Pyo et al. (20I6)
Promoting cyclic growth of hair
follicles

Immunodeficient mice, C57BL/6 mice,
HeLa cells

Hair shaft growth↑, P-Smad 2/3↑, p-FAK↑, p-ERK↑,
p-JNK↑, TGF-β↓, SAMD↓

Li et al. (20I6)

Reducing gastrointestinal motility
dysfunction

CP SD rats, DP SD rats p-MLC20↑, MLCK↓, NO↑, adrenaline↑ Xiong et al. (2014)

Cajal interstitial cells Amplitude↓, frequency↓, cGMP↑ Hong et al. (2015)
C48/80-induced Wistar rats Hexosamine↑, adherent mucus↑, TBARS↓, XO↓, MPO↓,

Bax↓, Bcl2↑
Lee et al. (2014)
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TABLE 7 | The main pharmacokinetic parameters of Re.

Route
Adminstration

Dose Model Parameters Reference

AUC (0-t)

(ng/ml·h)
AUC (0-∞)

(ng/ml·h)
T½ (h) Tmax (h) Cmax (ng/ml) MRT (h) Vd (L/kg) CL (L/h/kg) RC f (%) F (%)

i.v. 1 mg/kg ICR mice (\) 638.8 ± 197.0 639.3 ± 196.8 0.2 ± 0.03 — — 0.2 ± 0.07 0.3 ± 0.2 1.7 ± 0.7 — — — Joo et al.
(2010)1 mg/kg ICR mice (_) 1437.6 ± 271.2 1442.0 ± 271.0 0.5 ± 0.08 — — 0.5 ± 0.08 0.2 ± 0.07 0.7 ± 0.11 — — —

p.o. 10 mg/kg ICR mice — 17.7 ± 4.5 — 0.4 ± 0.2 29 ± 25.4 0.76 ± 0.20 — — — — 0.28
50 mg/kg — 61.5 ± 37.0 — 0.7 ± 0.7 35 ± 4.3 2.0 ± 1.2 — — — — 0.19

p.o. 200 mg Healthy
volunteers

2.476 ± 2.281 2.699 ± 2.284 1.82 ±
0.75

1.19 ±
0.44

0.939 ± 0.549 — — 124.054 ±
84.725

— — — Liu et al.
(2011)

i.v. 152.91 mg/kg Rabbits — — 0.83 — — — 0.246 — 0.61 17 — Chen et al.
(1980)i.p. 1.165 — 0.72 18 35

s.c. 12.5 mg/kg SD rats 2.771 2.963 2.399 1 0.56 — — — — — — Shi et al.
(2013)25 mg/kg 6.328 8.073 2.531 1 2.19 — — — — — —

50 mg/kg 12.630 14.295 2.157 1 3.72 — — — — — —

p.o. 200 mg/kg SD rats 9,896.68 ±
1,234.48

11,830.85 ±
2,366.47

8.343 ±
6.148

0.9 ±
0.22

1,703.85 ±
104.15

14.924 ±
5.205

250.73 ±
159.7

0.32 ± 0.044 — — — Chen et al.
(2017)

p.o. 800 mg/kg
XSTDT

SD rats 6 × 105 ± 1
× 105

6 × 105 ± 1
× 105

6 ± 3 6 ± 1 6 × 104 ± 2
× 104

8.6 ± 2.2 12.9 ± 3.5 1.45 ± 0.58 — — — Dai et al.
(2016)

p.o. 600 mg/kg
QXSBP

SD rats 823.15 ± 97.94 958.34 ± 157.26 1.71 ±
0.39

0.56 ±
0.10

412.35 ±
89.16

— — — — — — Chen et al.
(2021)

60 mg/kg
QXSBP

1,764.19 ±
265.38

1,906.79 ±
239.45

1.32 ±
0.38

0.50 ±
0.16

867.69 ±
103.29

i.v. 5 ml/kg GGSQ SD rats 2.16 × 106 ±
0.59 × 106

2.24 × 106 ±
0.76 × 106

2.25 ±
0.84

— — 1.4 ± 0.65 39.08 ±
5.21

— — — — Ji et al. (2017)

i.v. 7.2 ml/kg SFI SD rats 639.70 ±
134.61

653.77 ± 121.07 0.14 ±
0.03

— 3176.44 ±
515.91

0.18 ± 0.03 0.29 ± 0.04 1.48 ± 0.28 — — — Shen et al.
(2021)
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distributed in tissues (Li et al., 2006; Gui et al., 2007). In
humans, Liu et al. (2011) reported that the Tmax of Re was
1.19 ± 0.44 h after oral ingestion. Another study showed that
the Tmax of Re was 0.75 h after oral administration of total P.
notoginsenoside powder in rats, suggesting rapid absorption of
Re in the gastrointestinal tract. The absolute bioavailability of
Re was 7.06% (Li et al., 2006). Joo et al. (2010) revealed that the
Tmax of Re was 0.4 ± 0.2 h in ICR mice. The same study also
showed that the oral bioavailability was 0.19–0.28%, suggesting
that the absorption rate of Re was lower after oral
administration. Shi et al. (2013) demonstrated that Re (12.5,
25 and 50 mg/kg, s.c. injection) was rapidly distributed to the
cerebrospinal fluid and exhibited linear pharmacokinetics in
rats, and that the Tmax of Re was 1 h for all doses. However, for
the lowest dose of 12.5 mg/kg, Re was not detectable in
dialysates after 4 h. Extensive gastrointestinal metabolism,
poor membrane permeability, and low solubility of
deglycosylated products may limit the absorption of
ginsenosides in the intestines. Therefore, the dose of test
compounds must be high to detect ginsenoside content in
plasma (Qi et al., 2011).

Metabolism and Biotransformation
According to preclinical trials, several types of saponins,
including ginsenosides Rg2, Rh1, F1, Rg1, and
protopanaxatriol, may be metabolites of Re in human
plasma and urine samples (Liu et al., 2011). After
administration of Re (200 mg/kg, p.o. for 24 h), the major
excreted ginsenoside metabolites in rat urine included Rg1 and
Re. In feces, the main metabolite was Rg1, but other
deglycosylated metabolites, including F1 and
protopanaxatriol, were also detected (Kim et al., 2013).
Yang et al. (2009) identified 11 and nine metabolites
together with Re in rat urine collected after intravenous
(50 mg/kg, i.v.) and oral (100 mg/kg, p.o.) administration of
Re, respectively. The metabolites included Rg1, Rg2, Rh1, and
F1. Oral and intravenous doses of Re showed distinct
metabolism patterns in the rat, but there were also certain
characteristics in common. Deglycosylation was found to be
the major metabolic pathway of Re in rats, indicating that a
large part of Re was metabolized and transformed in the
gastrointestinal tract to ginsenosides with more biological
effects (Christensen, 2009). The Re may be metabolized into
ginsenosides Rh1 and F1 by human intestinal microflora, and
subsequently absorbed into the blood (Bae et al., 2005). After
oral administration of 100 mg/kg Re to rats, Chen et al. (2009)
detected six metabolites of Re in feces, including ginsenosides
Rg2, Rh1, Rh1, F1, Rh1, and PPT. In general, Re may be
hydrolyzed by gastric fluids to ginsenoside Rg2 that is then
converted in the intestine into ginsenoside Rh1 by the
elimination of rhamnose through intestinal bacteria. Intact
Re also reaches the large intestine where it can be metabolized
by bacteria into ginsenoside F1 and 20(S)-PPT via ginsenoside
Rg1. Like intestinal bacteria, several food microorganisms
produce specific forms of ginsenosides. (Chi and Ji, 2005)
tested the biotransformation of Re by cell extracts from
various food-grade edible microorganisms, and found Re

was transformed into Rh1 via Rg2 by Bifidobacterium sp.
Int57 and SJ32, Re was transformed into Rh1 via Rg1 by
Aspergillus niger KCTC 6906, and Re was transformed into
Rg2 by A. usamii var. shirousamii KCTC 6956.

