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Background: The systems pharmacology approach is a target prediction model for
traditional Chinese medicine and has been used increasingly in recent years. However, the
accuracy of this model to other prediction models is yet to be established.

Objective: To compare the systems pharmacology modelwithexperimental gene chip
technology by using these models to predict targets of a traditional Chinese medicine
formulain the treatment of primary liver cancer.

Methods: Systems pharmacology and gene chip target predictions were performed for
the traditional Chinese medicine formula ZhenzhuXiaojiTang (ZZXJT). A third square
alignment was performed with molecular docking.

Results: Identification of systems pharmacology accounted for 17% of targets, whilegene
chip-predicted outcomes accounted for 19%.Molecular docking showed that the top ten
targets (excludingcommon targets) of the system pharmacology model had better binding
free energies than the gene chip model using twocommon targets as a benchmark. For
both models, the core drugs predictions were more consistent than the core small
molecules predictions.

Conclusion:In this study, the identified targets of systems pharmacology weredissimilar
to those identified by gene chip technology; whereas the core drug and small molecule
predictions were similar.

Keywords: ZZXJT, systems pharmacology, gene chip, molecular docking, liver cancer, drug target prediction
comparing TCM target prediction models 2

1 INTRODUCTION

Traditional Chinese medicine (TCM) has a long history of clinical application in China andforms a
complete and independent system of diagnosis and treatment. TCM is efficaciousin the treatment of
many diseases, including cancer (Fang et al., 2017). In the treatment of cancer, TCMnot only shows
great potential as a means of medical intervention (Yan et al., 2017) but may also be modified
according to patient comorbidities. In TCM, sovereign drugs (drugs used to treat the primary
disease) may be used together with adjuvant drugs (drugsused to improve the efficacy of the
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sovereign drugor totreat other symptoms), thus alleviating pain
and improving quality of life. TCM usually follows the principle
of multiple-herbformulasduring clinical application. In the
treatment of a single disease, the core combination of drugs is
difficult to change; however, adjuvant drugs may be added to
increasethe efficacy of the drug combination or totreat secondary
diseases. At Heilongjiang University of Chinese Medicine, our
experimental group graduallyformed a unique drug regimen for
the treatment of primary liver cancer, by diagnosing and treating
primary liver cancer with a large collection of herbs, and then
observing the clinical efficacy of these herbs in patients. Using this
clinical experience, we finally identified five crucial herbs,
includingLigustrum (NZZ), Curcumaerhizoma (EZ), Prunella
vulgaris (XKC), Hedyotisdiffusa (BH), and Glycyrrhizae radix
(GC). According to theory, TCM formulasconsist of sovereign,
adjuvant, assistant, and guide drugs. We applied this principle
and assignedNZZ and EZasthe sovereign drugs, XKC and BH
asthe adjuvant drugs, and GC as the assistant and guide drug.
These five drugs made upthe formula for treating primary liver
cancer and we named itZhenzhuXiaojiTang (ZZXJT).We initially
administered ZZXJT toa murineH22 hepatocarcinomamodel.
TheZZXJT group showedH22 cell degeneration and necrosis
and the number of blood vessels was reduced. Additionally,
many autophagosomes in H22 cells were observed by
transmission electron microscopy. Thesefindings revealed that
ZZXJT may induce programmed H22 cell death and inhibit
primary liver cancer development (Sun et al., 2017).

TCM uses a multi-component and multi-target approach (Pei
et al., 2013), which can be both advantageous and
disadvantageous in modern medical research. Advantages
includesingle drugsexhibiting multiple mechanisms (Miao
et al., 2020; El-Zayat et al., 2021), flexibility of multi-drug
treatment (Ren et al., 2020; Zhang et al., 2021), and pairing of
drugsto improve drug efficacy (Luo C. H. et al., 2020). However,
the disadvantages are consequences of these advantages. A single
drug comprisesnumerous compounds which in turn comprise
different small molecules that vary in their pharmacological
activity; hence, targets are difficult to identify in experimental
studies. For example, HoupuDahuang decoction, HoupuSanwu
decoction, and Xiaochengqi decoction include the
herbsMangnolia officinalis, Rheum palmatum, and Citrus
aurantium but the pharmacological effects and indications of
the three formulas differ. HoupuDahuang decoction is mainly
used to treat cough and exudative pleurisy, while the
HoupuSanwu decoction is primarily used to treat paralytic
ileus and Xiao Chengqi decoction is mainly used to treat
adherent ileus, chronic gastritis, and intestinal paralysis (Kou
et al., 2004). It is therefore challenging to regulate results and
form a research strategy when core combinations of drugs are
studied. Accurate TCM target prediction is crucial due to the
rapid development of TCM ingredients in the post-genomic era.
The systems pharmacology approach and gene chip technology
provide effective target prediction methods for TCM laboratory
research, thereby guiding research direction. These prediction
models play important roles in drug development and research
(Cooke et al., 2009; Boezio et al., 2017; Luo T. T. et al., 2020), as
indicated by the increased number of studies in recent years on

systems pharmacology particularly (Jiao et al., 2021). However,
since the methods and principles of the two prediction models are
very different, predicted results heavily influence the research
direction.

Systems pharmacologymakes use ofa data platformthat
predicts drug-target interactions based on network analyses
from previously published research data (Berger et al., 2010).
In gene chip technology, a large number of known gene sequences
are immobilised and hybridised onto a glass chip, allowing for
large-scale prediction (Yanagawa et al., 2005). Molecular docking
is used as an auxiliary model for systems pharmacology and gene
chip technology. Docking data corroborate the results of the
prediction models to check reliability (Li et al., 2021). Although
systems pharmacology is cost-effective and saves time compared
with the experimental high-throughput screening used in gene
chip technology (Yuan et al., 2017), the differences in predictions
between the two models have rarely been reported, especially in
the research of TCM formulas. This study, therefore, aims toguide
the future selection of methods for TCM target prediction.

