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Diabetic nephropathy (DN) is the main leading cause of chronic kidney disease worldwide.
Although remarkable therapeutic advances have been made during the last few years,
there still exists a high residual risk of disease progression to end-stage renal failure. To
further understand the pathogenesis of tissue injury in this disease, by means of the Next-
Generation Sequencing, we have studied the microRNA (miRNA) differential expression
pattern in kidneys of Black and Tan Brachyury (BTBR) ob/ob (leptin deficiency mutation)
mouse. This experimental model of type 2 diabetes and obesity recapitulates the key
histopathological features described in advanced human DN and therefore can provide
potential useful translational information. The miRNA-seq analysis, performed in the renal
cortex of 22-week-old BTBR ob/ob mice, pointed out a set of 99 miRNAs significantly
increased compared to non-diabetic, non-obese control mice of the same age, whereas
nomiRNAs were significantly decreased. Among them,miR-802, miR-34a, miR-132, miR-
101a, and mir-379 were the most upregulated ones in diabetic kidneys. The in silico
prediction of potential targets for the 99 miRNAs highlighted inflammatory and immune
processes, as the most relevant pathways, emphasizing the importance of inflammation in
the pathogenesis of kidney damage associated to diabetes. Other identified top canonical
pathways were adipogenesis (related with ectopic fatty accumulation), necroptosis (an
inflammatory and regulated form of cell death), and epithelial-to-mesenchymal transition,
the latter supporting the importance of tubular cell phenotype changes in the pathogenesis
of DN. These findings could facilitate a better understanding of this complex disease and
potentially open new avenues for the design of novel therapeutic approaches to DN.
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INTRODUCTION

Diabetic nephropathy (DN) represents the leading cause of
chronic kidney disease (CKD), being the most frequent origin
of end-stage renal disease (ESRD) and the main reason for renal
replacement therapy in Western countries (Cheng et al., 2021;
Deng et al., 2021). Nowadays, the incidence of DN continues to
grow due to the increasing prevalence of type 2 diabetes (T2D)
linked to metabolic syndrome, obesity, and dyslipidemia
(Navarro-González et al., 2011; Alicic et al., 2017; Sharma
et al., 2017). At present, the main therapeutic targets comprise
blood pressure and hyperglycemia control, including the
inhibition of the renin-angiotensin-aldosterone system (RAAS)
as a nephroprotective strategy (Ruiz-Ortega et al., 2020). During
the last few years, sodium-glucose cotransporter-2 inhibitors
(SGLT2i) or glucagon-like peptide-1 receptor agonists have
been used as the first and second therapeutic options in
specific CKD stages. They have shown noticeable beneficial
effects on cardiovascular and renal outcomes with a significant
decrease in mortality (Neumiller et al., 2017). Apart from these
mentioned drugs, the dipeptidyl peptidase 4 inhibitors are also a
therapeutic approach currently recommended in the new KDIGO
guidelines (Kidney Disease: Improving Global Outcomes
Diabetes Work Group, 2020). In addition, new anti-
inflammatory therapies and metabolic modulators, such as
JAK/STAT, Rho-kinase and Sirtuin-3 inhibitors, peptide
N-Acetyl-Seryl-Aspartyl-Proline, glycolysis inhibitors, and
mineralocorticoid receptor antagonists, have been postulated
as potential drugs in DN due to the preclinical evidence,
showing their renoprotective role or even their ability to
reverse established renal damage (Hashimoto et al., 2010;
Bakris et al., 2020; Locatelli et al., 2020; Opazo-Ríos et al.,
2020b; Srivastava et al., 2020; Matoba et al., 2021). Growing
evidence in all these mentioned studies has shown that the reno-
protective effects of these drugs, at least, in part, may be due to the
regulation of epithelial and endothelial-to-mesenchymal
transition (EMT and EndoMT) in the progression of DN.
Unfortunately, at present, there are no interventions capable of
fully prevent the progression to advanced kidney disease in
people with T2D, being therefore necessary to find out new
therapeutic options that limit the natural history of the disease.

Many studies have investigated the molecular mechanism
involved in the onset and progression of DN. Hyperglycemia
has been considered the driving and triggering force in the DN
development, but recent data have also pointed out an important
role of the immune system and inflammation, as well as oxidative
stress, lipotoxicity, and uremic toxins (Moreno et al., 2018;
Opazo-Ríos et al., 2020a; Lavoz et al., 2020b; Rayego-Mateos
et al., 2020). At the molecular level, the importance of signaling
pathways related to renal inflammation and fibrosis such as the
loss of endothelial glucocorticoid receptor (Srivastava et al.,
2021b), endothelial FGFR1 and SIRT3 signaling (Li J. et al.,
2017; Srivastava et al., 2018), TGFβ/SMAD, Notch, WNT/β-
Catenin, and Sonic-Hedgehog pathways (Marquez-Exposito
et al., 2018; Zhao et al., 2018; Wang et al., 2022) have also
demonstrated to play a relevant role in DN. Interestingly,
despite good glycemic control, the inability to fully avoid

chronic meta-inflammation (microinflammatory milieu caused
by metabolic factors) could contribute to ESRD progression in
diabetic patients. This phenomenon can be explained by the
concept of hyperglycemic “metabolic memory” (Bheda, 2020).
Recent evidence suggests epigenetic regulation mechanisms,
including DNA methylation and the histone post-translational
modifications, as drivers of metabolic memory, suggesting that
epigenetic regulationmay result very relevant in DN (Keating and
El-Osta, 2013; Zhao et al., 2016; Morgado-Pascual et al., 2018;
Martinez-Moreno et al., 2020a; Martinez-Moreno et al., 2020b).
Epigenetic regulation of gene expression is a dynamic process that
may be modified in response to the environment or therapeutic
modulation. In particular, lysine histone methylation, acetylation,
and crotonylation have been involved in kidney diseases
(Martinez-Moreno et al., 2020a). In addition, epigenetic
readers that identify and interpret epigenetic signals are key
components of the system (Morgado-Pascual et al., 2019).