Elimination
Joo et al. (2010) found that Re was rapidly cleared from the
bodies of male or female mice within 0.2 ± 0.03 and 0.5 ±
0.08 h, respectively, after intravenous administration. Chen
et al. (1980) estimated that the half-life of Ren in rabbits,
after intravenous administration, was about 0.83 h, and the
elimination half-life of Re after i.p. injection could be measured
from urine (1.165 h) but not plasma samples. In healthy
volunteers, the half-life of Re after oral ingestion of Re
tablets (200 mg/tablets, p.o.) was reported to be 1.82 ±
0.75 h (Liu et al., 2011). A randomized, double-blind,
placebo-controlled trial reported that researchers were
unable to detect Re in plasma of obese adults, even though
the subjects were prescribed large daily oral doses of P. ginseng
and Re for 30 days and ingested the last dose 30 min before
collection of blood samples to assess Re concentrations. The
absence of Re may be explained by the quick elimination of
ginsenoside (Reeds et al., 2011). Pharmacokinetic studies of Re
in rats and human volunteers were consistent with this
statement. After intragastric (i.g.) administration of Banxia
Xiexin Decoction in rats, plasma concentrations of Re at most
time points were lower than the lower limit of quantification
(Wang et al., 2008a). Pharmacokinetic studies of Re in rats and
volunteers following i.v. administration of Shen Mai indicated
that Re was quickly eliminated in the body, and that
pharmacokinetic characteristics fitted the two-compartment
model (Liu et al., 2005; Xia et al., 2008). Altogether, evidence
from pharmacokinetic and metabolic studies of Re
demonstrated that 1) the absorption of Re was fast in the
gastrointestinal tract; 2) Re may be metabolized mainly into
Rh1 and F1 by intestinal microflora before absorption into
blood; and 3) Re was quickly cleared from the body (Peng et al.,
2012).

SEARCH METHOD

We included articles that were published from January 2000 to
March 2021. Because more than 344 articles were found, we opted
to focus on those specifically pertaining to new reports of the
pharmacology, pharmacokinetics, and toxicology of Re. We
searched four electronic databases, Google Scholar, NCBI,
PubMed, and Web of Science, and compiled data according to
the grade of evidence that was found. Systematic searches were
performed in four electronic databases and the reference lists of
most papers in the past 20 years were checked for further relevant
publications. All articles containing original data on
pharmacological activity, pharmacokinetics, and toxicology of
Re were included. In addition, we only included studies written in
English. Approximately 140 articles were used in the review
process, across a variety of in vitro and in vivo studies, case
reports, and randomized controlled trials.
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PHARMACOLOGICAL EFFECTS OF RE ON
DIABETES MELLITUS (DM)

Anti-DM Effects In Vivo
Attele et al. (2002) found that Re (20 mg/kg, i.p. for 12 days) had
marked anti-hyperglycemic activities, with no effect on the body
weight of C57BL/6J ob/ob mice. This finding suggests that Re has
potential as an anti-diabetic agent. Re (10 mg/kg, i.p. for 12 days)
significantly reduced fasting blood glucose levels and promoted
glucose tolerance (GT) and systemic insulin sensitivity (IS) in ob/
ob mice without affecting body weight (Xie et al., 2005a). These
findings suggest Re may provide a therapeutic role in
ameliorating GT and insulin resistance (IR) in patients with
type 2 diabetes mellitus (T2DM). Administration of Re
(0.2 mg/ml for 90 min) rapidly normalized IR and muscle
glucose transport induced by high-fat diet (HFD) in the
epitrochlearis and soleus muscles of rats (Han et al., 2012). Re
may have specifically acted to ameliorate IR in muscles of rats
because it failed to modify HFD-induced muscle glucose
transport resistance following stimulation by contraction or
hypoxia. Muscle contraction and hypoxia exert an insulin-like-
stimulating effect on glucose transport. However, Re did not
affect basal or insulin-stimulated muscle glucose transport in
chow-fed rats. According to these animal studies, P. ginseng or
ginsenoside appeared to improve oral GT and accelerate insulin-
stimulated glucose disposal (Xie et al., 2004). The Re-induced
improvement in IS may or may not be associated with weight loss.
Therefore, it remains unclear whether the amelioration was due
to weight loss or insulin-sensitizing traits. These studies
demonstrated the association between the anti-hyperglycemic
activity of Re and improved IS, whereas body weight was
unaffected. The improvement may be attributed to the insulin-
sensitizing properties of Re. Quan et al. (2012) studied the
potential anti-glycemic role of Re in HFD-induced diabetes in
mice. Administration of Re (20 mg/kg, i.g. for 3 weeks) markedly
lowered BG and triglyceride levels and prevented hepatic steatosis
in C57BL/6J mice on a HFD. The hypoglycemic effect was
associated with suppression of hepatic gluconeogenesis,
possibly associated with AMP-activated protein kinase
(AMPK) activation. In rats on a HFD, Re (40 mg/kg, i.p. for
2 weeks, twice a day) improved IR by inhibiting c-Jun N-terminal
kinase (JNK) and nuclear factor (NF)-kB activation (Zhang et al.,
2008). Several studies have concluded that the anti-
hyperglycemic effect of Re was primarily responsible for
improved microvasculopathy or reduced cognitive impairment
in HFD-induced diabetic mouse models. In such models, Re
(20 mg/kg, i.g. for 8 weeks) exerted a protective and anti-
angiopathy effect in DM, such as the initial stages of high-
sucrose-HFD (HSHF)-induced diabetes, HSHF+alloxan
monohydrate-induced Type 1 diabetes mellitus (T1DM), and
HSHF+streptozotocin (STZ)-induced T2DM. Administration of
Re reduced BG levels, regulated increasing insulin levels,
improved lipid metabolism, and reduced endothelial cell
dysfunction. The underlying mechanism was possibly
associated with p38 mitogen-activated protein kinase (MAPK)
activation, and extracellular signal-regulated kinase (ERK) 1/2
and JNK signaling (Shi et al., 2016). In addition, Re (20 mg/kg, i.g.

for 2 weeks) had an anti-diabetic microvasculopathy effect,
including protective actions against oxidative stress in the
kidneys and eyes, and increased BG and lipid levels in rats
with STZ-induced diabetes (Cho et al., 2006). In rats with
STZ-induced T1DM, Re (40 mg/kg, i.g. for 8 weeks) improved
diabetes-related cognitive decline while decreasing fasting BG
levels, although it did not affect BG, which was associated with
oxidative stress and inflammation (Liu et al., 2012). In mice, Re
improved HFD-induced IR through amelioration of
hyperglycemia by protecting the brain cholinergic and
antioxidant systems (Kim et al., 2017). Specifically, Re (5, 10
and 20 mg/kg/d, i.g. for 4 weeks) improved diabetes-associated
cognitive impairment, and was possibly associated with
improvement of the anti-oxidant and cholinergic systems in
brain tissue. In HFD-induced hyperglycemic C57BL/6 mice,
Re played a positive role through amelioration of insulin
tolerance and BG levels. Re possibly improved learning and
memory disorders related to HFD-induced diabetes. As the
major ginsenoside in the P. ginseng berry ethyl acetate fraction
(blended with drinking water 20 and 50 mg/kg, p.o. for 4 weeks),
Re ameliorated cognitive decline in a dose-dependent manner
because of its cholinergic activity, and it decreased oxidative stress
in mice with HFD-induced T2DM and behavioral deficiency
(Park et al., 2015).