2 MATERIALS AND METHODS

2.1 Systems Pharmacology Model of ZZXJT
2.1.1 Screening of Active Ingredients and Related
Targets ofZZXJT
We searched for the active ingredients of thefive herbs, EZ, NZZ,
BH, XKC, and GConthe traditional Chinesemedicine systems
pharmacology database andanalysis platform (TCMSP) (Ru et al.,
2014). We screenedthese active ingredients by specifyingtwo
ADME-related properties as the screening criteria, namely,
oral bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 0.18.
Active ingredients without targets were removed and we
integratedthe identified active ingredient targets. After
determining the target protein information, the collected target
information was unified in UniProt protein database1, to
normalise it (UniProt Consortium, 2021). We then
constructed the “drug active ingredient-target” network.

2.1.2 Screening for Liver Cancer Targets
Using “liver cancer” as the keyword, potential liver cancer-related
targets were mined from the OMIM database2 and GeneCards
database3 (downloaded December 2020). Liver cancer-related
genesidentified by the GeneCards database were filtered
andonly results with relevance score ≥15 wereretained. Data
collected from the two databases weremerged and denoted as
Dataset 1.

2.1.3 Construction and Analysis of “Drug Active
Ingredient-Target” Network
To further clarify the mechanism and relevance of the interaction
between ZZXJT and hepatocellular carcinoma (HCC),

1https://www.uniprot.org
2http://www.omim.org
3https://www.genecards.org
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intersecting targets between ZZXJT (drug), and HCC (disease)
were obtained by drawing Venn diagrams4. These intersecting
targets were submitted to the STRING database5 (Szklarczyk
et al., 2019) and a protein-protein interaction (PPI) network
was constructed by setting “Organism” to “Homo sapiens” and
confidence level to 0.4. This network was imported to Cytoscape
software (version 3.70) and core potential proteins were analysed
by adjustingvisualisation parameters according to the “combined
degree” values of individual nodes. The functions of the target
proteins involved in the biological process were described.

2.1.4 Gene Enrichment Analysis
We selected Metascape database6 (Tripathi et al., 2015; Zhou
et al., 2019) as the gene-list analysis portal because it is updated
regularly and is data comprehensive. The relevant ZZXJTand
HCC targets were entered into the Metascape database and
screening criteria were set as follows: statistical difference at
p < 0.01 and mode of analysisas custom analysis. The
following analyses were then carried out: Kyoto Encyclopaedia
of Genes and Genomes (KEGG) pathway analysis and Gene
Ontology (GO). GO has three subdivisions that were
conducted, namely, molecularfunction (MF), biologicalprocess
(BP), and cellularcomponent (CC). KEGG pathway analysis
yielded the top 20 results and BP, CC, and MF yielded the top
10 results. Results were displayed in bubble plots, created using
ImageGP7.

2.2 Gene Chip Model of ZZXJT
2.2.1 Cell Culture
The cells were routinely cultured in 25 cm2 culture flask in
DMEM medium (Boster, #PYG0103) supplemented with 5%
fetal bovine serum and 1% antibiotics (penicillin/
streptomycin). When the cells placed under the culture flask
about 70–80%, the original culture medium was discarded, and
the culture flask was rinse with PBS gently. Then trypsinization
was added in the flask. When the intercellular space of cells
enlarged, fresh culture medium was put in the flask to finish
trypsin digestion. After centrifugation, the culture medium was
extracted carefully on the cell upper layer, and then the cells were
made a single cell suspension by the fresh culture medium. The
cells were cultured in a constant temperature (37°C) with a
volume fraction 5% CO2.

2.2.2 RNA Extraction and RNA Quality Control
Six 25 cm2 cell culture flasks of SMMC-7721 cells were cultured
together for 24 h. Three flasks were used as the control group
(sample numbersA12854, A12855, and A12856) and the
remainder as the drug group, in which 20% ZZXJT-containing
serum was added to each flask (sample numbersA12857, A12858,
and A12859). RNA was extracted from samples using the TRIzol
reagent (Invitrogen, United States), according to the

manufacturer’s instructions. We measured the A260/A280
ratio using a NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, United States). The required reagents were
then left at room temperature for 30 minand the sample and
RNA ladder were placed on ice. A 550 µl RNA 6000 Nano gel
matrix (Agilent Technologies, United States) was placed in a
centrifuge tube and centrifuged at 1500 g for 10 min at room
temperature. We then added 1 µl of dye to 65 µl of the gel, shook
it well, and centrifugedit at 13000 g for 10 min at room
temperature to make the gel-dye mix. Next, we added 9 µl of
the gel-dye mix to the GN-genechipClariom™ S Array, human
gene chip (catalogue number 902927, Affymetrix, United States)
by pressingthe gel-dye mix into the gene chip capillary with a
piston. 5 µl of RNA 6000 Nano maker (Agilent Technologies,
United States)was added to the sample well and ladder well.
Finally, we added 1 µl of denatured ladder into the Agilent 2,100
instrument (Agilent Technologies, United States) to assess the
RNA integrity number (RIN) and the 28S/18S ratio. Data were
analysed using the Agilent 2,100 Expert software. Quality control
standards were as follows: A260/A280 ratio of 1.7–2.2, RIN≥7.0,
and 28S/18S > 0.7.