Some authors also include microRNAs (miRNAs) in the
epigenetic regulation of gene expression. miRNAs are
evolutionarily conserved small (20–24 nt) non-coding RNAs
related to both stability and translation of target mRNAs.
Since their discovery, miRNAs have progressively turned out
to central stage in the understanding of the post-transcriptional
gene expression regulation. Interestingly, epigenetic regulation
modulates several miRNAs expression, and, conversely, some of
them participate in the expression of relevant epigenetic
regulators (Sato et al., 2011). The importance of miRNAs
function has been demonstrated in a wide variety of processes
including, cancer, cardiovascular and renal diseases, peritoneal
fibrosis, and diabetes (Adams et al., 2014; Morishita et al., 2016;
Prattichizzo et al., 2016; Colpaert and Calore, 2019; Ruiz-Ortega
et al., 2020; Jankauskas et al., 2021). Regarding DN, some authors
have suggested a potential role of miRNAs in the development
and progression of the pathology, featuring some of them (miR-
21, miR-200b/c, and mir-29c) (Long et al., 2011; Park et al., 2013;
Zhong et al., 2013) as promising therapeutic targets, but some
others (e.g., miR-146a) (Bhatt et al., 2016a) as protectors of DN
progression and fibrosis. In this sense, several miRNAs have been
found to modulate EMT and EndoMT and, in consequence, to
prevent fibrosis in DN and other kidney diseases by targeting
several genes related to these processes (Srivastava et al., 2013;
Giordo et al., 2021). Thus, miR-30a, miR-30c, miR-26a, miR-130,
miR-23b, Let-7days, and miR-98 have shown to modulate EMT
in experimental DN (Bai et al., 2016; Liu et al., 2016; Zheng et al.,
2016; Zhu et al., 2019; Gao et al., 2020; Wang Y. et al., 2021).
Moreover, the anti-fibrotic effects of other miRNAs, including
miR-200a, miR-455-3p, miR-92days-3p, miR-130b, miR-26a,
and miR-29a, have been also described in DN (Du et al., 2010;
Wang et al., 2011; Lin et al., 2014; Koga et al., 2015; Bai et al., 2016;
Wu et al., 2018; Zhang, 2021). Apart from miRNAs, other non-
coding RNAs have been postulated to regulate gene expression in
DN. In this way, long-noncoding RNAs (lncRNAs) and circular
RNAs have been described to act as miRNA sponges, regulating
their actions in DN (Srivastava et al., 2021a; Patil et al., 2021). For
instance, lncRNAs NR_033515, NEAT1, OIP5-AS1, and
MALAT1 promote EMT and fibrosis by sponging anti-fibrotic
miRNAs (Gao et al., 2018; Liu et al., 2019; Wang et al., 2019; Li N.
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et al., 2020; Fu et al., 2020; Meng et al., 2020), whereas other
lncRNAs, such as ZEB1-AS1, prevent EMT and fibrosis in DN
(Meng et al., 2020). In consequence, different non-coding RNAs
and other epigenetic mechanisms can interact to regulate gene
expression and, therefore, DN progression. These data, as well as
their higher stability and the possibility of measuring them in
different fluids, have pointed out their utility as biomarkers for
early detection and progression of DN, suggesting their potential
use as therapeutic agents (Simpson et al., 2016).

However, an important handicap to be dodged in the study
of DN and its complications is the lack of robust animal models
that replicate the key features of human diabetes to test novel
therapeutic tools (Brosius and Alpers, 2013). In this regard,
Black and Tan BRachyury (BTBR) ob/ob (leptin deficiency
mutation) mouse has recently turned out as an excellent
preclinical model for DN study, because it replicates the key
histopathological features observed inT2D (Hudkins et al.,
2010; Alpers and Hudkins, 2011), despite the absence of
tubulointerstitial fibrosis observed in advanced human DN
(PMID: 24711709). Therefore, to further advance in the better
knowledge on the mechanisms involved in the genesis and
progression of DN, the aim of this study was to characterize by
the Next-Generation Sequencing (NGS) the miRNA
differential expression pattern in an established model of
advanced DN in the BTBR ob/ob mice.

MATERIALS AND METHODS

Ethics Statement
All animal procedures were performed according to the
guidelines of animal research in the European Community
and with prior approval by the Ethics Committee of the Health
Research of the IIS-Fundación Jiménez Díaz and by the Madrid
regional government (Ref. PROEX 079/18). All animal
procedures conformed to EU Directive 2010/63EU and the
national rule 53/2013 regarding protection of animals used for
experimental and other scientific purposes. The establishment
and care of BTBR ob/ob diabetic and obese mice colony
(referred to here as “diabetic mice”) and their
corresponding controls [BTBR wild type (WT)] have been
previously described (Clee et al., 2005). These mice were
originally obtained from JAX™ Mice (Charles River Europe
laboratory), and then, the mouse colony breeding was
maintained in the Fundación Jiménez Díaz Animal facilities,
following the JAX™ recommendations (Jackson Laboratory,
2007). Animals were housed at a density of four animals per
cage in a temperature-controlled room (20°C–22°C) with 12-h
light–dark cycles and feeding with standard chow and water ad
libitum provided by the animal facilities.

Design of the Experimental Model of
Diabetic Nephropathy and Characterization
Male BTBR ob/ob diabetic mice and their corresponding non-
diabetic and non-obese littermates (BTBR WT) were studied
over 22 weeks of age (n = 6 for each group). These mice rapidly

develop morphologic renal lesions characteristic of both early
and advanced human DN (Hudkins et al., 2010). Body weight
and blood glucose levels were measured by Fisherbrand
Precision balance and NovaPro Glu/Ket system (Nova
Biomedical, Waltham, MA, USA) after clipping the distal
2–3 mm of the tail-tip. Spot urine samples were collected
once a week from all mice and analyzed for albumin and
creatinine by the ELISA Kit (cat. nos. ab108792 and ab65340,
respectively, Abcam) to obtain the urine albumin/creatinine
ratio (ACR). Animals were euthanatized by intraperitoneal
anesthetic induction of ketamine (100 mg/kg) and xylazine
(10 mg/kg). After anesthetic assessment, the kidneys were
perfused in situ with saline before removal, and one half of
each kidney was fixed in 4% formaldehyde, embedded in
paraffin, and used for histological studies, whereas the other
half remaining was snap-frozen in liquid nitrogen for renal
cortex miRNA studies. Metabolic and renal profile were
assessed in serum including: glucose, creatinine, urea, blood
urea nitrogen, albumin, triglycerides (TG), total cholesterol
(TC), high-density lipoprotein (HDL), and low-density
lipoprotein (LDL); aspartate transaminase, alanine
aminotransferase, and alkaline phosphatase. The
measurement was performed at our institution’s central
laboratory using Roche Cobas autoanalyzer. Over the
disease outcome, glycosuria was measured periodically by
test strips (range 50–1,000 mg/dl) and subsequently
quantified by urine dilution in institutional autoanalyzer.

Morphological and Immunohistochemical
Studies
A quarter piece of each kidney sample fixed in 4%
formaldehyde were embedded in paraffin and cut in serial
sections (4–5 μm thickness) for further histological [periodic
acid–Schiff (PAS)/Sirius red] and immunohistochemistry
(IHC) studies.