Anti-DM Effects In Vitro
In 3T3-L1 adipocytes, Re (10 μM for 24 h) improved IR by
inhibiting the inflammatory signaling cascade and activating the
insulin signaling pathway (Zhang et al., 2008). Further results
demonstrated that Re (1–10 μΜ for 0.5 h) increased glucose
uptake in mature 3T3-L1 cells by significantly enhancing glucose
transporter 4 (GLUT4) mRNA expression through the
phosphoinositide 3-kinase (PI3K)-dependent pathway involving
insulin receptor substrate-1 (IRS-1) in the glucose transport
system cascade (Lee et al., 2011). Gao et al. (2013) demonstrated
that Re (30, 60 μM for 5 days) reduced IR in adipocytes by directly
enhancing the expression of peroxisome proliferator-activated
receptor-γ (PPARγ)-2 and the corresponding AP2 genes,
increasing adiponectin and IRS-1 expression, inhibiting
inflammatory cytokine tumor nuclear factor-α (TNF-α)
expression and production, and promoting GLUT4
translocation. The regulation of these factors facilitated adipocyte
glucose uptake and disposal, although it failed to enhance GLUT4
expression. Another study found that Re (20 μMfor 3 h) suppressed
glucose generation in HepG2 cells, possibly by triggering the
expression of the orphan nuclear receptor small heterodimer
partner gene via AMPK activation (Quan et al., 2012). These
results indicate that Re improved IR through reduction of
lipotoxicity in the muscles and liver by enhancing adipocyte
lipid storage capacity and promoting GLUT4 translocation to
plasma membranes. Thus, Re compound regulation of insulin-
stimulated glucose ingestion led to improved IR. Furthermore, Re
(3 μM for 24 h) was proposed to exert anti-angiogenetic effects in
diabetic retinopathy through the PI3K/Akt-mediated hypoxia-
inducible factor-1-alpha (HIF-1α)/vascular endothelial growth
factor (VEGF) signaling pathway in high-glucose-induced retinal
endothelial RF/6A cells (Xie et al., 2020).

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 7541917

Gao et al. Pharmacological Properties of Ginsenoside Re

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Overall, in vivo and in vitro data suggest four possible
mechanisms underlying Re-induced improvement of diabetes
and diabetes-related complications: 1) regulation of insulin
resistance and insulin secretion, 2) modulation of glucose or
lipid metabolism, 3) modulation of inflammatory cytokines, and
4) activation of oxidative stress.

PHARMACOLOGICAL EFFECTS OF RE ON
NERVOUS DISEASES
Anti-Peripheral Nerve Injuries Effects In
Vivo and Vitro
In rats with sciatic nerve crush injury, Re (2.0 mg/kg, i.p. for
4 weeks) promoted functional recovery, nerve regeneration, and
proliferation of injured sciatic nerves. The Re compound
promoted Schwann cell proliferation, differentiation, and
migration during the course of peripheral neural repair after
crush injury. This effect was possibly mediated by the regulation
of ERK1/2 and JNK1/2 signaling pathways (Wang et al., 2015).

Anti-Cerebral Ischemia Effects In Vivo
One study reported the anti-oxidant effects of Re (5, 10 and
20 mg/kg, i.g. for 1 week) in rats with cerebral ischemia-
reperfusion (I/R) injury. The Re compound considerably
increased membrane fluidity of brain mitochondria, activated
anti-oxidative enzymes, and decreased lipid peroxidation
products, including malondialdehyde (Zhou et al., 2006).
Neuroprotective effects of Re (5, 10 and 20 mg/kg, i.g. for
1 week) against cerebral I/R injury in rats were associated with
a reduction in malondialdehyde levels and mitochondrial
swelling, leading to an increase in H+-ATPase activity (Chen
et al., 2008).

Anti-Neurotoxicity Effects In Vivo
Tu et al. (2017) reported that Re (20 mg/kg, i.p. for 3 days)
attenuated convulsive behaviors, oxidative damage, pro-
apoptotic potential and neuronal degeneration through the
interleukin-6 (IL-6)-dependent PI3K/Akt signaling pathway in
mice with trimethyltin-induced neurotoxicity. Treatment with Re
(20 mg/kg, i.p. for 1 day) markedly decreased phencyclidine-
induced neurotoxic alterations, including behavioral changes
and mitochondrial dysfunction. These Re-mediated alterations
were due to interactive modulation between glutathione
peroxidase-1 (GPx-1) and NADPH oxidase in mice (Tran
et al., 2017).

Anti-Depression and Anti-Cognitive
Dysfunction Effects
Administration of Re (50 mg/kg, i.p. for 10 days) before
immobilization stress markedly improved body weight, serum
corticosterone levels, behavioral alterations, and cognitive deficits
in rats. These effects were mediated through modulation of the
central noradrenergic system and hypothalamic corticotrophin-
releasing factor in the brain (Lee B et al., 2012). Another study
showed Re (20, 40 mg/kg, i.p. for 3 weeks) inhibited memory

deficits induced by chronic restraint stress (Wang et al., 2021).
The protective effects were related to anti-inflammatory and anti-
oxidant activities of the Re compound, as well as positive
regulation of brain-derived neurotrophic factor and plasticity-
associated proteins in the hippocampus.

Anti-Parkinson’s Disease (PD) Effects In
Vivo
Administration of Re can effectively prevent onset of Alzheimer’s
disease (AD) by improving the activity of dopamine (DA)
neurons. One study found that Re (6.5, 13 and 26 mg/kg, i.g.
for 13 days) prevented apoptosis of substantia nigra
dopaminergic neurons induced by 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine in C57BL mice (Xu et al., 2005). The effect
was mediated by reversing the abnormal expression of apoptosis
regulatory proteins and inhibiting caspase-3 activation.
Administration of Re (10, 20 mg/kg, i.p. for 2 weeks, twice a
day) rescued methamphetamine-induced dopaminergic
neurotoxicity. The effect was associated with potentiating
oxidative burdens, compensative induction of GPx activity,
mitochondrial dysfunction, pro-inflammatory changes,
apoptotic cellular degeneration, and dopaminergic
degeneration through inactivation of the protein kinase Cẟ
(PKCδ) gene (Shin et al., 2014). Another study reported that
Re (20 mg/kg, i.p. for 5 days, twice a day) protected
methamphetamine-treated prodynorphin knockout mice
against dopaminergic neurotoxicity through anti-oxidant, anti-
inflammatory, and anti-apoptotic actions. The effects were
facilitated by dynorphin-induced upregulation of the κ-opioid
receptor, followed by substance P-mediated downregulation of
the NK1 receptor (Dang et al., 2018).