2.2.3 Gene Chip Preparation and Hybridization
The first and second strands of the cDNA were synthesised.
Labelling cRNA was synthesised by in vitro transcription. The
synthesised cRNAs were then purified and quantified. Single-
stranded cDNA was synthesised in the second cycle. cRNA was
hydrolyzed by RNase H and single-stranded cDNA remained.
After the second cycle of single-stranded cDNA was purified, its
concentration was measured. The purified ss-cDNA was
transformed into dUTP residual fragments and broken DNA
strands, which were covalently linked to biotin, Affymetrix
proprietary DNA labelling reagent, to complete cDNA
fragmentation and labelling, using. The gene chip was
removed and hybridisation and washing were performed.

2.2.4 Construction and Analysis of the “Drug Active
Ingredient-Target” Network
The obtained gene chip microarray data were combined with
Dataset 1, and a Venn diagram was drawn to determine the
intersectinggene chip-predicted targets and HCC targets. The
intersecting targets were submitted to the STRING database and
the PPI network model was constructed by setting“Organism” to
“Homo sapiens” and confidence level to 0.4. This network was
imported to Cytoscape software (version 3.70) and core potential
proteins were analysed by adjusting visualisation parameters
according to the “Combined degree” values of individual
nodes. The functions of the target proteins involved in the
biological process were described.

2.2.5 Gene Enrichment Analysis
The gene chip-predicted targets of ZZXJT and relevant targets of
HCC were entered into the Metascape database. Screening
criteria were set as follows: statistical difference as p < 0.01
and the analysis mode as custom analysis. KEGG pathway
analysis and GO analysis at MF, BP, and CC levels, among
others, were then performed.

4http://bioinformatics.psb.ugent.be/webtools/Venn/
5https://string-db.org
6http://metascape.org
7http://www.ehbio.com/
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2.2.6 qRT-PCR Assay
The total RNA of drug group and control group was
extracted with Trizol (Invitrogen, United States). Use
Prime Script first Stand cDNA Synthesis Kit to reverse
transcribe RNA into cDNA according to the instructions.
Adopt SYBR pre-mixed ExTaq kit (Takara, Dalian, China),
PCR amplification was conducted at 40 cycles of
denaturation at 95°C for 30s, after pre-denaturation
treatment at 95°C for 5 min, annealing treatment 58°C
for 30 s and extension at 72°C for 30 s. The temperature
at the end was 4°C. GAPDH was used as the internal
reference gene to detect the relative expression levels of
AKT, FOXO1, FOXO3, and FOXO4. The primers of these
genes were displayed in Table 1. Each sample was repeated
3 times to ensure the accuracy of the data. The relative
expression levels of these genes were calculated in
accordance with 2−ΔΔct.

2.3 Identification Treatment of Two Models
The resulting sets of data from Section 2.1.3 and Section
2.2.3 were combined and a Venn diagram was drawn to
determine intersection of predicted targets. The intersecting
data were imported into the STRING database and the PPI
network model was constructed by setting “Organism” to
“Homo sapiens” and confidence level to 0.4. The resulting
network was imported into Cytoscapesoftware (version 3.70)
for analysis. The free proteins were identified by screening
core potential proteins by adjusting the visualisation
parameters according to the “Combined degree” values of
individual nodes. We then performed KEGG pathway
analysis using the Metascape database.

2.4 Molecular Docking Validation and
Comparison
2.4.1 Main Active Ingredients of ZZXJT
According to the TCM theory of sovereignand adjuvant drugs,
the active ingredients of sovereigndrugs in Table 2 and the
active ingredients shared by Ligustrum (NZZ)
andCurcumaerhizoma (EZ) were integrated. The mol2 file
corresponding to these active ingredients was downloaded
from the TCMSP database for later use.

2.4.2 Selection of Docking Targets
We downloaded the protein crystal structures corresponding to
the common target genes of the two models from the RCSB PDB
database8, using the search criteria “Homo sapiens” and
“protein”Thetarget gene proteins were then ranked by
“Combined degree” values of the two sets of models. Crystal
structures of the top tenwere selected (excluding the common
target proteins) and the PDB numbers were recorded.

2.4.3 Molecular Docking Software and Protocol
AutoDock Vina (version 1.5.6) was the software used for
molecular docking (Trott and Olson, 2010). According to
the AutoDock report, 78% of molecular target docking
results had aroot mean square deviation (RMSD) < 2.
RMSD <2 was considered feasible, therefore, molecular
docking predictions conducted using AutoDock could be
considered accurate. The collected small molecules and
target proteins of ZZXJT were prepared by removing water
molecules, adding hydrogen atoms, and setting semiflexible
docking and blind docking methods as parameters. The
remaining parameters were set to default values. Given that
this study already covered experimental microarray
prediction, molecular docking was used as a third-party
reference model. The possibility of interfering conditions
such as hydrogen bonds was therefore ignored andonly
maximum binding energy was taken as a reference. The free
energy results of the system pharmacology model, the gene
chip model, and the common target gene proteins were then
statistically aligned using SPSS 26.0 and the independent
samples t-test method was used.

3 RESULTS

3.1 Systems Pharmacology Model of ZZXJT
3.1.1 Identified Active Ingredients and Targets of
ZZXJT
A total of 126 chemical components were initially extracted
from ZZXJT and 103 active components were identified after
ADME screening and normalisation of the UniProt protein
database, including poriferosterol, glycyrol, and hederagenin.
As shown in Table 2, these small molecules, numbered A1
(BH, GC, XKC, and NZZ), A2 (BH, XKC), A3 (BH, XKC, and
NZZ), B1 (GC, XKC, and NZZ), and C1 (XKC,NZZ) are
common to many drugs. After merging and removing
duplicates, the number of ingredient targets was 235.
Figure 1 shows the “drug active ingredient-target” network
constructed usingCytoscape software.