Periodic Acid–Schiff Staining
PAS staining was performed using 0.5% PAS’s Reagent (Sigma-
Aldrich) and Hematoxylin (Thermo Scientific) for
histopathological assessment in 4 μm sections, as previously
described (Varga and Brenner, 2005). The following lesions
were evaluated: the degree of mesangial matrix expansion,
glomerular hypertrophy (glomerulomegaly), glomerular
sclerosis, arteriolar hyalinosis, tubular casts, acute tubular
damage, and tubular atrophy, as well as the presence of
interstitial inflammatory cells and fibrosis. A semi-quantitative
assessment of renal damage at glomerular (glomerulomegaly,
mesangial matrix expansion, presence of nodular sclerosis, and
arteriolar hyalinosis) and tubulointerstitial (casts, tubular
flattening, tubular atrophy, inflammatory infiltrates, and
fibrosis) levels as well as the total (sum of both scores) lesions
were graded according to their histopathological score (from 0 to
4) as previously described (Zoja et al., 2002). The histological
assessment and representative lesions were obtained by
epifluorescence optical microscope (Axioscope 5 Workstation
compact, Zeiss).
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Sirius Red Staining
Sirius red staining was performed in 5-µm kidney sections using a
picrosirius solution [10% of Sirius red (1%) in picric acid], as
previously described (Varga and Brenner, 2005). Collagen
deposition levels were evaluated by using the Image-Pro Plus
software (Bio-Rad) determining the red positive staining per
glomerular and interstitial areas in eight randomly chosen
fields (×40 and ×20 magnification, respectively) acquired by
epifluorescence optical microscope (Axioscope 5Workstation
compact, Zeiss).

Immunohistological Studies
For immunostaining procedure, 4-µm tissue sections were
deparaffinized through xylene and hydrated through graded
ethanol (100%, 96%, 90%, and 70%) ending in distilled water.
Antigens were restored by using PTLink system (DAKO
Diagnostic), blocking endogenous peroxidase afterward.
Commercial casein solution (DAKO Diagnostic) was used to
release non-specific protein bindings (1 h at room temperature),
and tissue sections were incubated overnight at 4°C withp-
SMAD3 (1/200; ab52903, Abcam) antibody diluted in
antibody solution (DAKO Diagnostics). Kidney sections were
incubated with the specific HRP secondary anti-body (GENA934,
Sigma Chemical) for 1 h followed by Avidin-Biotin Complex
incubation (Vector laboratories) for 30 min. To develop signal,
samples were incubated with substrate solution and 3,3-
diaminobenzidine as a chromogen (Abcam) and
counterstained with Carazzi’s hematoxylin (Thermo Fisher
Scientific). Specificity was checked by omission of primary
antibody (data not shown). Quantification was made by using
the Image-Pro Plus software (Bio-Rad) determining the positive
relative staining area per total area in five to 10 randomly chosen
fields (×40 magnification) acquired by epifluorescence optical
microscope (Axioscope 5Workstation compact, Zeiss).

Total RNA Extraction
Cortex kidney sections were lysed using Tissue Lyser for
disaggregation of tissues, and total RNA was obtained using
the KingFisher Flex station (Thermo Fisher) and a commercial
kit (MagMAX™ mirVana™), following the manufacturer’s
specifications; total RNA was quantified using a 2100
Bioanalyzer (Agilent) to test size profiling.

miRNA Sequencing and Bioinformatic
Analysis
For sequencing of small RNAs, 12 libraries (six BTBRWT and six
BTBR ob/ob) were prepared according to the instructions of the
“NEBNext Multiplex Small RNA Library Prep Set for Illumina”
kit (New England Biolabs). The input amount of total RNA to
start the protocol was 800 ng of each sample, according to the
bioanalyzer measurements in RNA 6000 Nano Chips. The library
preparation procedure included a PCR step, which was adjusted
to 13 cycles. The libraries obtained were run in 6%
PolyAcrylamide Gel, and the region of 135–325 pb
(corresponding to small RNA) was selected and assessed using
an Agilent 2100 Bioanalyzer with High-Sensitivity DNA chips.

The final pool of libraries was denatured prior to being seeded on
a flow-cell at a density of 1.38 pM, where clusters were formed
and sequenced in a NovaSeq 6000 sequencer using a flow cell SP
v1.5 (Illumina). An amount of 18–37 million of single-end reads
(mean 24.4 × 106) was obtained per sample. The quality of
sequences was assessed using the program FastQC-0.11.7
(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc).
Sequences were then filtered according to size (minimum length
of 16) and ambiguities (removing reads with more than 10 Ns
within the sequence). To that purpose, the program Prinseq
(Schmieder and Edwards, 2011) was used. Next, sequences
were mapped against Mus musculus genome (release GRCh38)
using TopHat (Trapnell et al., 2012; Kim et al., 2013); reads were
annotated using the corresponding MmGRCm38.95-gtf file.
Numbers of sequences per sample are summarized in the
Supplementary Table S1. The whole bioinformatic protocol
was executed using the RNAseq pipeline app of the GPRO-
suite (Llorens et al., 2011). Total samples (six BTBR WT and
six BTBR ob/ob) were used for differential expression analysis,
made using Cufflinks/CuffDiff (Trapnell et al., 2012; Kim et al.,
2013) to compare the expression of BTBR ob/ob vs. BTBR WT.
We filtered out those entries whose detection levels were lower
than 40 counts (sum of averages from BTBR W and BTBR ob/ob
groups) and finally found a number of 191 microRNA entries
which can be considered as positively detected. The bioinformatic
study about the possible outcome of miRNA-based regulation
was performed using the Ingenuity Pathway Analysis software
(IPA, Qiagen).

RT-qPCR miRNA Validation and mRNA
Levels Evaluation
Cortex kidney mRNA from BTBR WT and BTBR ob/ob mice,
used to perform the miRNA-seq study, were analyzed by multiple
RT-qPCR. For miRNA evaluation, a miRCURY LNA RT kit
(Qiagen) was use to obtain cDNA. To confirm miRNA-seq
results, qPCR was performed miRCURY LNA miRNA PCR
Assays (Qiagen) following the manufacturer’s instructions:
miR-802 (YP00205002), miR-34a (YP00204486), and miR-375
(YP00204362); normalized by 5S rRNA (hsa) (YP00203906). For
mRNA evaluation, cDNA was obtained by using the reverse
transcription kit (Applied Biosystems). Then, a multiplex RT-
qPCR was performed using fluorogenic primers design by assay
on demand mouse expression products (Applied Biosystems):
Ngal: Mm01324470_m1, Mcp1: Mm00441242_m1, Acta2:
Mm01546133_m1, and Tgf-β: Mm01178820_m1. As endogen
control to normalize,Gapdh:Mm99999915_g1 was used. miRNA
and mRNA copy number were calculated for each sample by the
instrument software (ABIPrism 7500 Fast sequence detection
PCR system software; Applied Biosystems) using Ct value
(“arithmetic fit point analysis for the light cycler”), and the
results were expressed in n-fold calculated vs. BTBR WT group.