Anti-PD Effects In Vitro
Administration of Re (10 µM) and ginsenoside Rd (5 µM for
48 h) provided considerable neuroprotective effects on primary
dopaminergic midbrain neurons treated with CCl4. The
neuroprotective effects were in part due to the lowering of
oxidative stress and alleviation of inflammatory responses
(Zhang et al., 2016). In addition, Re treatment (50, 100 μM for
24 h) of SH-SY5Y cells rescued methamphetamine-induced
mitochondrial burden (compensative induction of cytosolic
and mitochondrial GPx activity, mitochondrial oxidative
stress, mitochondrial dysfunction, and mitochondrial
translocation of cleaved PKCδ, and pro-apoptosis through
genetic inhibition of PKCδ) (Nam et al., 2015). Kim et al.
(2012) investigated the actions of Re on mitochondrial
dysfunction in a PD model. They found that Re (3 µM)
targeted mitochondrial dysfunction and rescued the defective
PINK1-Hsp90/LRPPRC-Hsp60-complex IV signaling axis of
PINK1-null neurons by restoring nitric oxide (NO) levels. Co-
treatment using Rd and Re (0.5, 1 μM for 24 h) protected SH-
SY5Y cells against rotenone-induced toxicity by regulating
molecular mechanisms that enhanced cell viability, including
prevention of morphological changes, lowered oxidative stress,
improved mitochondrial integrity and function, and inhibited
apoptosis owing to oxidative stress (Gonzalez-Burgos et al.,
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2017). The anti-oxidant mechanism of Re in PD remains unclear.
In SH-SY5Y cells treated with 6-hydroxydopamine to induce
oxidative stress, the Re compound (25 µM for 9 h) mediated its
anti-oxidant effect by upregulating a key antioxidant gene
GPX4 via PI3K/Akt and ERK cascades (Lee et al., 2020).

Anti-AD Effects In Vivo
Kai-Xin-San, a Chinese herbal formula, has been clinically
administered at 3 g/kg (i.g. for 4 weeks) to treat animals with
AD and neurosis. P. ginseng, a component of Kai-Xin-San, is
known to enhance learning ability and memory. In addition,
positive effects of Re and Rb1, the most abundant saponins, on
learning ability and memory were reported (Wang et al., 2010).
Amyloid β (Aβ) peptide plays an important role in AD. Zhou
et al. reported that Re may interfere with AD progression by
affecting the Aβ peptide (Zhou et al., 2020). Oral
administration of Re (25 mg/kg, i.g. for 18 h) considerably
reduced Aβ1-40 and Aβ1-42 levels in brains of Tg2576 mice
(Chen et al., 2006). Furthermore, Li et al. (2018) demonstrated
that Re (4 mg/kg, i.g. for 40 days) improved cognitive
impairment, reduced Aβ accumulation, and restored
biomarker levels, including amino acids, lecithin, and
sphingolipids in the plasma of AD mice. Because of its
effect on Aβ peptides, Re is increasingly considered a
potential alternative drug for AD treatment. In addition, Re
exhibits anti-dementia activity. The Re compound improved
extracellular levels of DA and acetylcholine (Ach), particularly
in the hippocampus. Also, Re (12.5, 25 and 50 mg/kg, s.c.)
increased extracellular levels of DA and Ach in the medial
prefrontal cortex (Shi et al., 2013).

Anti-AD Effects In Vitro
Treatment with Re has been reported to improve AD by affecting
Aβ peptide levels in several cell models. Liang et al. reported that
Re markedly reduced the generation of Aβ proteins in N2a/
APP695 cells. The effect of Re (50–100 μM for 24 h) on Aβ
generation was mediated by PPARγ activation in combination
with Aβ-site precursor protein-cleaving enzyme 1 inhibition (Cao
et al., 2016). Treatment with Re (0.1–100 μM for 2 h)
considerably reduced cell toxicity and increased the release of
lactate dehydrogenase, thereby attenuating PC12 cell damage
induced by Aβ peptides (Ji et al., 2006). In addition, Re
(25 µM for 48 h) exhibited neuroprotective activity against
neurotoxicity arising from Aβ25-35 in SH-SY5Y cells by
reducing oxidative damage and neuronal cell apoptosis. The
neuroprotective activity was associated with the activation of
nuclear factor erythroid-2 associated factor 2/heme oxygenase-1
anti-oxidant response pathways and inhibition of reactive oxygen
species (ROS)-dependent apoptosis signal-regulated kinase 1/
JNK/Bax apoptosis pathways (Liu et al., 2019). Furthermore,
Kim et al. demonstrated that Re (5 μg/ml for 48 h) effectively
upregulated the expression of choline acetyltransferase and
vesicular acetylcholine transporter, and Ach production in
Neuro-2a cells, thus countering symptoms during AD
progression (Kim J et al., 2014).

In vivo and in vitro data suggest six possible mechanisms of
Re-mediated improvement of complications associated with

nervous system diseases: 1) regulation of central cholinergic
pathways, 2) modulation of the apoptotic signaling pathway,
3) modulation of inflammatory responses, 4) modulation of
mitochondrial burden, 5) regulation of anti-oxidant signaling
pathways, and 6) reduction of Aβ peptide accumulation and loss
of midbrain DA neurons.

PHARMACOLOGICAL EFFECTS OF RE ON
INFLAMMATION

Anti-Inflammatory Effects In Vivo
Treatment with Re considerably inhibited neutrophil
infiltration in a model of skin inflammation arising from
12-O-tetradecanoylphorbol-13-acetate. It also improved paw
and ear oedema, increased malondialdehyde levels in paw fluid
during c-carrageenan-induced edema, and suppressed
interleukin-1β (IL-1β) and TNF-α expression in
lipopolysaccharide (LPS)-stimulated murine Raw 264.7
macrophages (Paul et al., 2012). Moreover, Re (1 mg/kg, i.v.
for 15 min) suppressed the LPS-induced increase in body
temperature, white blood cell count, and pro-inflammatory
mediators (Su et al., 2015). In LPS-induced systemic
inflammation, Re (10, 20 mg/kg, i.g. for 4 h) suppressed
serum levels of IL-1β and TNF-α in mice. Similarly, in
2,4,6-trinitrobenzene sulfonic acid-induced colitic mice, Re
(10, 20 mg/kg, i.g. for 3 days) suppressed the expression of
IL-1β, TNF-α, cyclooxygenase-2, and inducible nitric oxide
synthase, and the activation of transcription factor NF-κB.
However, it enhanced the expression of anti-inflammatory
cytokine IL-10, indicating that Re can suppress Th1 rather
than Th2 cell activation (Lee I et al., 2012). Administration of
Re (15 mg/kg, i.g. for 1 week) also prevented NF-κB activation
and LPS-induced myocardial inflammation in mice. The action
of Re in cardiac dysfunction involves both MAPK inhibition
and preserved activation of estrogen receptors and the PI3K/
Akt signaling pathway (Chen et al., 2016). Treatment with Re
(6–50 mg/kg, p.o. for 2 h) produced strong and significant
inhibitory actions against LPS-induced lung inflammation in
mice, and decreased inflammatory cell infiltration into lung
tissue. The effect was mediated by inhibiting the activation of
MAPK and transcription factors NF-κB and c-Fos (Lee et al.,
2018).