3.1.2 Access to Liver-Cancer-Related Targets
HCC-associated targets from the OMIM database and
GeneCards database were merged, resulting in a total of 1,067
targets (after duplicates were removed).

TABLE 1 | Primer sequences of qRT-PCR.

Genes Sequences

GAPDH F: 5′-GGAGCGAGATCCCTCCAAAAT-3′
R:5′-GGCTGTTGTCATACTTCTCATGG-3′

AKT F: 5′-GTCATCGAACGCACCTTCCAT-3′
R: 5′-AGCTTCAGGTACTCAAACTCGT-3′

FOXO1 F: 5′-AAGGATAAGGGTGACAGCAACAG-3′
R: 5′-TTGCTGTGTAGGGACAGATTATGAC-3′

FOXO3 F: 5′-CTACGAGTGGATGGTGCGTT-3′
R: 5′-TGCCAGTTCCCTCATTCTGG-3′

FOXO4 F: 5′-CACTGTGCCAATTAGGGGGT-3′
R: 5′-CTCCCAAAGGCAGGGGTAAG-3′

8http://www.rcsb.org/
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TABLE 2 | Main active ingredients of ZZXJT.

Drug No MOL ID Main active ingredients DL OB%

BH1 MOL001659 Poriferasterol 0.76 43.8
BH2 MOL001670 2-methoxy-3-methyl-9,10-anthraquinone 0.21 37.8
EZ1 MOL000296 hederagenin 0.75 36.9
GC1 MOL001484 Inermine 0.54 75.2
GC2 MOL001792 DFV 0.18 32.8
GC3 MOL002311 Glycyrol 0.67 90.8
GC4 MOL000239 Jaranol 0.29 50.8
GC5 MOL002565 Medicarpin 0.34 49.2
GC6 MOL000354 isorhamnetin 0.31 49.6
GC7 MOL000359 sitosterol 0.75 36.9
GC8 MOL003656 Lupiwighteone 0.37 51.6
GC9 MOL003896 7-Methoxy-2-methyl isoflavone 0.2 42.6
GC10 MOL000392 formononetin 0.21 69.7
GC11 MOL000417 Calycosin 0.24 47.8
GC13 MOL004328 naringenin 0.21 59.3
GC14 MOL004805 (2S)-2-[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]-8,8-dimethyl-2,3-dihydropyrano [2,3-f]chromen-4-one 0.72 31.8
GC15 MOL004806 euchrenone 0.57 30.3
GC16 MOL004808 glyasperin B 0.44 65.2
GC17 MOL004810 glyasperin F 0.54 75.8
GC18 MOL004811 Glyasperin C 0.4 45.6
GC19 MOL004814 Isotrifoliol 0.42 31.9
GC20 MOL004815 (E)-1-(2,4-dihydroxyphenyl)-3-(2,2-dimethylchromen-6-yl)prop-2-en-1-one 0.35 39.6
GC21 MOL004820 kanzonols W 0.52 50.5
GC22 MOL004824 (2S)-6-(2,4-dihydroxyphenyl)-2-(2-hydroxypropan-2-yl)-4-methoxy-2,3-dihydrofuro [3,2-g]chromen-7-one 0.63 60.3
GC23 MOL004827 Semilicoisoflavone B 0.55 48.8
GC24 MOL004828 Glepidotin A 0.35 44.7
GC25 MOL004829 Glepidotin B 0.34 64.5
GC26 MOL004833 Phaseolinisoflavan 0.45 32
GC27 MOL004835 Glypallichalcone 0.19 61.6
GC28 MOL004838 8-(6-hydroxy-2-benzofuranyl)-2,2-dimethyl-5-chromenol 0.38 58.4
GC29 MOL004841 Licochalcone B 0.19 76.8
GC30 MOL004848 licochalcone G 0.32 49.3
GC31 MOL004849 3-(2,4-dihydroxyphenyl)-8-(1,1-dimethylprop-2-enyl)-7-hydroxy-5-methoxy-coumarin 0.43 59.6
GC32 MOL004855 Licoricone 0.47 63.6
GC33 MOL004856 Gancaonin A 0.4 51.1
GC34 MOL004857 Gancaonin B 0.45 48.8
GC35 MOL004863 3-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-(3-methylbut-2-enyl)chromone 0.41 66.4
GC36 MOL004864 5,7-dihydroxy-3-(4-methoxyphenyl)-8-(3-methylbut-2-enyl)chromone 0.41 30.5
GC37 MOL004866 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-(3-methylbut-2-enyl)chromone 0.41 44.2
GC38 MOL004879 Glycyrin 0.47 52.6
GC39 MOL004882 Licocoumarone 0.36 33.2
GC40 MOL004883 Licoisoflavone 0.42 41.6
GC41 MOL004884 Licoisoflavone B 0.55 38.9
GC42 MOL004885 licoisoflavanone 0.54 52.5
GC43 MOL004891 shinpterocarpin 0.73 80.3
GC44 MOL004898 (E)-3-[3,4-dihydroxy-5-(3-methylbut-2-enyl)phenyl]-1-(2,4-dihydroxyphenyl)prop-2-en-1-one 0.31 46.3
GC45 MOL004903 liquiritin 0.74 65.7
GC46 MOL004904 licopyranocoumarin 0.65 80.4
GC47 MOL004907 Glyzaglabrin 0.35 61.1
GC48 MOL004908 Glabridin 0.47 53.3
GC49 MOL004910 Glabranin 0.31 52.9
GC50 MOL004911 Glabrene 0.44 46.3
GC51 MOL004912 Glabrone 0.5 52.5
GC52 MOL004913 1,3-dihydroxy-9-methoxy-6-benzofurano [3,2-c]chromenone 0.43 48.1
GC53 MOL004914 1,3-dihydroxy-8,9-dimethoxy-6-benzofurano [3,2-c]chromenone 0.53 62.9
GC54 MOL004915 Eurycarpin A 0.37 43.3
GC55 MOL004924 (-)-Medicocarpin 0.95 41
GC56 MOL004935 Sigmoidin-B 0.41 34.9
GC57 MOL004941 (2R)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4-one 0.18 71.1
GC58 MOL004945 (2S)-7-hydroxy-2-(4-hydroxyphenyl)-8-(3-methylbut-2-enyl)chroman-4-one 0.32 36.6
GC59 MOL004948 Isoglycyrol 0.84 44.7
GC60 MOL004949 Isolicoflavonol 0.42 45.2
GC61 MOL004957 HMO 0.21 38.4
GC62 MOL004959 1-Methoxyphaseollidin 0.64 70