Statistical Analysis
Data are expressed as mean ± standard error of the mean (SEM)
of each group (n = 6 mice/group). Normality distribution was
tested by using Shapiro–Wilk test. If the samples followed a
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FIGURE 1 | The glomerular and tubulointerstitial features observed in BTBR ob/ob of 22 weeks old and histopathological assessment. (A) Representative images
of the kidney PAS staining at different magnifications showing the main glomerular (yellow arrows) and tubulointerstitial (green arrows) changes detected. The
histopathological assessment was evaluated in glomerular (B), tubulointerstitial (C), and total score (D). (E) Representative images of the kidney Sirius red staining at
different magnifications (upper) and their quantification (lower). Data are shown as mean ± SEM and graphs bar with scatter dot plots of each group (n = 6 mice/
group); ***p < 0.001vs. BTBR WT. **p < 0.005 vs. BTBR WT. a.u., arbitrary units.
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Gaussian distribution or not, then means were compared by
Student t-test or Mann–Whitney statistical test, respectively.
Statistical significance was assumed when a null hypothesis
could be rejected at p < 0.05. The statistical analysis was
performed using the GraphPad Prism software (GrahPad
Software).

RESULTS

Renal Lesions in the Experimental Model of
Advanced Diabetic Nephropathy
The BTBR ob/ob mice model at 22 weeks of age resembles the
kidney damage observed in patients with advanced DN, as
previously described (Hudkins et al., 2010; Alpers and
Hudkins, 2011). The key features observed after
histopathological PAS assessment are shown in the
Figure 1A. At the glomerular level, the main hallmarks of
kidney damage in diabetic mice are the glomerulomegaly and
increased mesangial matrix. Isolated nodular
glomerulosclerosis could be detected once as a blue moon
in one or two glomeruli throughout the entire renal tissue
assessment. Arteriolar hyalinosis was noted by thickening of
the arteriolar walls with PAS-positive material at the vascular
pole. At the tubulointerstitial level, the presence of cast
(isolated PAS-positive), tubular flattening manifested by
loss of the tubular cells brush border, focal and/or diffuse
inflammatory infiltrate, and tubular atrophy were found. The
quantification of kidney damage in BTBR ob/ob mice
compared with non-obese non-diabetic BTRB WT mice of
the same age used as controls is shown at glomerular

(Figure 1B), tubulointerstitial (Figure 1C), and total areas
(Figure 1D). According to previous results (Lavoz et al.,
2020b), the studied kidneys did not develop
tubulointerstitial fibrosis, which was also confirmed by
Sirius red staining (Figure 1E). On the other hand, a high
activation of the fibrotic-related pathway SMAD, assessed by
increased SMAD3 phosphorylated levels (p-SMAD3), was
found in BTBR ob/ob mice compared to control mice
(Figure 2A). At mRNA level, an increased expression of
Acta2were observed in the BTBR ob/ob mice kidneys
compared with control mice, whereas no differences were
found in the mRNA levels of Tgfβ (Figure 2B). In addition,

FIGURE 2 | Evaluation of the SMAD pathway activation and inflammatory and fibrotic markers. (A) Increased kidney levels of phosphorylated SMAD3 (p-SMAD3)
were observed in BTBR ob/ob of 22 weeks old compared to BTBR WT. (B) Increased levels of Ngal, Mcp-1, and Acta2 were observed in the BTBR ob/ob group
compared to BTBRWTmice, whereas no differences were detected in Tgf-β expression levels. Data are shown as mean ± SEM and graphs bar with scatter dot plots of
each group (n = 6 mice/group). ***p < 0.001 vs. BTBR WT; **p < 0.005 vs. BTBR WT; *p < 0.05 vs. BTBR WT.

TABLE 1 | Metabolic and renal parameters in BTBR WT and BTBR ob/ob mice.
*p < 0.05 vs. BTBR WT; UD, undetectable.

General Parameters BTBR WT BTBR ob/ob

Body weight at 22th week (g) 38 ± 0.8 72 ± 1.1*
Glycaemia at 22th week (mg/dl) 151 ± 4 531 ± 24*
Glycosuria (mg/dl) UD 2190 ± 278
Urinary albumin/creatinine ratio—uACR (mg/g) 50 ± 7.2 850 ± 99*
Serum creatinine (mg/dl) 0.20 ± 0.01 0.27 ± 0.01*
Urea (mg/dl) 43 ± 2.9 42 ± 4.2
Blood urea nitrogen—BUN (mg/dl) 20 ± 1.4 20 ± 1.9
Aspartate transaminase—AST (IU/L) 67 ± 4.8 85 ± 9.2
Alanine transaminase—ALT (IU/L) 12 ± 0.8 44 ± 7.0*
Alkaline phosphatase—AP (IU/L) 34 ± 1.6 89 ± 8.7*
Serum albumin (g/dl) 3.5 ± 0.1 4.3 ± 0.3*
Total cholesterol (mg/dl) 126 ± 4.8 203 ± 19.1*
Triglycerides (mg/dl) 69 ± 8.4 96 ± 11.3*
Low-density lipid—LDL (mg/dl) 6.8 ± 0.8 37 ± 7.4*
High-density lipid—HDL (mg/dl) 107 ± 3.8 147 ± 12.8*
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mRNA levels of several inflammatory-related factors (Ngal
andMcp-1) were upregulated in the BTBR ob/ob mice kidneys
compared to controls (Figure 2B).

To further evaluate changes in renal function, both serum and
urinary markers were assessed. As previously described, the
BTBR ob/ob mice showed hyperglycemia and increase in body
weight at early stages, which were maintained over time
(22 weeks) with changes in serum lipids, such as TC, TGs, and
HDL in comparison with BTBR WT (Table 1). The BTBR ob/ob
mice at 22nd week presented discrete elevation of serum

creatinine, severe albuminuria (measured by urinary ACR),
and high glycosuria levels as compared to control littermates,
revealing kidney dysfunction in diabetic mice (Table 1).

Renal Cortex of BTBR Ob/Ob Mice Displays
a Different miRNA Pattern Expression in
Relation to BTBR WT Mice
To evaluate the miRNAs potentially involved in the genesis of
advanced DN in the BTBR ob/obmice (22-weeks-old), a miRNA-

TABLE 2 | List of the 99 miRNAs presenting q-values < 0.05 in the comparative analysis of BTBR ob/ob vs. BTBR WT group.

Ensembl Gene_ID miRNA Fold Change q_value Ensembl Gene_ID2 miRNA Fold Change q_value