Anti-Inflammatory Effects In Vitro
An in vitro investigation of the anti-inflammatory effects of Re (5,
10 μΜ for 30 min) in macrophages showed that it suppressed the
expression of pro-inflammatory cytokines (TNF-α and IL-1β)
and activation of transcription factor NF-κB by preventing the
binding between LPS and toll-like receptor 4 (TLR4). However,
Re did not suppress pro-inflammatory cytokines in
peptidoglycan- or TNF-α-stimulated peritoneal macrophages
(Lee J et al., 2012), highlighting its action in reducing
inflammation by suppressing the LPS and TLR4 interaction in
macrophages. Su et al. (2015) demonstrated that Re (50 μg/ml for
1 h) competed with LPS binding to the TLR4, and blocked the
LPS-triggered signaling pathway in LPS-stimulated RAW264.7
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cells. Extracellular Re was shown to compete with LPS binding to
the TLR4, consistent with its role in the activation of extracellular
TLR4 (Su et al., 2012). In addition, Wu et al. reported an anti-
inflammatory role of Re (10–100 μΜ for 48 h) in LPS-induced
activated N9 microglial cells. Re mediated its effects by inhibiting
the generation of NO and TNF-α through downregulation of NF-
κB activation (Wu et al., 2007). Treatment with Re (2 μg/ml for
24 h) reduced neuroinflammation by reducing the levels of
inducible nitric oxide synthase and cyclooxygenase-2, and
activating p38 MAPK in LPS-treated BV2 microglial cells (Lee
K et al., 2012). Moreover, Quan H et al. (2019) reported that Re
(10–40 μΜ for 24 h) inhibited LPS-induced TNF-α and IL-6
production in RAW264.7 cells, and reduced IL-6, NO,
prostaglandin E2, and TNF-α secretion in primary rat
hepatocytes via MAPK and NF-κB signaling pathways. Re is
an effective component of Shen Fu, and was reported to exert
anti-inflammatory effects by suppressing the NF-κB signaling
pathway in TNF-α-stimulated EAhy926 cells (Li P et al., 2016).
Incubation with Re (1.7 μg/ml for 24 h) decreased histamine
secretion in human mast cells, and reduced IL-1α, IL-8, and
IL-10 levels, and regulated T-cell-expressed and secreted protein
secretion in A549 cells (Bae et al., 2012).

Altogether, in vivo and in vitro study data indicate that the
possible mechanism of anti-inflammatory activities of Re involves
NF-κB inactivation and reduced inflammatory cytokine release.

PHARMACOLOGICAL EFFECTS OF RE ON
CARDIOVASCULAR DISEASES (CVDS)

Anti-Myocardial Injury Effects In Vivo
Kim et al. (2011) showed that Re improved ischemia/reperfusion
(I/R) dysfunction by reversing the hemodynamic change (aortic
flow, coronary flow, perfusion pressure, and cardiac output) and
inhibiting the level of intracellular Ca2+ ([Ca2+]i). This study
indicated that the anti-ischemic effect of Re was mediated by
inhibiting an increase of [Ca2+]i. Additionally, Re prevented heart
mitochondrial Ca2+ accumulation in I/R injury. In isolated single
cardiomyocytes, Re suppressed the L-type Ca2+ current and
strengthened the slowly activating delayed rectifier K+ current
(IKs). This may be the underlying mechanism that prevented
mitochondrial Ca2+ overload (Bai et al., 2003; Bai et al., 2004).

A rat model showed that Re (20 mg/kg, i.g. for 15 days)
provided an effective treatment for myocardial infraction
arising from left anterior descending coronary artery ligation.
Treatment with Re improved the parameters of myocardial injury
by downregulating the expression of intercellular adhesion
molecule-1 and inhibiting polymorphonuclear leukocyte
infiltration (Jing et al., 2010; Li et al., 2013). In this research,
Re was reported to exhibit a protective role in ischemia-induced
myocardial injury by regulating calcium transport, preserving
mitochondrial structure and function, enhancing anti-oxidant
capacity, and recovering myocardial blood flow.

In addition, Re lowered myocardial injury and suppressed
cardiac hypertrophy in experimental models with cardiac
dysfunction. Lim et al. (2013) proposed that Re (100 μM,
injected into the aortic line for 3 min) exerted beneficial effects

on cardiac function in rats with I/R injury, considerably improved
hemodynamic functions and left ventricular developed pressure,
ameliorated electrocardiographic abnormalities, and decreased
the production of TNF-α. Treatment with Re (5, 20 mg/kg, i.g. for
4 weeks) also reduced isoproterenol-induced myocardial fibrosis,
increased heart weight and hydroxyproline content, and reduced
heart failure. The molecular mechanisms underlying the
protective role of Re were possibly related to regulation of the
transforming growth factor-beta 1 (TGF-β1)/Smad3 pathway
(Wang et al., 2019). In a rat model of myocardial injury, Re
(135 mg/kg, i.g. for 4 weeks) preserved cardiac function and
structure, reduced myocardial injury and stress, and decreased
left ventricular fibrosis by regulating the AMPK/TGF-β1/Smad2/
3 and FAK/PI3K/Akt signaling pathways (Yu et al., 2020). These
findings suggest a possible therapeutic role for Re in suppressing
ventricular remodeling and promoting postinfarction healing.
Overall, Re restored blood supply quickly and also delayed
detrimental ventricular remodeling during chronic myocardial
infraction rehabilitation.

Anti-Myocardial Injury Effects In Vitro
Wang et al. found that Re (200 μg/ml for 24 h) increased H9c2
cell viability after tertbutyl hydroperoxide treatment and
reduced lactate dehydrogenase release and cell apoptosis
(Wang et al., 2020). Treatment with Re (100 μM for 3 h)
inhibited glucose deprivation-induced autophagy of H9c2
cardiac muscle cells, an effect which may be associated with
the inhibition of autophagy, increase in cellular ATP content
and viability, and alleviation of oxidative stress (Zhang et al.,
2020). In addition, in the hypoxia/reoxygenation injury model,
Re (100 µM for 21 h) increased HL-1 cell viability and ATP
levels. The possible mechanism was that Re acted on the
binding interface between HIF-1α and von Hippel-Lindau
protein to prevent the binding of these proteins, thereby
suppressing HIF-1α ubiquitination (Sun et al., 2020).

Adjusting Electrophysiological Activities
Administration of Re (≥10 nM) effectively suppressed the
electromechanical alternans of cardiomyocytes in cats and
humans by increasing sarcoplasmic reticulum Ca2+-release
channels, and thereby improving arrhythmia (Wang et al.,
2008b). Furukawa et al. (2006) showed that Re (3 μM)
increased IKs, [Ca2+]i, activation of eNOS, and NO
production through a c-Src/PI3K/Akt-dependent mechanism
related to the non-genomic pathway of sex steroid receptors.
Similarly, in vascular smooth muscle cells (VSMCs), Re non-
genomically and dose dependently activated KCa currents and
eNOS (EC50 = 4.1 ± 0.3 μM) through the c-Src/PI3-kinase/Akt
pathway of the estrogen receptor (Nakaya et al., 2007). A study
on human umbilical vein endothelial cells (HUVECs) revealed
that Re augmented [Ca2+]i and NO production in a dose-
dependent manner (EC50 of 316 and 615 nM, respectively)
(Leung et al., 2007). In human coronary artery endothelial
cells, Re (1 μM) induced vasorelaxation by increasing small-
conductance Ca2+-activated K+ (SKCa) channel activity,
stimulating NO production, and promoting vasodilation
(Sukrittanon et al., 2014).
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Anti-Atherosclerosis Effects
Abnormal structure and function of VSMCs may result in the
development and progression of arteriosclerosis. Enhanced
proliferation and migration of VSMCs represent critical events
during the course of atherosclerotic lesion development (Bennett
et al., 2016). Gao et al. (2018) demonstrated that Re (25 or
50 mg/kg, i.g. for 2 weeks) inhibited VSMC proliferation by
suppressing phenotypic modulation and inhibiting vascular
neointimal hyperplasia in balloon-injured rats through the
eNOS/NO/cyclic guanosine monophosphate (cGMP) pathway.
Re improved platelet-derived growth factor-BB-induced VSMC
proliferation through G0/G1 cell cycle arrest, which was
associated with eNOS/NO/cGMP pathway activation (Gao
et al., 2019).

