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Metabolic abnormality has been considered to be the seventh characteristic in cancer
cells. The potential prospect of using serum biomarkers metabolites to differentiate ALL
from AML remains unclear. The purpose of our study is to probe whether the differences in
metabolomics are related to clinical laboratory-related indicators. We used LC-MS-based
metabolomics analysis to study 50 peripheral blood samples of leukemia patients from a
single center. Then Chi-square test and T test were used to analyze the clinical
characteristics, laboratory indicators and cytokines of 50 patients with leukemia.
Correlation analysis was used to explore the relationship between them and the
differential metabolites of different types of leukemia. Our study shows that it is feasible
to better identify serum metabolic differences in different types and states of leukemia by
metabolomic analysis on existing clinical diagnostic techniques. The metabolism of choline
and betaine may also be significantly related to the patient’s blood lipid profile. The main
enrichment pathways for distinguishing differential metabolites in different types of
leukemia are amino acid metabolism and fatty acid metabolism. All these findings
suggested that differential metabolites and lipid profiles might identify different types of
leukemia based on existing clinical diagnostic techniques, and their rich metabolic
pathways help us to better understand the physiological characteristics of leukemia.
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1 INTRODUCTION

Acute leukemia (AL), which results from a series of mutational events that take place during the
complex process of hematopoiesis, is a life-threatening hematological malignancy (Rose-Inman and
Kuehl, 2017). According to the French-American-British system, AL can be classified into acute
myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Bonemarrow biopsy remains the
“gold standard” for the diagnosis of AML. However, the morphological, immunological and
cytogenetic analysis of bone marrow biopsies is obviously invasive for patients, and the waiting
time for results is long, which tends to delay the treatment of patients (Wang et al., 2019). Therefore,
the discovery of early detectable non-invasive biomarkers to distinguish AML from ALL could lead
to timely and accurate treatment of AL patients.

Uncontrolled growth and proliferation is a characteristic of cancer cells and requires large
amounts of energy metabolites for their survival (McCartney et al., 2018). Therefore, metabolic
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abnormality has been considered to be the seventh characteristic
in cancer cells (Hanahan and Weinberg, 2011). Metabolomics
studies have shown that metabolic reprogramming was present in
a variety of solid tumors including kidney cancer (Ganti and
Weiss, 2011), liver cancer (Yin et al., 2009) and prostate cancer
(Trock, 2011), which makes the method to be a powerful and
valuable biomarker identification method (Du et al., 2018).
Previous studies have revealed the metabolic differences
between AL patients and normal people (Bai et al., 2014; Zhou
et al., 2020). Compared with normal people, abnormal changes in
multiple metabolic pathways existed in AL patients (Wang JH
et al., 2013; Musharraf et al., 2017). However, few studies have
mentioned the metabolomic differences between ALL and AML,
and the potential value of using serummetabolites to differentiate
ALL from AML remains unclear.

In this work, we used liquid chromatography-mass
spectrometry (LC-MS) to analyze serum metabolites from 50
patients with a clear diagnosis of AL. Twenty seven out of
metabolites were found differentiative among ALL and AML
patients using p-value <0.05. We expected to distinguish AML
from ALL by metabolomics, and we hypothesized that
metabolites differentially expressing between the two groups
were related biomarkers. Then we used different methods to
detect the clinical laboratory indicators of the samples, and
further explored the relationship between it and metabolomics.
The research aimed to investigate the differences in serum
metabolites in subjects with different types of leukemia and to
explore the related metabolic pathways between AML and ALL,
so that we can better understand the metabolic characteristics and
potential mechanisms of acute leukemia. Moreover, the finding of
potential biomarkers is helpful to diagnose and monitor acute
leukemia, as well as ultimately develop new drugs for therapeutic
interventions.