ENSMUSG00000076457 miR-802 44.55 0.0180327 ENSMUSG00000077962 miR-874 6.69 0.0336
ENSMUSG00000065493 miR-34a 13.04 0.00063579 ENSMUSG00000076066 miR-223 3.64 0.00431
ENSMUSG00000065537 miR-132 9.68 0.00063579 ENSMUSG00000065610 miR-29a 3.63 0.0281
ENSMUSG00000065451 miR-101a 8.52 0.0467852 ENSMUSG00000077042 miR-574 3.61 0.000636
ENSMUSG00000065498 miR-379 7.89 0.00063579 ENSMUSG00000065611 miR-23a 3.54 0.000636
ENSMUSG00000065507 miR-204 7.84 0.00063579 ENSMUSG00000065439 miR-140 3.54 0.000636
ENSMUSG00000092830 miR-3963 7.56 0.00063579 ENSMUSG00000104618 miR-1839 3.49 0.000636
ENSMUSG00000065477 miR-411 7.24 0.00063579 ENSMUSG00000099036 miR-378c 3.46 0.000636
ENSMUSG00000098973 miR-6236 6.87 0.00063579 ENSMUSG00000076338 miR-181d 3.44 0.000636
ENSMUSG00000065551 miR-210 6.79 0.00063579 ENSMUSG00000065586 miR-96 3.41 0.000636
ENSMUSG00000065616 miR-375 6.18 0.00063579 ENSMUSG00000076255 miR-92b 3.40 0.000636
ENSMUSG00000070102 miR-455 5.93 0.00063579 ENSMUSG00000065418 miR-322 3.36 0.000636
ENSMUSG00000065546 miR-196a-1 5.91 0.00063579 ENSMUSG00000076010 miR-615 3.31 0.000636
ENSMUSG00000065443 miR-196b 5.90 0.00063579 ENSMUSG00000065601 miR-146 3.28 0.0271
ENSMUSG00000065607 miR-331 5.83 0.0293941 ENSMUSG00000065484 miR-130a 3.25 0.000636
ENSMUSG00000065592 miR-145a 5.69 0.00063579 ENSMUSG00000070074 miR-484 3.25 0.0168
ENSMUSG00000076011 miR-652 5.52 0.00063579 ENSMUSG00000065470 miR-149 3.25 0.00325
ENSMUSG00000065402 miR-122 5.37 0.00063579 ENSMUSG00000076062 miR-92–1 3.21 0.0117
ENSMUSG00000076357 miR-653 5.26 0.0266784 ENSMUSG00000065408 miR-31 3.13 0.00569
ENSMUSG00000070076 miR-127 5.18 0.00063579 ENSMUSG00000105972 miR-1843a 3.09 0.00809
ENSMUSG00000092998 miR-5099 5.14 0.00063579 ENSMUSG00000065422 miR-221 3.06 0.000636
ENSMUSG00000065417 miR-340 5.06 0.00063579 ENSMUSG00000065397 miR-155 3.06 0.000636
ENSMUSG00000070139 miR-532 5.05 0.0237531 ENSMUSG00000065580 miR-15b 3.03 0.00364
ENSMUSG00000106465 miR-374c 5.01 0.00114916 ENSMUSG00000065510 miR-361 3.03 0.000636
ENSMUSG00000065556 miR-101b 5.00 0.00063579 ENSMUSG00000065471 miR-222 3.00 0.000636
ENSMUSG00000065500 miR-10b 4.84 0.00364284 ENSMUSG00000105497 miR-191 3.00 0.00204
ENSMUSG00000105200 miR-378a 4.68 0.00431115 ENSMUSG00000065528 miR-320 3.00 0.000636
ENSMUSG00000065431 miR-186 4.52 0.00063579 ENSMUSG00000065464 miR-185 2.94 0.00325
ENSMUSG00000076049 miR-598 4.50 0.0420373 ENSMUSG00000065587 miR-34c 2.92 0.000636
ENSMUSG00000065593 miR-339 4.44 0.00063579 ENSMUSG00000076361 miR-182 2.89 0.000636
ENSMUSG00000065503 miR-351 4.43 0.00063579 ENSMUSG00000065462 miR-200c 2.86 0.0196
ENSMUSG00000065446 miR-139 4.39 0.00063579 ENSMUSG00000076122 miR-503 2.83 0.000636
ENSMUSG00000065520 miR-128-1 4.37 0.00697744 ENSMUSG00000070130 miR-328 2.83 0.000636
ENSMUSG00000105458 miR-3074-2 4.23 0.00063579 ENSMUSG00000065542 miR-224 2.80 0.00502
ENSMUSG00000065396 miR-99b 4.22 0.0175788 ENSMUSG00000098756 miR-378d 2.71 0.000636
ENSMUSG00000065476 miR-30b 4.01 0.00114916 ENSMUSG00000065619 miR-183 2.68 0.000636
ENSMUSG00000065489 miR-365-2 4.01 0.00063579 ENSMUSG00000076460 miR-744 2.64 0.016
ENSMUSG00000065429 miR-345 3.99 0.00063579 ENSMUSG00000098343 miR-6240 2.63 0.000636
ENSMUSG00000076398 miR-676 3.95 0.00063579 ENSMUSG00000065411 miR-195a 2.56 0.000636
ENSMUSG00000065612 miR-151 3.91 0.00063579 ENSMUSG00000065582 miR-194–2 2.49 0.00536
ENSMUSG00000099169 miR-7j 3.90 0.00063579 ENSMUSG00000065518 miR-423 2.37 0.00974
ENSMUSG00000065543 miR-330 3.89 0.00063579 ENSMUSG00000065574 miR-203 2.26 0.01
ENSMUSG00000065548 miR-29c 3.84 0.0161905 ENSMUSG00000070106 miR-363 2.13 0.00431
ENSMUSG00000065515 miR-152 3.77 0.00063579 ENSMUSG00000093011 miR-100 2.07 0.0476
ENSMUSG00000080645 miR-1198 3.77 0.00063579 ENSMUSG00000105220 miR-497 2.0 0.00754
ENSMUSG00000076376 miR-674 3.77 0.00063579 ENSMUSG00000065495 miR-150 1.93 0.00864
ENSMUSG00000076140 miR-542 3.76 0.00063579 ENSMUSG00000065613 miR-92–2 1.85 0.0168
ENSMUSG00000105196 miR-142 3.75 0.00063579 ENSMUSG00000065395 miR-193a 1.80 0.0271
ENSMUSG00000065571 miR-326 3.71 0.0325777 ENSMUSG00000065532 miR-187 1.73 0.0301
ENSMUSG00000065560 miR-148b 3.71 0.00063579 — — — —
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seq study was performed. The results showed 198 miRNAs whose
expression was dysregulated (194 upregulated vs. four
downregulated) in the BTBR ob/ob group vs. WT
(Supplementary Table S2). Among them, 99 upregulated
miRNAs presented q-values < 0.05, whereas none deregulated
miRNAs showed significant differences between groups
(Table 2). According to the n-fold changes, miR-802 (44.55-
fold), miR-34a (13.04-fold), miR-132 (9.68-fold), miR-101a
(8.52-fold), and mir-379 (7.89-fold) were some of the most
upregulated miRNAs in the BTBR ob/ob group. The elevated
expression of several miRNAs (miR-802, miR-34, and miR375)
was also confirmed by RT-qPCR (Figure 3A).

Functional Analysis of the miRNA-Seq
Results
A subsequent Ingenuity Pathway Analysis (IPA) performed with
the IPA software and using the 99 miRNAs (q-values < 0.05)
displayed a set of canonical pathways related to these miRNAs
(Supplementary Table S3). Although cancer-related pathways
were the most highlighted, we decided to focus on other potential
biological processes that could be deregulated in our study. This
new analysis identified T helper (Th) immune responses (Th1
and Th2), adipogenesis, necroptosis, and EMT pathways as the

top canonical pathways related to these miRNAs (Figure 3B).
The main predicted network obtained was related to connective
tissue disorders, gene expression, and inflammatory diseases
(Figure 4). The top upstream regulator analysis showed the
miRNA biogenesis components AGO2 and DICER1 as the
most predicted factors to be regulated by the studied miRNAs,
with HNF4a, SMAD2/3, and TNFRSF1B being the next factors of
the list (Table 3).