In contrast, endothelial cells provide an interface between
circulating blood in the lumen and other vessel walls. Endothelial
cells exhibit great sensitivity and vulnerability to toxic substances
circulating in blood vessels. Endothelial dysfunction is an
important contributor to the pathobiology of atherosclerosis
(Gimbrone and García-Cardeña, 2016). Huang et al. (2016)
found that Re (4, 16, and 64 μmol/L for 24 h) attenuated
oxidative damage in H2O2-induced HUVECs and increased
the production of NO and eNOS, superoxide dismutase
(SOD), and GPx activities. The protective effects were
associated with an oxidative stress response, protein synthesis
and mitochondrial function. In addition, Yang et al.
demonstrated that Re (120 μg/ml for 12 h) improved oxidized
low-density lipoprotein-induced endothelial cell apoptosis. The
effect was possibly elicited through regulation of oxidative stress,
inhibition of inflammatory mediators, and recovery of balanced
pro- and anti-apoptotic protein expression via p38/MAPK/NF-
κB and PI3K/Akt/NF-κB pathways. These pathways may be
regulated by the lectin-like oxidized low-density lipoprotein
receptor-1, NADPH oxidase, and estrogen receptor α (Yang
et al., 2018). Therefore, Re is a potential anti-oxidant that may
be used to protect HUVECs from damage by oxidative stress
through the anti-oxidant defense system. The Re compound also
inhibited VSMC proliferation, attenuated endothelial
dysfunction, and possibly promoted NO production, thereby
reducing atherosclerosis.

Promoting Angiogenesis
Re is a pro-angiogenic compound with high stability that
upregulates in vitro proliferation, migration, chemo-invasion,
and tube formation of HUVECs. It also affects ex vivo aortic
sprouting and in vivo neovascularization. In vitro results revealed
that Re (10–30 μg/ml for 48 h) dose dependently enhanced the
proliferation, migration, and tube formation of HUVECs (Huang
et al., 2005). Additionally, extracellular matrix incorporating Re
(70 μg for 1 week and 1 month) induced angiogenesis and
enhanced tissue regeneration by increasing neocapillary
density and tissue hemoglobin in a rat model (Yu et al., 2007).
These findings indicate that Re can serve as an angiogenic agent
to accelerate tissue regeneration.

In summary, in vivo and in vitro reports suggest five possible
mechanisms by which Re may improve the cardiovascular
system: 1) attenuation of myocardial ischemia, 2) inhibition of

[Ca2+]i and activation of IKs, 3) increased NO production, 4)
reduced cardiomyocyte apoptosis autophagy, and 5) the
regulation of oxidative stress.

PHARMACOLOGICAL EFFECTS OF RE ON
CANCER

Reduction In Side Effects of Chemotherapy
A combination of Re and cisplatin increased the survival rate of
LLC-PK1 cells by 21.4%. However, the renoprotective effects of
Re were weaker than that of Maillard reaction products in Re-
leucine/serine and glucose-leucine mixtures. Moreover, Maillard
reaction products reduced cisplatin-induced oxidative kidney
damage by increasing 1,1-diphenyl-2 picrylhydrazyl radical-
scavenging activity and decreasing the expression of cleaved
caspase-3 protein in rats (Lee W et al., 2012; Kim M et al.,
2014). (Wang et al., 2008c) found that Re (25 mg/kg, i.g. for 10
days) considerably suppressed acute kidney injury induced by
cisplatin in mice, by inhibiting the oxidative stress damage,
inflammatory response, and apoptosis. Re (5, 10 mg/kg, i.p. for
1 week) also improved cyclophosphamide-induced
myelosuppression, alleviated clinical symptoms of
myelosuppression, and promoted recovery of bone marrow
hematopoietic functions. The possible mechanisms involved
the regulation of hematopoiesis-related cytokine levels,
promotion of cellular entry to the normal cell cycle, and
improvement of bone marrow nucleated cell apoptosis-related
protein expression (Han et al., 2019).

Anti-Cancer Effects In Vitro
One mg/mL of American P. ginseng berry extract (containing
15.1 mg/g of Re for 72 h) exhibited strong anti-proliferative
effects and triggered morphological alterations in SW480
human colorectal cancer cells (Xie et al., 2011). Re-carbon
dots (0.5 mg/ml for 4 h) inhibited cancer cell proliferation
(A375, HepG2, and MCF-7 cells) through the ROS-mediated
pathway. However, the inhibitory effect on A375 cells was higher
than that on other cells. Re induced apoptosis via the ROS- and
caspase-mediated pathways (Yao et al., 2018). These findings
demonstrate that Re can be used as a potential anti-cancer
adjuvant for preventing and treating various cancers.

Altogether, in vivo and in vitro data show three possible
mechanisms underlying the anti-cancer activities of Re: 1)
inhibition of cell proliferation, 2) induction of cell apoptosis
and 3) modulation of oxidative damage.

PHARMACOLOGICAL EFFECTS OF RE ON
OTHER DISEASES
Anti-Viral and Enhancement of Immune
Response
Song et al. (2014) demonstrated that Re (100 μg/ml for 48 h) had
potential therapeutic efficacy in CVB3 and HRV3 infections in
HeLa and Vero cells, respectively. Su et al. (2014) showed that co-
administration of Re (5.0 mg/kg. s.c. for 3 weeks) with the rabies
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virus vaccine remarkably increased the serum antibody response
in mice. Other studies have shown that co-administration of Re
(50 μg, s.c. for 3 weeks) with inactivated influenza virus A/Fujian/
411/2002 (H3N2) markedly amplified serum-specific antibody
responses (IgG, IgG1, IgG2a, and IgG2b), hemagglutination
inhibition titers, lymphocyte proliferation responses, and IL-5
and IFN-γ production (Song et al., 2010). Chan et al. (2011)
reported that Re (50 μΜ for 16 h) protected HUVECs from
H9N2/G1 influenza virus-induced apoptosis. CD4+ T cells are
important immune cells in the human immune system. Son et al.
found that Re (10, 20 and 40 μg/ml for 24 h) enhanced the
viability of activated CD4+ T cells by downregulating IFN-γ
production, which interfered with autophagy by reducing
immunity-associated GTPase family proteins (Son et al., 2010).
Re also enhanced the expression of Th1-type-related and Th2-
type-related cytokines (Su et al., 2014). Administration of Re (10,
25 and 50 μg, s.c. for 2 weeks) had considerable adjuvant effects
on specific antibody and cellular responses in ovalbumin-
immunized mice, affecting the immune system favoring Th1-
or Th2-type responses, as shown by enhanced titers of IgG1 and
IgG2b isotypes (Sun et al., 2006). These results indicated Re-
mediated activation of Th1 and Th2 immune responses in mouse
models. Therefore, these studies indicate that Re can enhance the
host immune system as a vaccine adjuvant.