(Continued on following page)
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3.1.3 Construction of the ZZXJT-Liver Cancer Target
Interaction PPI Network
The PPI network from the systems pharmacology modelhas a
total of 145 nodes (Figure 2A), which represent predicted targets
and 3,167 edges which represent protein-protein interaction
relationships (Figure 2B). Darker nodes and larger circles
represent greater degree of connectivity. Visualisation revealed
that five targets, namely, phosphorylated protein kinase (AKT1),
tumour suppressor gene (TP53), interleukin (IL)—6, mitogen
activated protein kinase 3 (MAPK3), and vascular endothelial
growth factor A (VEGFA) had the highest connectivity scores.
This indicates that these five targets were most strongly associated
with this model and can be considered as the core five targets of
ZZXJTin HCC in the systems pharmacology model.

3.1.4 Enrichment Analysis of Target Pathways and
Functions
The enrichment analysis of ZZXJT in relation to HCC targets
was conducted using the Metascape data platform, which

resulted in 462 KEGG pathways, 755 GO molecular
functions, 5670 GO biological processes, and 426 GO
cellular components. Only the top 20 results from each
group were considered. In the KEGG pathway analysis
(p < 0.01), pathways related to HCC were PI3K-AKT
signalling pathway, apoptosis, and transcriptional
misregulation in cancer. Figures 2C,D show the
distribution and significance of the proteins involved in
each pathway. The exported results for BP, CC, and MF
are presented in Figure 2E. BP is mainly involved in the
response to toxic substances, response to inorganic
substances, cellular response to lipids, response to
lipopolysaccharide, and apoptotic signalling pathways. CC
is mainly involvedin membrane rafts, vesicle lumens,
receptor complexes, protein kinase complexes, and RNA
polymerase II transcription factor complexes. MF is
mainly involved in transcription factor binding, protein
kinase binding, nuclear receptor activity, protein kinase
activity, and protein homodimerization activity.

TABLE 2 | (Continued) Main active ingredients of ZZXJT.

Drug No MOL ID Main active ingredients DL OB%

GC63 MOL004961 Quercetin der 0.33 46.5
GC64 MOL004966 3′-Hydroxy-4′-O-Methylglabridin 0.57 43.7
GC65 MOL000497 licochalcone a 0.29 40.8
GC66 MOL004974 3′-Methoxyglabridin 0.57 46.2
GC67 MOL004978 2-[(3R)-8,8-dimethyl-3,4-dihydro-2H-pyrano [6,5-f]chromen-3-yl]-5-methoxyphenol 0.52 36.2
GC68 MOL004980 Inflacoumarin A 0.33 39.7
GC69 MOL004985 icos-5-enoic acid 0.2 30.7
GC70 MOL004988 Kanzonol F 0.89 32.5
GC71 MOL004989 6-prenylated eriodictyol 0.41 39.2
GC72 MOL004990 7,2′,4′-trihydroxy-5-methoxy-3-arylcoumarin 0.27 83.7
GC73 MOL004991 7-Acetoxy-2-methylisoflavone 0.26 38.9
GC74 MOL004993 8-prenylated eriodictyol 0.4 53.8
GC75 MOL004996 gadelaidic acid 0.2 30.7
GC76 MOL000500 Vestitol 0.21 74.7
GC77 MOL005000 Gancaonin G 0.39 60.4
GC78 MOL005001 Gancaonin H 0.78 50.1
GC79 MOL005003 Licoagrocarpin 0.58 58.8
GC80 MOL005007 Glyasperins M 0.59 72.7
GC81 MOL005008 Glycyrrhiza flavonol A 0.6 41.3
GC82 MOL005012 Licoagroisoflavone 0.49 57.3
GC83 MOL005016 Odoratin 0.3 50
GC84 MOL005017 Phaseol 0.58 78.8
GC85 MOL005018 Xambioona 0.87 54.9
GC86 MOL005020 dehydroglyasperins C 0.37 53.8
NZZ1 MOL004576 taxifolin 0.27 57.8
NZZ2 MOL005147 LucidumosideD_qt 0.47 54.4
NZZ3 MOL005190 eriodictyol 0.24 71.8
NZZ4 MOL005212 Olitoriside_qt 0.78 103
XKC1 MOL004355 Spinasterol 0.76 43
XKC3 MOL004798 delphinidin 0.28 40.6
XKC4 MOL006767 Vulgaxanthin-I 0.26 56.1
XKC5 MOL006772 poriferasterol monoglucoside_qt 0.76 43.8
XKC6 MOL006774 stigmast-7-enol 0.75 37.4
XKC7 MOL000737 morin 0.27 46.2
A1 MOL000098 quercetin 0.28 46.4
A2 MOL000449 Stigmasterol 0.76 43.8
A3 MOL000359 beta-sitosterol 0.75 36.9
B1 MOL000422 kaempferol 0.24 41.9
C1 MOL000006 luteolin 0.25 36.2
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3.2 Gene Chip Model of ZZXJT
3.2.1 Chip RNA Quality Control Assessment and
Results
RNA quality control information of the normal and drug
groups was examined using Nanodrop 2000 and Agilent
2,100 (Table 3). Raw data for this experiment were
acquired using the GeneChip Scanner 3,000 (Affymetrix,
United States) (Figure 3). The signal intensity profiles of
the 6 sample sets were calculated. It is assumed that the
plots of the signal intensity profiles can demonstrate the
signal intensity profiles of all chip probes. As shown in
Figure 4A, the abscissa represents the probe signal intensity
interval, and the ordinate represents the number of probe sets
within the signal intensity interval. The better the sample
coincidence of the signal intensity distribution curves, the
greater the reliability of the gene chip model. Data was
taken for normalisation, resulting in a total of 1,543
differential genes (| fold change | ≥ 2.0 and FDR <0.05), of
which 194 were upregulated genes and 1,349 were
downregulated genes. The quality control requirements for
RNA were metfor subsequent experiments to be conducted
and the results of the gene chip analysis were highly reliable
and reproducible.