DISCUSSION

In the present study, miRNA-seq analysis performed in the renal
cortex of an advanced model of DN in 22-week-old BTBR ob/ob
mice pointed out a set of 99 miRNA significantly increased
compared to non-diabetic non-obese controls of the same age.
These miRNAs could potentially be involved in the genesis and
progression of DN and, therefore, used as potential biomarkers
and/or therapeutic targets in this clinical condition. Our results
disclosed increased levels not only of several miRNAs previously
described in diabetic complications but also of other miRNAs
related to different pathological processes. Interestingly, the
functional predictive analysis highlighted inflammatory and
immune processes as one of the most relevant pathways

FIGURE 3 |miRNA RT-qPCR validation and assessment of key pathways and miRNAs. (A)miRNA relative expression (n-fold vs. BTBR WT) of miR802, miR34a,
and miR375. (B) Left panel shows a graphic with the top canonical pathways related to the 99miRNAs that were significantly predicted in the comparative analysis of the
cortex kidney of BTBR ob/ob mice vs. BTBRWT, omitting cancer related pathways. Right panel indicates the most related miRNAs to each pathway. Data are shown as
mean ± SEM and graphs bar with scatter dot plots of each group (n = 6 mice/group). ***p < 0.001vs. BTBR WT; *p < 0.05 vs. BTBR WT.
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related to these miRNAs, remarking the importance of
inflammation in the pathogenesis of kidney damage associated
to diabetes.

Among the most deregulated miRNAs, miR-802 was, by far,
the most upregulated in BTBR ob/ob mice. miR-802 is located on
the 21st chromosome, and it has widely been associated with
cancer in recent years, although showing opposite effects
depending on the organ involved (Zhang et al., 2017; Feng
et al., 2020; Ni et al., 2020; Wang et al., 2020; Wu et al.,
2020). Interestingly, high levels of miR-802 have also been
described in diabetic patients and in obesity-induced
experimental nephropathy (Sun et al., 2019; Zhang et al.,

2020). In addition, miR-101 and miR-375, both elevated in
our miRNA-seq study, have also been involved in T1D and
T2Donset and progression (Patoulias, 2018; Santos et al.,
2019). Thus, increased levels of circulating miR-802, miR-101,
and miR-375 have been proposed as potential biomarkers for
T2D in humans (Higuchi et al., 2015). Our results point out the
potential direct participation of these miRNAs in the DN
progression. Mechanistically, an increase in the hepatic
oxidative stress induced by miR-802 was proposed as a
potential mechanism implicated in the insulin resistance
observed in high-fat diet (HFD)–fed mice (Yang et al., 2019).
Regarding the kidney, a recent study demonstrated that miR-802

FIGURE 4 | Predicted network. Interaction network of miRNAs and genes related to connective tissue disorders, gene expression, and inflammatory diseases,
obtained with the IPA bioinformatic analysis for the 99 miRNAs significantly upregulated in the BTBR ob/ob mice group.
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causes nephropathy in HFD mice by suppressing NF-
κB–repressing factor (Sun et al., 2019). Other authors
demonstrated that miR-802 overexpression in two obese
murine models, HFD and Lepr (db/db) mice, impairs glucose
metabolism by silencing Hnf1b (Kornfeld et al., 2013). Our study
provides further support for the direct involvement of mir-802 in
DN and extends these findings to another experimental model
that closely replicates the key histopathological features observed
in human DN.

Our results additionally highlighted another set of miRNAs
previously described to participate in the pathogenesis of DN.
Thus, several authors suggested miR-200b/c and mir-29c as key
therapeutic targets in experimental DN in db/db mice (Long et al.,
2011; Park et al., 2013). Accordingly, we observed a significant
increase in miR-200c and miR-29c levels in BTBR ob/ob mice. On
the contrary, although previous studies demonstrated that miR-
146 deletion accelerate DN progression in a murine streptozotocin
(STZ)–induced diabetes model (Bhatt et al., 2016b; Sankrityayan
et al., 2019), we found out an increase in miR-146 levels in the
cortex kidney of BTBR ob/ob mice. This disparity could be
explained by the differences between the experimental diabetes
model used, one induced by STZ resembling T1D and the other by

DN generated in BTBR ob/ob mice that resembles advanced
human DN lesions in a T2D and metabolic disorder milieu
(King, 2012). Increased miR-132 circulating levels have been
associated with T2D and nephropathy and approaches to
targeting it did impair blood glucose and improved insulin
secretion (Bijkerk et al., 2015; Bijkerk et al., 2019; Florijn et al.,
2019). Accordingly, we found out increased miR-132 expression in
the kidney of BTBR ob/ob mice. In a recent study, a protective role
of miR-379 deletion was described in STZ-induced DN in mice
(Kato et al., 2021), with this miRNA being one of the most
upregulated in our study. Another example of diabetes-related
miRNAs in the present report is miR-204, whose genetic deletion
improved glycemic control despite obesity in db/db mice (Gaddam
et al., 2020). On the other hand, some miRNAs described to play a
protective role in DN progression are miR-29b (Chen et al., 2014),
miR-34c (Liu et al., 2015), and miR-26a (Koga et al., 2015). In the
present study we did not observe differences in miR-29b andmiR-
26a levels, whereas miR-34c was increased in the BTBR ob/ob.
Whereas the mentioned miR-34c (Liu et al., 2015) protective
effects were described in cultured podocytes, our study was
performed in the renal cortex of diabetic mice, which could
explain the apparent discrepancies among both studies.

TABLE 3 | Top upstream regulator predicted molecules for the 99 miRNAs significantly upregulated in the kidney cortex of BTBR mice.