Anti-Osteoporotic Effects
An optimal balance of osteoblasts and osteoclasts is crucial for
bone remodeling. Impaired bone homeostasis potentially
causes bone disease, such as bone fracture and osteoporosis
(Feng and McDonald, 2011). It was demonstrated that Re had
dual effects promoting osteoblast differentiation and
inhibiting osteoclast differentiation. This research showed
that Re (2.5, 5 and 10 μM for 48 h) dose dependently
inhibited osteoclast differentiation and decreased nuclear
factor of activated T cell cytoplasmic 1 and tartrate-resistant
acid phosphatase mRNA levels, which are osteoclast
differentiation markers. These effects were elicited by
blocking the ERK signaling pathway in bone marrow-
derived macrophages stimulated with the receptor activator
of NF-κB ligand. Osteoclast generation in zebrafish scales was
inhibited by Re (10 μM for 5 weeks), shown by reduced
expression of osteoclast marker genes tartrate-resistant acid
phosphatase and cathepsin K (Park et al., 2016). Kim et al.
(2016) found that Re affected the differentiation and
mineralization of osteoblasts both in vitro and in vivo
models. Treatment with Re (50 µM for 5 weeks) promoted
the expression of osteoblastic markers, including alkaline
phosphatase activity, and mRNA levels of alkaline
phosphatase, type 1 collagen, and osteocalcin in mouse
osteoblast precursor MC3T3-E1 cells. Moreover, Re
amplified the mineralization of osteoblasts in mouse
MC3T3-E1 cells and zebrafish scales.

Improving Skin Barrier Function
Treatment with Re (5, 12, and 30 μM for 0.5 h) provided potential
anti-photo-ageing activity in HaCaT keratinocytes under UVB
radiation. This activity was possibly elicited through

downregulation of UVB-induced intracellular ROS formation,
production and secretion of pro-matrix metalloproteinase-2 and
-9, and upregulation of total GPx levels and SOD activity (Shin
et al., 2018). In addition, Oh et al. (2016) found that Re (5, 12 and
30 μM for 1 h) improved skin barrier functions, shown by
enhanced cornified cell envelope formation, filaggrin levels and
caspase-14 activity in HaCaT keratinocytes. Furthermore, Re (5,
12 and 30 μM for 24 h) demonstrated anti-oxidative activity
through the upregulation of anti-oxidant components
including total GPx and SOD under normal conditions. Re
also prevented oxidative stress in HaCaT keratinocytes (Lim
et al., 2016).

Anti-Oxidative Effects
Re (0.05, 0.1 and 0.5 mg/ml for 2 h) protected chick
cardiomyocytes from exogenous H2O2- and endogenous
antimycin A-induced oxidative stress. The underlying
mechanism for this protective effect involved scavenging of
H2O2 and hydroxyl radicals. However, in an electron spin
resonance spectroscopy study, Re did not reduce the 1,1-
diphenyl-2 picrylhydrazyl-induced electron spin resonance
signals for xanthine oxidase or H2O2 (Xie et al., 2006).
Therefore, direct scavenging of free radicals was impossible
through a single anti-oxidation pathway in vivo. The anti-
oxidative effects of Re were achieved through activation or
enhancement of the intracellular anti-oxidant system.

Regulating Cholesterol Metabolism
Kawase et al. (2014) reported that Re (0.1–1 μM for 24 h) exerted a
positive effect on cholesterol metabolism, increasing the expression
level of sterol 12a-hydroxylase mRNA in rat primary hepatocytes,
thereby facilitating cholic acid generation within bile acids.

Alleviating Allergic Response
Jang et al. (2012) reported that Re (25 mg/kg, p.o. for 6 h) potently
alleviated scratching behavior in mice with histamine-induced
itch, by inhibiting the activation of transcription factors (NF-κB
and c-jun), as well as the expression of IL-4 and TNF-α.

Increasing Sperm Motility
Zhang et al. (2006) demonstrated that Re (100 μM for 2 h)
improved sperm motility from fertile and asthenozoospermic
infertile human subjects by enhancing NOS activity to promote
endogenous NO generation.

Restoring Erectile Dysfunction
The Re-enriched fraction (containing 109.0 mg/g of Re,
54.5 mg/kg, i.g. for 5 weeks) of P. ginseng berries effectively
restored ethanol-induced erectile dysfunction in male rats
through the NO-cGMP pathway (Pyo et al., 2016).

Promoting Cyclic Growth of Hair Follicles
(Li Z et al., 2016) reported that topical treatment (5 mg/day, topical
application on the back for 9 weeks) with Remarkedly triggered hair
shaft growth through selective suppression of hair growth phase
transition-associated signaling pathways and TGF-β signaling
cascades in nude mice.
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Reducing Gastrointestinal Motility
Dysfunction
Re-mediated bidirectional regulation is dependent on the jejunal
contractile status and requires the co-existence of the enteric
nervous system, Ca2+, and Cajal interstitial cells. The stimulatory
role of Re (10 μM) on jejunal contractility of rat isolated jejunal
segments was associated with cholinergic stimulation, whereas its
inhibitory role was associated with adrenergic activation and the
NO-relaxing mechanism (Xiong et al., 2014). In addition, Re
(40 μΜ) inhibited pacemaker potentials through ATP-sensitive
K+ channels and the cGMP/NO-dependent pathway in cultured
Cajal interstitial cells obtained from the small intestine of mice
(Hong et al., 2015). Re (20, 100 mg/kg, i.g. for 30 min)
ameliorated acute gastric mucosal lesions induced by
compound 48/80, possibly by triggering mucus secretion and
decreasing neutrophil infiltration, inflammation, and oxidative
stress in gastric mucosa (Lee et al., 2014).

TOXICOLOGY OF RE

An acute toxicity study in mice treated with P. ginseng extract found
LD50 values of 10–30 g/kg (Brekhman and Dardymov, 1969).
Chronic treatment of mice and rats with P. ginseng extract
(5 g/kg, p.o. for 2 years) produced almost no toxic effects, and the
appearance, behavior, weight, and various physiological/histological
indexes were within reasonable ranges (National Toxicology
Program, 2011). Likewise, (Lu et al., 2012) found that the LD50

of Re was 5.0 g/kg in mice. In addition, in a chronic toxicity study,
male and female SD rats treated with 375mg/kg/day (orally) Re for
26 weeks, well below the typically non-toxic range (5–15 g/kg) of
chemical substances (Hayes and Loomis, 1996), did not exhibit
death, adverse reactions, and organ abnormalities (Lu et al., 2012).

Reproductive and Developmental
Toxicology
In vitro rat embryo cultures found that 50 μg/ml Re induced
severe developmental delay and significantly reduced the
morphological scores of all organ systems, but was not
teratogenic to specific organ systems (Chan et al., 2004).
However, in vitro embryotoxicity may not reflect the human
situation, and limited information about the blood concentration
of Re in humans was available from the medical literature.
Further investigations are necessary to evaluate the
pharmacokinetics and placental transfer of ginsenosides in
humans.

Carcinogenicity
No chronic carcinogenicity studies of Re in experimental animals
have been found in the literature.

Adverse Effects
Several studies reported that some patients had vaginal bleeding
and breast pain owing to the estrogen-like effects of P. ginseng
(Palmer et al., 1978; Greenspan, 1983; Kabalak et al., 2004). The
Re compound has an estrogen-like effect (Bae et al., 2005), and
may have similar side effects, but these have not been reported in
the literature.

CONCLUSIONS

Previous studies have shown that Re is abundant in the leaves,
berries, flower buds, and roots of P. ginseng plants (Gao et al., 2018),
in which the Re compound accounts for more than 30% of the total
ginsenoside content (Wang et al., 2008a). Its pharmaco-economical
merits support its use in natural supplements or drug formulations.