3.2.2 Construction of the ZZXJT-HCC Target PPI
Network
A total of 118 nodes with 870 edges representing protein-
protein interaction relationships were obtained using
Cytoscape software. Darker nodes and larger circles
represent a greater degree of connectivity. After
visualisation, the greatest connectivity values were
observed for the following five targets: vascular
endothelial growth factor A (VEGFA), EGF, MAPK1,
CCND1, and CYCS. These five targets were most strongly
associatedwith this model and can therefore be considered as
the core five targets of ZZXJT activityin HCC, as shown in
Figures 4B,C.

3.2.3 Enrichment Analysis of Target Pathways and
Functions
The enrichment analysis of ZZXJT and HCC-related targets
was conducted using the Metascape platform, which resulted
in 461 KEGG pathways, 686 GOmolecular functions, 5114 GO
biological processes, and 484 GOcellular components. Only
the top 20 resultsdisplayedby KEGG were considered. In
KEGG pathway analysis (p < 0.01), pathways related to
cancer were the PI3K-AKT pathway, FOXO pathway, p53

FIGURE 1 | “ZZXJT active ingredient-target” network diagram.
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pathway, and viral carcinogenesis. Figures 4D,E show the
distribution and significance of the proteins involved in
each pathway. The export results for BP, CC, and MF are
presented in Figure 4F. Each group shows only the top 10
results. BP is mainly involved in blood vessel development,
cellular response to growth factor stimulation, glandular
development, response to inorganic substances, and positive

regulation of the cell cycle. CCmainly involves the DNA
recombinase mediator complex, protein kinase complex,
membrane raft, mitochondrial envelope, and cell base. MF
mainly involves DNA secondary structure binding,
phosphotransferase activity, alcohol group as acceptor,
protein heterodimerization activity, single-stranded DNA
binding, and kinase binding.

FIGURE 2 | Systems pharmacology model of ZZXJT. Notes: (A): Intersection of ZZXJT predicted targets and liver cancer targets. (B): PPI network of intersection
target effect relationship. (C): Main pathways in the systems pharmacology model. (D): Distribution and significance of target proteins in pathway (C, E): The further
prediction and analysis of the target’ BP, CC, and MF.

TABLE 3 | Quality test results.

Sequence Sample No Sample name Thermo NanoDrop 2000 2,100 result Result

Concentration
(ng/μL)

A260/
A280

RIN 28S/
18S

1 A12854 Normal group 2549.6 1.99 9.9 2.4 qualified
2 A12855 Normal group 3077.1 2.00 9.8 2.4 qualified
3 A12856 Normal group 3046.3 1.97 9.7 2.4 qualified
4 A12857 Medication group 2473.3 1.96 9.6 2.5 qualified
5 A12858 Medication group 3035.4 1.99 9.8 2.6 qualified
6 A12859 Medication group 3306.0 1.99 9.8 2.6 qualified
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3.2.4 qRT-PCR to Detect Changes in the Level of
Genes in Cells
In KEGG pathway analysis, pathways related to cancer were
the PI3K-AKT pathway and FOXO pathway. As shown in
Figure 5, AKT mRNA expression downregulated compared
with the control group (p < 0.05). FOXO pathway related
genes (FOXO1, FOXO3 and FOXO4) mRNA expression
gradually upregulated (p < 0.05).

3.3 Identity Treatments for Two Models
Using Cytoscape software, a total of 25 nodes with 147 edge
lines were obtained. Darker nodes and larger circles represent
a greater degree of connectivity. Visualisation results showed
that the top five targets, namely, CCND1, vascular endothelial
growth factor A (VEGFA), MAPK1, EGF, and FOS, had the
highest connectivity values. This indicated that these five
targets were the most highly correlated in this model and
can therefore be considered as the core five targets for ZZXJT
action inHCC in this model. The intersecting targets were
further analysed using the Metascape data platform, resulting
in eight KEGG pathways. The distribution and significance of
the proteins involved in each pathway were analysed. BP, CC,
and MF analyses were not performed because of the small
number of common targets and the lack of statistical
significance of less than 20 pathways (Figure 6).