2 MATERIALS AND METHODS

2.1 Patients and Specimen Collection
Serum specimens of patients with acute leukemia admitted to our
department from May to November 2020 were collected. This
study was approved by the Ethics Committee of the Affiliated
Hospital of Southwest Medical University (approval number:
2020250). The diagnosis was according to the 2008 WHO
criteria (Vardiman et al., 2009). We selected newly diagnosed
patients, or revisited patients whose efficacy was assessed as
unremission or partial remission, their MRD (Minimal
residual disease) are all non-negative. The exclusion criteria
for selected AML patients are as follows: 1) Patients with
metabolic diseases such as hepatitis, diabetes, renal failure and
hyperthyroidism, 2) Patients with acute or chronic respiratory
failure, 3) Patients who still need vasoactive drugs to maintain
after active fluid resuscitation after shock, 4) Patients requiring
mechanical ventilation for endotracheal intubation, 5) Acute
leukemia patients secondary to chemotherapy, radiotherapy,
myelodysplastic syndrome and myeloproliferative disease, 6)
With other malignant tumors, 7) Patients have received
hematopoietic stem cell transplantation, 8) Patients who

refused to participate in the study. According to the above
criteria, we strictly screened 50 patients with acute leukemia,
including 14 cases of acute lymphoblastic leukemia and others are
acute myeloid leukemia. According to the Declaration of
Helsinki, all participants have obtained written informed
consent prior to clinical recording and sample collection.
Serums from all patients were collected before starting
treatment. Blood routine, biochemical tests and cytokine
detection were performed on all patients while the supernatant
was collected. The cytogenetics and gene expression status of
these 50 patients at the time of initial diagnosis were obtained by
consulting the hospital’s electronic medical record system. For
prognostic grouping based on cytogenetics, ALL patients use the
grouping criteria for prognostic factors of adult acute
lymphoblastic leukemia (Rowe, 2010), and AML patients use
the Cancer and Leukemia Group B (CALGB) grouping standard
(Heilmeier et al., 2007). When comparing the differences between
the two groups of AML patients, we adopted the 2017 European
Leukemia Network (ELN) risk stratification recommendations
(Dohner et al., 2017).

After fasting overnight, peripheral blood samples were
collected from all participants and yellow-headed tubes
containing inert separation glue and coagulants were used.
The blood samples were centrifuged at 3000 rpm and 4°C for
10 min. Serum samples were obtained and stored at −80°C until
further use.

2.2 Metabolite Samples Preparation
For LC–MS metabolomic analysis, 100 μL serum sample were
mixed with 200 μL ice-cold acetonitrile, and then vortexing the
mixture for 30 s, incubating the mixture at –20°C for 10 min and
then 12000× g centrifuging the mixture for 10 min at 4°C. 20 μL
serum from each sample were mixed to prepare a quality control
(QC) sample. Then, the mixture was divided into aliquots with
the same volume as other samples and prepared together. The
supernatant after centrifugation was filtered through a 0.2 µm
nylon mesh into sample vials to LC/MS analysis.

2.3 UPLC/QTOF-MS Analysis of Serum
Metabolites
The metabolomics analysis was performed with an Agilent 1290
Infinity LC system coupled to an Agilent 6530 Accurate-mass
Q-TOF mass spectrometer (Agilent Technologies, Palo Alto, CA,
United States). Chromatographic separation of serum samples
was performed on an Agilent ZORBAX SB-C18 threaded column
(2.1 × 150 mm, 1.8 µm, Agilent Technologies, Palo Alto, CA,
United States) maintained at 35°C. The mobile phase consisted of
solvent A (0.1% formic acid in water, v/v) and B (0.1% formic acid
in acetonitrile, v/v). The optimized gradient program was
established. The post time was set to 3 min for equilibration.
Mass spectrometry was performed in both positive (ESI+) and
negative (ESI-) electrospray ionization modes. The fragment
voltage was set to 135 V and the skimmer voltage was set to
65 V. The capillary voltages were set to 4.0 KV in positive mode
and 3.5 KV in negative mode. The drying gas (nitrogen) was used
at a flow rate of 10 L/min at 350°C and the nebulizer pressure was
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set to 45 psig. Data were collected in centroid mode from 50 to
1000 m/z using an extended dynamic model.

Serum samples were analyzed in random order during the
analysis. In addition, QC samples were detected once every 6
subject samples for conditioning of the analytical system, signal
correction, and quality assurance.