FIGURE 1 | Schematic diagram depicting the beneficial effects of Re.
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Although Re is a relatively abundant ginsenoside with well-known
pharmacological effects, to date, little is known about its
pharmacokinetic profiles. Several studies have shown that because
of its low bioavailability after oral absorption, its therapeutic effect is
poor. Therefore, in-depth pharmacokinetic studies of Re should be
performed to examine the presence of active metabolites. The
identification of these metabolites may provide pivotal
information regarding the bioactive forms of the ginsenoside Re
and its pharmacological mechanisms. The potential therapeutic
effect of Re may be improved by modifying the mode of
administration or chemical structure. Structural changes in
ginsenoside after heat processing may be strongly related to
improvement in biological activity. After heat processing, Re
demonstrated improved therapeutic efficacy, including anti-
oxidant and anti-cancer activities (Lee B et al., 2012). Therefore,
this area could be a new focus for future research.

Studies have shown that the Re compound has therapeutic
efficacy on DM, neurological disorders, inflammatory responses,
CVDand cancer.Moreover,multiple studies had shown a role for Re
in treating hyperglycemia and hyperlipidemia in models of diabetes.
Literature searches indicated that Re-induced improvement in the
above-mentioned conditions were associated with anti-oxidant and
anti-inflammatory properties, part of which were elicited through
suppression of the p38-MAPK-mediated signaling pathway or
activation of the PI3K/Akt and NF-κB signaling pathways. The
anti-oxidant effect of Re was achieved by activating or enhancing the
intracellular anti-oxidant system.

In conclusion, the beneficial properties of Re for DM, nervous
system diseases, inflammatory responses, CVD, cancers, viral
infections, oxidative stress, cholesterol metabolism, allergic and
immune responses (Figure 1) indicate its potential as a novel
treatment agent, but these properties need to be verified by future
clinical experiments.
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GLOSSARY

4-HNE 4-hydroxynonenal

6-HODA 6-hydroxydopamine

Aβ amyloid β

ACh acetylcholine

AChE acetylcholinesterase

AD alzheimer disease

ALP alkalin phosphatase

AM alloxan monohydrate

AMPK AMP-activated protein kinase

ASK1 apoptosis signal-regulated kinase-1

ATA antimycin A

AUC area under curve

BDNF brain-derived neurotrophic factor

BACE1 Aβ-site precursor protein-cleaving enzyme 1

bFGF basic fibroblast growth factor

BG blood glucose

BMNC bone marrow nucleated cell

BNP brain natriuretic peptide

BUN blood urea nitrogen

BW body weight

[Ca2+]i intracellular Ca2+ homeostasis

cGMP cyclic guanosine monophosphate

c-FOS-IR c-Fos-immunoreactivity

CAT catalase

ChAT choline acetyltransferase

colla1 type 1 collagen

CRE creatinine

CRS chronic restraint stress

CTX cyclophosphamide

CVDs cardiovascular diseases

CYP8B1 sterol 12a-hydroxylase

CP constipation-prominent

Cmax peak concentration

CL clearance

SFI Shenfu Injection

DA dopamine

DBP diastolic blood pressure

DII dexamethasone + 3-isobutyl-1-methylxanthine + insulin

DM diabetes mellitus

DPPH 1,1-diphenyl-2 picrylhydrazyl

DP diarrhea-prominent

EDV end-diastolic volume

ERs oestrogen receptors

ERK extracellular signal-regulated kinase

ESV end-systolic volume

f fraction excreted unchanged in the urine

FAS fatty acid synthase

FBG fasting blood glucose

GD glucose deprivation

GOT glutamic oxaloacetic transaminase

GPL Glucose + sodium pyruvate + sodium lactate

GPT glutamic pyruvic transaminase

GSH glutathione

GT glucose tolerance

GLUT4 glucose transporter 4

GPx glutathione peroxidase

GGSQ Gegen-Sanqi

HDL-C high density lipoprotein cholesterol

HFD high-fat diet

HGB hemoglobin

HIF-1α hypoxia-inducible factor-1-alpha

HO-1 heme oxygenase-1

HSHF high-sucrose-HFD

HUVEC human umbilical vein endothelial cell

ICa,L L-type Ca2+ current

iNOS nitric oxide synthase

JNK c-Jun N-terminal kinase

ICAM-1 intercellular adhesion molecule-1

IFN-γ interferon-γ

IL-1β interleukin-1β

IL-6 interleukin-6

Lp-α lipoprotein α

IPGTT intraperitoneal glucose tolerance test

I/R ischamia/reperfusion

IR insulin resistance

IRS-1 insulin receptor substrate

LRPPRC leucine-rich pentatricopeptide repeat-containing

IS insulin sensitivity

IVS interventricular septum

IVSTd IVS end-diastolic thickness

ICP intracavernous pressure

LADCA left anterior descending coronary artery

LC3B-2 microtubule-associated protein 1A/1B-light chain 3

LDH lactate dehydrogenase

LDL-C low density lipoprotein cholesterol
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LKB1 liver kinase B1

LPC lysophosphatidylcholine

LPS lipopolysaccharide

LV left ventricular

LVD LV dimension

LVDd LV end-diastolic dimension

ILVDs LV endsystolic dimension

LVPWTs LV posteriorend-systolic thickness

LVPWTd LV posteriorend-diastolic thickness

LVEDP Left ventricular end diastolic pressure

MA methamphetamine

MAPK mitogen-activated protein kinase

MCAO middle cerebral artery occlusion

MDA malondialdehyde

MI myocardial infraction

MMP metalloproteinase

MPO myeloperoxidase

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MRPs maillard reaction products

MLCK myosin light chain kinase

MRT mean residence time

NF-kB nuclear factor-kB

NLRP3 NOD-like receptor protein 3

NK1 neurokinin1

NO nitric oxide

Nrf2 nuclear factor erythroid-2 associated factor 2

ox-LDL oxidized low density lipoprotein

OVA ovalbumin

QXSBP QixueShuang bu Prescription

p75 nerve growth factor receptor

PCNA proliferating cell nuclear antigen

PCP phencyclidine

PD parkinson disease

PEPCK phosphoenolpyruvate carboxykinase

PG peptidoglycan

PGE2 prostaglandin E2

PHOX NADPH oxidase

PI3K phosphoinositide3-kinase

PMN polymorphonuclear leukocyte

PKCδ protein kinase Cδ

PPARγ peroxisome proliferator-activated receptor-γ

PSD95 postsynaptic density 95

RC renal clearance

RANKL receptor activator of NF-κB ligand

RANTES T-cell-expressed and secreted

RBCs red blood cells

RIS repeated immobilization stress

RV rabies virus vaccine

SCD1 stearoyl-CoA desaturase-1

SHP small heterodimer partner

SNC sciatic nerve crush injury

SOD superoxide dismutase

SREBP sterol regulatory element-binding protein

STZ streptozotocin

SYP synaptophysin

T1DM type 1 diabetes

T2DM type 2 diabetes

tBHP tertbutyl hydroperoxide

TC total cholesterol

TG triglyceride

TH tyrosine hydroxylase

TLR4 toll-like receptor 4

TMT trimethyltin

TNBS 2,4,6-trinitrobenzene sulfonic acid

TNF-α tumour nuclear factor-α

TPA 12-O-tetradecanoylphorbol-13-acetate

TPO thrombopoietin

TRAP tartrate-resistant acid phosphatase

TGF-β transforming growth factor-β

TRARS thiobarbituric acid reactive substances

T1/2 elimination half-life

Tmax time for maximum concentration

VAchT vesicular acetylcholine transporter

VEGF vascular endothelial growth factor

VHL von Hippel-Lindau

VSTs IVS end-systolic thickness

Vd volume of distribution

WBC white blood cell

XO xanthine oxidase

XSTDT Xue saitong dispersible table
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