3.4 Molecular Docking Results
3.4.1 Designationof Small Molecules for Docking
A total of 10 small molecules were involved in docking, among
which the smallmolecules of the sovereign drug (small molecules

common to the drugs were not counted), and the other drugs
were numbered EZ1, NZZ1, NZZ2, NZZ3, and NZZ4. The five
multidrug common small molecules were numbered A1, A2, A3,
B1, and C1.

3.4.2 Collection of Docking Targets
The two models had 25 common targets. One targetprotein
structure was removed as it was not searched. The final total of
common targets was 24, corresponding to the PDB numbers
shown in Table 4. There were three common targets among
the top10 target genes of the systems pharmacology model
according to “Combined degree”, therefore the targets
orderedfrom 1 to 13(PDB numbersshown in Table 5). The
top 10 target genes predicted by the gene chip model
according to “Combined degree”, included 13 common
targets, 2 proteins without crystal structures, and 1 without
Homo sapiens protein crystal structure, therefore the number
of target genes was ordered from 1 to 26(PDB numbers shown
in Table 6).

3.4.3 Results of Docking
The heatmap (Figure 7) displays the docking resultspresented
as free binding energy values (kcal·mol−1) ranging from-10 to
0. The 10 small molecules were individually docked with the
target protein crystals, and 440 docking results were obtained,
comprising 240 for the common target gene proteins and 100
each for the systems pharmacology model and the gene chip
model, respectively. VMD software was used to visualise the
docked conformation stack plots according to the obtained
data to visualise the three optimal strips in each group. The

FIGURE 3 | Signal intensity profiles of the samples. Notes: Normal group: A12854, A12855, and A12856; Medication group: A12857, A12858, and A12859.
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action profiles and visualisations of candidate compounds
with each target gene protein are shown in Figure 7 the
common target pairsare shown in Figures 7A,a–c, the
systems pharmacology target pairs are shown in

Figures 7B,d–f, and the gene chip docking targets are
shown in Figures 7C,g–i. The three sets of binding free
energy results were integrated for statistical comparison,
and it was found that there was no statistical difference
(p > 0.05) in binding free energy for the common target
gene proteins (mean = −7.05)and the systems
pharmacology model (mean = −7.04). There was a
significant statistical difference (p < 0.05) in the binding
free energy between the common target gene proteins
(mean = −7.05) and the genechip model (mean = −6.74).

4 DISCUSSION AND CONCLUSION

In this study, the targets of HCC were predictedusing a gene
chip model and systems pharmacology model. The results of
this paper have been analysed and discussed from the
perspective of the contrasts and similarities between the
targets predicted by thegene chip and systemspharmacology
models, respectively.

It is evident from the results that the system pharmacology
approach neglects the relationship between the activity of a drug’s
small molecules and the dosage of the drug. Numerous

FIGURE 4 |Gene chip model of ZZXJT. Notes: (A): Statistical plot of signal intensity distribution between normal and medication groups. (B): Intersection of ZZXJT
predicted targets and HCC targets. (C): PPI network of intersection target action relationship. (D): Main pathways in the gene chip model. (E): Distribution and
significance of target proteins in pathway (D). (F): The further prediction and analysis of the target’ BP, CC, and MF.

FIGURE 5 | Gene expression in SMMC-7721 cells (‾X ± s). Note:
*Compared with the control group, it is statistically significant (p < 0.05).
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relationshipsbetween small molecules andtargets may be
predicted by the systems pharmacology approach, but this
method may lead to errors since it simply uses
superimposition based on past research results. This error may

be augmented in formulation research, which focuses on the
relationship between drug dosage, and drug compatibility. The
results of this study showed that thecore targetspredicted by
systems pharmacology and gene chip accounted for only 17

FIGURE 6 | Identical results of systems pharmacology and gene chip model. Notes: (A): The intersection of two models predicted targets and liver cancer targets.
(B): PPI network of intersection’s targets. (C): Pathways involved in intersection’s targets. (D): Distribution and significance of target proteins in pathway C.

TABLE 4 | Common target gene and PDB numbers.

Target gene PDB No Target gene PDB No Target gene PDB No

CCND1 2W9F VEGFA 1VPF EGF SL0T
MAPK1 6G54 CCNA2 1OIY STAT1 3WWT
PRKCA 2GZV CAT 1QQW MCL1 6OQC
RB1 7CZG CASP8 4ZBW FOS 1FOS
EDN1 1T7H AHR 5Y7Y CHEK1 2HOG
MET 3EFJ TOP2A 5NNE SERPINE1 3PB1
CASP9 3YGS CAV1 7LUD ERBB3 3KEX
SREBF1 1AM9 FASN 2JFD HIF1A 4H6J

TABLE 5 | System pharmacology model and PDB numbers.

Target gene PDB No Target gene PDB No Target gene PDB No

AKT1 2UZR JUN 1JUN TP53 6MY0
TNF 2E7A IL6 4O9H MYC 5I50
MAPK3 4QTB EGFR 3IKA CASP3 1QX3
MAPK8 4G1W
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TABLE 6 | Gene chip model and PDB numbers.