2.4 Flow Cytometry
Heparin anticoagulation tubes were used tocollect approximately
2 ml of the patient’s bone marrow fluid at the time of the bone
marrow aspiration. The specimen was placed in a special tube for
flow cytometry and hemolysin was added, lysis of erythrocytes in
the sample for 10min. The lysed specimen was centrifuged at
300 g for 5 min, the supernatant was discarded and 1 ml of PBS
solution was added for washing and repeated. After the
erythrocyte lysis is complete the appropriate antibody is added
to the flow tube, incubate for 15 min at low light and then assay
using a Beckman flow cytometer. We used winMDI software for
the analysis of the results, 2000 cells per flow tube were analysed
and phenotypic analysis was performed with a CD45/ssc two-
parameter two-site scatter plot gating.

2.5 Bone Marrow Blast Cell Count Analysis
The patient was placed in the prone position and fully disinfected.
The posterior superior iliac spine was selected as the puncture
site. After local anesthesia with 2% lidocaine, 0.2 ml of bone
marrow fluid was extracted to make a uniform thickness of bone
marrow smear, and the prepared bone marrow smear was stained
with Swiss Giemusa. The proliferation of bone marrow nucleated
cells was observed under low power microscope. Then 200
nucleated cells were counted and analyzed under oil
microscope, and the proportion of primitive cells was
calculated and recorded.

2.6 Blood Routine Analysis
While collecting test samples, we also used purple blood vessels
without anticoagulants to extract the peripheral blood of 50 patients
with AML, and used automatic blood routine analyzer (Japan, XT-
2000i) to perform routine blood analysis on the peripheral blood of
the patients. The neutrophil count (NEU), hemoglobin content (Hb)
and platelet (PLT) values were recorded after analysis.

2.7 Serum Biochemistry Analysis
The serum concentrations of Lactate dehydrogenase (LDH),
alkaline phosphatase (ALP), Calcium ions (Ca+), Creatinine,
albumin (ALB), globulin (GLB), Triglycerides, Cholesterol,
Low density lipoprotein (LDL), High density lipoprotein
(HDL), Apolipoprotein A1,Apolipoprotein B, were detected by
an automatic biochemical analyzer (The United States, Beckman)
according to the manufacturer’s instructions for the
corresponding commercial kits.

2.8 Cytokine Detection
Standard materials with different concentration gradient were
prepared according to the instructions. Mixtures of captured
microspheres were prepared according to the requirements.
Add 25 μL of the mixture of captured microspheres to the test

tube, add 25 μL of sample (fresh serum) to the sample tube, and
add 25 μL of the gradient diluted standard to the Standard Quality
Control (QC). After all the experimental tubes were fully mixed,
they were incubated at room temperature for 1 h in a dark
environment. Add 25 μL fluorescence detection reagents (C) to
each tube, stir gently and incubate at room temperature for 2 h.
Add 1 ml PBS solution to the test tube, centrifuge at 200 g for
5 min, then carefully suck the supernatant, add 100 μL PBS
solutions, and stand for detection. Fluorescence detection was
performed on a well-calibrated flow cytometer (The
United States, Beckman) in the order of standard quality
control, negative tube, and sample tube. Each test tube is
required to be tested immediately after vortex blending for
3–5 s. According to the instructions, calculate the
corresponding value according to the concentration gradient
corresponding to the dilution factor of the standard.

2.9 Statistical Analysis
2.9.1 Multivariate Statistical Analysis of Plasma
Metabolite Data
The raw MS data was converted by abfConverter (Nonlinear
Dynamics, Newcastle, UK). The converted MS data was imported
into MSDIAL software to filter the noise, calibrate the baseline,
align the peaks, and identify and quantify the peaks. Retention
time deviations of less than 0.15 min were allowed to align the
peaks. Ion peaks with missing values >50% in both groups were
deleted from the alignment data. Then, the normalized data with
auto-scaling were imported into SIMCA-P (version 13.0,
Umetrics AB, Umea, Sweden), to perform multivariate and
single-dimensional statistical analysis, including unsupervised
principal component analysis (PCA), supervised Orthogonal
partial least squares discriminant analysis (OPLS-DA), t-test,
and fold change analysis. The potential biomarkers were
selected in accordance with variable importance in projection
(VIP) score >1 from the OPLS-DA model. The potential
biomarkers were further optimized by Student’s t-test for their
abundance in different groups. Adjusted p value <0.05 was
considered to be statistically significant. The biomarkers were
further screened in accordance with VIP score >1, adjusted p
value <0.05, and fold change >1.5 or <0.67.