Upstream
regulator

Molecule type p-value of overlap Target
molecules in dataset

AGO2 Translation regulator 6.88E-68 mir-10, mir-101, mir-122, mir-128, mir-130, mir-139, mir-148, mir-15, mir-181, mir-182,
mir-185, mir-186, mir-187, mir-188, mir-193, mir-194, mir-203, mir-204, mir-221, mir-23,
mir-25, mir-28, mir-29, mir-320, mir-328, mir-330, mir-339, mir-34, mir-340, mir-361, mir-
365, mir-379, mir-423, mir-484, mir-598, mir-652, mir-676, mir-8, mir-802

DICER1 Enzyme 9.67E-39 mir-10, mir-101, mir-122, mir-132, mir-139, mir-142, mir-145, mir-146, mir-148, mir-15,
mir-150, mir-155, mir-181, mir-182, mir-188, mir-193, mir-194, mir-196, mir-204, mir-23,
mir-25, mir-29, mir-30, mir-331, mir-34, mir-361, mir-365, mir-378, mir-497, mir-8, Mir7j

HNF4A Transcription regulator 9.48E-20 mir-10, mir-101, mir-130, mir-140, mir-142, mir-148, mir-15, mir-181, mir-193, mir-194,
mir-203, mir-28, mir-31, mir-34, mir-365, mir-455, mir-484, mir-497, mir-574, mir-8,
mir-802

Smad2/3 Group 0.0000000000000039 mir-128, mir-130, mir-181, mir-185, mir-25, mir-320, mir-363, mir-423, mir-744
TNFRSF1B Transmembrane receptor 0.000000000000014 mir-10, mir-101, mir-130, mir-221, mir-28, mir-30, mir-320, mir-322, mir-326, mir-34,

mir-96
NF2 Other 0.00000000000225 mir-10, mir-101, mir-15, mir-188, mir-28, mir-29
MTDH Transcription regulator 0.0000000036 mir-101, mir-15, mir-182, mir-28, mir-340
E2F3 Transcription regulator 0.00000000873 mir-10, mir-145, mir-15, mir-221, mir-23, mir-25
KHDRBS1 Transcription regulator 0.0000000379 mir-101, mir-142, mir-29, mir-339
PPARA Ligand-dependent nuclear

receptor
0.0000000764 mir-10, mir-101, mir-130, mir-146, mir-148, mir-182, mir-203, mir-25, mir-30, mir-34, mir-

378, mir-8
SPI1 Transcription regulator 0.00000129 mir-142, mir-223, mir-322, mir-351, mir-503, mir-542, mir-8
ETS2 Transcription regulator 0.00000173 mir-142, mir-155, mir-223, mir-29
PIK3CA Kinase 0.00000258 mir-210, mir-221, mir-34
HMGA1 Transcription regulator 0.00000426 mir-101, mir-196, mir-29, mir-331
Gulo Enzyme 0.000012 mir-15, mir-30, mir-322
SMARCA4 Transcription regulator 0.0000181 mir-145, mir-28, mir-30, mir-34, mir-674
E2F1 Transcription regulator 0.0000241 mir-10, mir-145, mir-15, mir-221, mir-23, mir-25
IGF1R Transmembrane receptor 0.0000451 mir-10, mir-127, mir-132, mir-139, mir-196, mir-34, mir-379
REST Transcription regulator 0.0000607 mir-139, mir-148, mir-203, mir-204
MYC Transcription regulator 0.000124 mir-145, mir-188, mir-29, mir-339, mir-34, mir-365, mir-378
LTB4R G protein–coupled receptor 0.00016 mir-10, mir-146, mir-155
AGO1 Translation regulator 0.000178 mir-203, mir-8
SLC9A3R1 Other 0.000226 mir-145, mir-155, mir-221
PKD1 Ion channel 0.000236 mir-10, mir-182, mir-204, mir-30, mir-8, mir-96
TNFSF12 Cytokine 0.000327 mir-146, mir-23, mir-322, mir-455
INSR Kinase 0.000835 mir-10, mir-127, mir-132, mir-139, mir-196, mir-34, mir-379
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Besides the potential individual effects exerted by the above-
described miRNAs, our bioinformatic analysis pointed out Th1
and Th2 responses as the most common associated pathways to
our miRNA-list, immediately after cancer related pathways that
were not considered here as commented in the results section.
The intensive research in the immunology field during the last
years have markedly contributed to unravel the role of immune
cells in many diseases, remarking the important role of Th
subtypes, including Th1, Th2, Th17, and T regulatory (Treg)
in many human diseases (Raphael et al., 2015). Importantly, Th
subtype differentiation is a tightly regulated process, and mixed
phenotypes can be found depending on the pathological
conditions and can be modified by therapeutic interventions
(DuPage and Bluestone, 2016; Gagliani and Huber, 2017). In
this sense, Th1 and Th17 cells are characteristic of
proinflammatory conditions, as described in immune
mediated-disorders and chronic inflammatory diseases,
whereas Treg cells exert protective anti-inflammatory actions
(Harrington et al., 2005; Saigusa et al., 2020). Many
experimental studies targeting Th17 immune response by
different approaches, including neutralizing antibodies against
the effector cytokine IL-17A or its soluble receptor,
pharmacological inhibitors of RORγt, the main transcription
factor driver of Th17 differentiation or drugs modulating
Th17/Treg balance, like vitamin D agonist, as well as studies
using genetically modified mice, have remarked the importance
of Th17/IL-17A in the pathogenesis of chronic inflammatory
diseases, including immune and non-immune renal damage
(Orejudo et al., 2019; Lavoz et al., 2020a; Marchant et al.,
2020; Rodrigues-Diez et al., 2021). Among the wide range of
pathways implicated in DN generation and progression, we
recently proposed that Th17 immune response could be
playing a main role in DN in humans and BTBR ob/ob
diabetic model (Lavoz et al., 2020a). In addition, we have
previously demonstrated that administration of an IL-17A
neutralizing antibody in BTBR ob/ob mice, starting when
renal dysfunction and structural alterations were already
present, caused a beneficial effect, restoring renal damage
parameters, mainly due to inhibition of NF-κB/inflammation
in the diabetic kidney (Lavoz et al., 2019). Other studies support
the beneficial effects of IL-17A reduction in experimental DN in
other mice models, as STZ-induced diabetes and autoimmune
diabetes in NOD mice (Emamaullee et al., 2009; Kuriya et al.,
2013; Kim et al., 2015; Tong et al., 2015).

Regarding the role of miRNAs in the regulation of the Th17
response, several authors described their participation in different
pathologies including autoimmune diseases. In this sense, miR-
20b and miR-30a suppress Th17 differentiation in experimental
autoimmune diseases by targeting RORγt and STAT3 and IL-
21R, respectively (Zhu et al., 2014; Qu et al., 2016). Similarly, in
another autoimmune disease, miR-155-3p targets two genes
(Dnaja2 and Dnajb1) that negatively regulated Th17
differentiation contributing to potentiate the Th17 response
(Mycko et al., 2015). miR-146a elicits a different modulation
of the Th17 response depending on the context. In experimental
autoimmune encephalomyelitis, miR-146a reduced Th17
differentiation by targeting IL-6 and IL-2 (Li B. et al., 2017).