Target gene PDB No Target gene PDB No Target gene PDB No

CYCS 3NWV ANXA5 6K25 CD44 1UUH
FGF2 4OEF RPS6KB1 4L44 NRAS 2N9C
IGF1R 3D94 EZH2 4MI5 APP 4PWQ
HSPA5 3IUC

FIGURE 7 |Molecular docking results. Notes: (A): Docking results diagram of common targets and small molecules. (a): The corresponding protein of CCND1was
visualized by docking with small molecule B1 with a docking score of −7.6 kcal mol−1. (b): VEGFA corresponds to the protein visualized by docking with small molecule
C1 with a docking score of −4.4 kcal mol−1. (c): MAPK1 corresponds to the protein visualized by docking with the small molecule C1 with a docking score of
−7.2 kcal mol−1. (B): Diagram of System Pharmacology model targets and small molecule docking results. (d): The corresponding protein of AKT1 was visualized
by docking with the small molecule NZZ4, with a docking score of −6.6 kcal mol−1. (e): TP53 corresponding protein was visualized by docking with small molecule A2
with a docking score of −7.3 kcal mol−1. f: IL6 corresponds to the protein visualized by docking with small molecule A1 with a docking score of −7.9 kcal mol−1. (C):
Diagram of docking results of model targets and small molecules of gene chip. (g): CYCS corresponds to the protein visualized by docking with the small molecule NZZ4
with a docking score of −7.8 kcal mol−1. (h): ANXA5 corresponds to the protein visualized by docking with small molecule A2 with a docking score of -8.9 kcal mol−1. (i):
The CD44 counterpart protein was visualized by docking with small molecule B1 with a docking score of −7.9 kcal mol−1.
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and 19% of targets, respectively. The similaritiesintargets
identified by the two models differed. The top 10 core targets
identified by the system pharmacology model only accounted
for 2 common targets. Counting the top 10 targets without
including the common targets would increase this to 13
targets. The common targets in the top 10 core targets
predicted by the gene chip model accounted for 5 targets.
Counting the top 10 targets without including the common
targets would increase this to 22 targets. Itcan therefore be
concluded that the two models were poorly similar based on
the target aspect. In terms of KEGG pathway analysis, the top
identicalpathwayof the two models was pathways in cancer
and the top fiveincluded the PI3K-AKT signalling pathways.
While there were common KEGG pathways, except for the
inclusion of pathways in cancer, the two modelsdid not share
the same pathways, and so the use of KEGG pathway analysis
was limited. In conclusion, the gene chip modelis more
accurate in target predictions than the systems
pharmacology model (Heber and Sick, 2006). Thismay be a
direct result of gene chips having been developed as an assay
for genetic diseases and as an alternative to clinical disease
testing (Huang et al., 2004; Shi et al., 2021). In addition, gene
chips usually employ normalisation, which directly expands
the target genes that may be involved. In comparison, the
predicted results of the systems pharmacology model in this
study were poor.

Molecular docking was introduced in this comparative
study as a reference prediction model. The binding free
energy was used as a benchmark and the top 10 targets
from the two models (without co-targets) were individually
aligned. Results showed that the docking scores of system
pharmacology and co-targets were not statistically significant
(p > 0.05), while those of genechipsand co-targets were
statistically significant (p < 0.05). The mean values were
larger than the mean values of the common targets. From
the docking data of 10 small molecules docked with two model
core targets, it can be derived that, because the numerical
value is smaller, and the binding is more stable (Hsin et al.,
2013). Based on the docking results, system pharmacology
was better than the binding of the gene chip. However,
experimental results are insufficient to fully reject the
prediction that molecular docking is more accurate,
possibly due to too little docking data, not only in actual
drug effect results but also not in full agreement with binding
energy values (Ye et al., 2021). For example, in the vicinity of
the target tissue, the lowest drug concentration isa factor that
affects the regulation of gene expression (Shin et al., 2020), or
when the same drug molecule acts on targets of different cells,
and results should differ (Akita and Sliwkowski, 2003). These
situations are currently difficult to simulate using a computer
model. Although drug absorption was previously modelled
through the specification of OB and DL values, such
predictions by systems pharmacologymay result in
extremely low confidence for a sophisticated and complex
network of target structures, especially after multiple error
factors are incorporated. Therefore, systems pharmacology
corroborated by molecular docking is risky as results may

direct researchers incorrectly. Nevertheless, based on the
docking data, the predictions of the core small molecules
from the two models were consistent, mainly focusing on
five small molecules, namely, A1, A2, B1, C1, and NZZ4.
Among these, the four consensus small molecules are part of
the drug XKC while the remaining four small molecules and
A2 are part of NZZ. Based on the concept of“sovereign and
adjuvant” in TCM, it is evident that NZZ and XKC play a
major role in ZZXJT. Thissupported the TCM theory that
adjuvant drugs may also besovereigndrugs. It was inferred
that system pharmacology and molecular docking models
were of positive significance to identify the main drugs and
molecular components in the formula. This was highly
consistent with the gene chip.

Systems pharmacology predicts that the targets of the core
small molecules are the same, therefore the main treatments
should be the same. This prediction in terms of TCM, may
wrongly direct researchas important drug-target relationships
are circumvented. The integrity of formula research is affected
by the simple superposition of a single molecule, which may lead
to the low credibility of predicted results. This assumption is
made based on systems pharmacology for ZZXJT target
prediction of a single formula (ZZXJT), hencemore data is
required to firmly establish the reliability of using systems
pharmacology predictions in TCM formula research. This can
be addressed in future studies.

Since predictions by the systems pharmacology approachare
poorly similarto the gene chip technology predictions, we can
therefore conclude thatsystems pharmacology has low model
confidence and is less reliable. However, the consistency
between the core drug predictions versus the core small-
molecule predictions was greater in the systems
pharmacology model.
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