However, a more recent study suggested that miR-146a-5p
promotes Th17 cell differentiation by targeting the
metalloprotease ADAM17 in the primary Sjögren’s syndrome
(Wang X. et al., 2021). Increased levels of mir-34a, the second
miRNA mostly upregulated in our miRNA-seq, have been
described as an inductor of Th17 response by targeting
FOXP3 in rheumatoid arthritis and systemic lupus
erythematosus patients (Xie et al., 2019). Moreover, miR-34a
may induce increased level of IL-17 and other proinflammatory
cytokines via SIRT1 direct targeting and subsequent induction of
NF-κB and the downstream pathway (Karbasforooshan and
Karimi, 2018). Remarkably, miR-802 increases Th17 immune
response by targeting the suppressor of cytokine signaling
(SOCS5) in inflammatory bowel disease (Yao et al., 2020).
Apart from immune diseases, the relation between miRNAs
and Th17 has been demonstrated in other pathologies. In
hepatocellular carcinoma–derived Th17 cells, a recent article
showed increased miR-132 levels, another upregulated miRNA
in our study, and demonstrated that the use of a miR-132 mimic
accelerates Th17 differentiation in vitro (Feng et al., 2021). At the
kidney level, there are few studies on the role of miRNAs in Th17
differentiation (Lavoz et al., 2020a). In this sense, in experimental
crescentic glomerulonephritis, miR-155 participated in Th17
immune response and tissue injury (Krebs et al., 2013), and
their deficiency attenuated the renal damage in hyperglycemia-
induced nephropathy by promoting nephrin acetylation (Lin
et al., 2015).

Interestingly, some of the miRNAs related to Th cell responses
also participate in the diabetic pathology and were modified in
our miRNA-seq study. Thereby, as mentioned above, miR-146a
was proposed to be related to T2D susceptibility after a meta-
analysis performed in a total of 12 studies that reveal a
downregulation of miR-146a circulating levels in diabetic
subjects in comparison to normal ones (Alipoor et al., 2017).
In a similar manner, miR-155 was found downregulated in
PBMC obtained from type 2 diabetic patients (Corral-
Fernández et al., 2013). However, at the kidney level, both
miR-155 and miR-146a were increased more than five-fold in
DN patients compared with the controls as well as in
experimental type 2 DN rat models (Huang et al., 2014). In
the present study, both miR-155 and miR-146 were increased in
the cortex kidney of BTBR ob/obmice and were also related to the
Th1 and Th2 responses. All the DN-related miRNAs that
increased as found in our experimental study, combined with
the fact that some of them have also been described to participate
in the inflammatory/immune responses, including Th17, support
our previous findings on the role of Th17 in DN (Lavoz et al.,
2019) and pave the way to future studies modulating miRNAs in
this clinical condition.

Other canonical pathway highlighted in our miRNA-seq
studies was adipogenesis. Although there are a number of
publications relating miRNAs in adipose tissue (Heyn et al.,
2020), limited articles relating miRNA and adipogenesis in
kidney tissue have been published so far. Recently, we
demonstrated the expression of fatty acid influx/efflux markers
and the presence of lipid droplets expressing perilipin-1 at both
glomerular and tubulointerstitial levels in the BTBR ob/ob model
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(Opazo-Ríos et al., 2020b). Therefore, the present results,
showing miRNAs expression related to adipocyte
differentiation and lipid storage in renal tissue, constitute a
novel hallmark and opens new ways to investigate the
progression of type 2 DN in future studies.

Necroptosis, a form of cell death (Linkermann and Green,
2014; Newton and Manning, 2016), was another pathway
remarked in our miRNA-seq studies. Necroptosis is a type
of programmed necrosis characterized by the activation of
receptor-interacting protein (RIP) 1 and 3 and by damage-
associated molecular pattern–induced inflammation
(Linkermann and Green, 2014; Newton and Manning,
2016). In kidney diseases, necroptosis has been proposed as
a key mechanism involved in cell death in acute kidney damage
(AKI), as described in the experimental models of renal
ischemia/reperfusion injury, folic acid-induced AKI, and
cisplatin nephropathy (Linkermann et al., 2013; Linkermann
and Green, 2014; Xu et al., 2015; Martin-Sanchez et al., 2017;
Martin-Sanchez et al., 2018). However, data about necroptosis
in diabetes and experimental DN, in particular, are very
limited. In this sense, in cultured podocytes, high-glucose
concentrations elicited necroptosis (Xu et al., 2019). The
inhibitor of necroptosis necrostatin-1 (nec-1) reduced
visceral fat deposition and restored cognitive function and
brain damage, but it did not result in any improvement on
insulin sensitivity in prediabetic HFD rats (Jinawong et al.,
2020). RIPK3 deficiency alleviated myocardial injury,
improved cardiac function, and attenuated necroptosis in
mice with STZ-induced diabetic cardiomyopathy (Chen
et al., 2021). Our results suggest that necroptosis could be
another pathway involved in kidney damage in diabetes to be
explored.

In response to an insult, tubular epithelial cells undergo several
changes, including loss of cell-to-cell contact and the polarized
epithelial phenotype, leading to tubular dysfunction (Ruiz-Ortega
et al., 2020). These changes in tubular cell phenotype are
described as partial EMT and can contribute to renal damage
progression, including in DN (Ruiz-Ortega et al., 2020). Recent
studies have pointed out the importance of tubular damage,
besides glomerular damage, in the genesis and progression of
DN (Rayego-Mateos et al., 2021). In this sense, SGLT2i, besides
acting as antihyperglycemic drugs, exert kidney protective effects
in type 2 diabetic patients by acting in the proximal tubule
reducing sodium reabsorption, probably by improving
mitochondrial function (Shirakawa and Sano, 2020) and
restoring tubular cell phenotype (Li J. et al., 2020; Das et al.,
2020). Many data suggest the involvement of miRNAs in
phenotype changes associated to diabetes and fibrotic
conditions (Giordo et al., 2021). Our miRNA-seq data,
showing that EMT related-processes are also connected to the
upregulated miRNAs in advanced experimental DN, support the
importance of tubular cells in the progression of kidney damage
in DN and suggest that strategies targeting tubular damage
should be investigated in DN.

Our bioinformatic analysis has also revealed that the most
predictive factors to be regulated by the studied miRNAs are
AGO2 and DICER1, both involved in miRNAs regulation, with

other targets HNF4α, SMAD2/3 (a key pathway in fibrotic
processes) (Tuleta and Frangogiannis, 2021), and TNFRSF1B
being a member of the TNF Receptor (TNFR) Superfamily, also
known as TNFR2 (So and Ishii, 2019). HNF4α dysfunction has
been associated with metabolic disorders including diabetes
(Niehof and Borlak, 2008; David-Silva et al., 2013). Mutations
in HNF4α and HNF1α cause an autosomal dominant form of DM
and tubular dysfunction (Terryn et al., 2016). Developmental
studies have unveiled that HNF4α regulates the expression of key
genes involved in differentiation and reabsorption in proximal
tubules (Marable et al., 2020). TNFRSF1B binds to TNF-α and
plays a critical role in immune regulation (So and Ishii, 2019) and
kidney damage (Speeckaert et al., 2012). Remarkably, circulating
TNFR2 levels are robust predictors of early and late renal
function decline leading to ESRD in type 1 and type 2 DN
patients (Carlsson et al., 2016; Niewczas et al., 2019).

To sum up, our results unveil a battery of miRNAs controlling
key genes involved in adipogenesis, inflammation, immune
response, necroptosis, and EMT, which constitute key
mechanisms involved in the genesis and progression of DN.
These data could potentially be relevant for the design of
therapeutic approaches to this dreadful disease.
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