2.9.2 Analysis of Clinical Laboratory Indicators
SPSS 20 was used for statistical analysis, we used chi-square test
and independent sample t-test to analyze the clinical
characteristics, cytogenetic prognostic groupings at first
diagnosis, common laboratory indicators and cytokine of 50
leukemia patients in different groups, p value <0.05 considered
the difference to be statistically significant. Then use correlation
analysis to explore the relationship between clinical laboratory
indicators and different metabolites that have differences between
groups, p value <0.05 is statistically significant.

2.10 Biomarker Identification and Metabolic
Pathway Analysis
Metabolites were identified through a mass/mass-based search
followed by manual verification. Accurate mass values of the
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molecular ions of TOF-MS data were matched against METLIN
and Human Metabolome Database (HMDB). Then, an MS/MS
analysis was conducted to confirm the structure of potential

biomarkers by matching the masses of the fragments. The
parent ion mass tolerance is ±10 ppm and mass/charge (m/z)
of products tolerance is ±10 ppm. Cluster analysis of the potential

TABLE 1 | Comparison of demographics, prognosis grouping, cytokines and clinical details between AML and ALL patients (Means ± SD).

Index ALL (n = 14) AML (n = 36) χ2/t p value

Gender, (male/female) 7/7 20/16 0.125 0.723
Age (years) 41.79 ± 20.70 47.69 ± 20.11 −0.925 0.359
BMI 19.15 ± 2.96 20.41 ± 2.65 −1.460 0.151
Prognosis grouping (favorable/intermediate/adverse) 3/9/2 7/16/13 2.414 0.299
Bone marrow blasts (%) 46.09 ± 35.20 45.17 ± 36.57 0.071 0.944
IL-4 1.30 ± 1.05 1.85 ± 1.39 −1.358 0.181
IL-10 16.11 ± 19.02 20.27 ± 18.75 −0.309 0.759
NEU 1.31 ± 1.78 2.70 ± 7.79 −0.610 0.545
HGB 74.92 ± 16.12 76.38 ± 18.45 −0.244 0.808
PLT 48.75 ± 40.12 34.41 ± 38.66 1.094 0.280
LDH 368.49 ± 395.16 688.39 ± 138.78 −0.772 0.445
ALP 95.71 ± 59.34 78.35 ± 41.98 1.165 0.250
Ca2+ 2.19 ± 0.25 2.10 ± 0.19 1.466 0.149
Creatinine 67.87 ± 36.16 61.80 ± 23.30 0.704 0.485
Albumin 38.08 ± 7.23 34.68 ± 5.56 1.680 0.100
Globulin 22.50 ± 3.86 24.58 ± 4.90 −1.426 0.160
Triglycerides 5.34 ± 8.51 1.32 ± 0.80 2.617 0.013*
Cholesterol 3.82 ± 1.36 3.08 ± 2.20 1.619 0.114
LDL 2.17 ± 1.00 1.91 ± 0.93 0.754 0.455
HDL 1.09 ± 0.43 0.78 ± 0.34 2.304 0.027*
Apolipoprotein A1 1.01 ± 0.38 0.88 ± 0.34 1.020 0.314
Apolipoprotein B 0.82 ± 0.35 0.67 ± 0.28 1.371 0.179

*P < 0.05.
BMI, body mass index; IL-4, interleukin 4; IL-10, interleukin 10; NEU, neutrophils; HGB, hemoglobin; PLT, platelets; LDH, lactate dehydrogenase; ALP, alkaline phosphatase; LDL, low
density lipoprotein; HDL, high density lipoprotein.

TABLE 2 | Comparison of demographics, prognosis grouping, cytokines and clinical details between the two groups of AML (Means ± SD).

Index AML group C (n =
16)

AML group B (n =
20)

χ2/t p value

Gender, (male/female) 11/5 9/11 2.031 0.154
Age (years) 47.19 ± 17.14 48.10 ± 22.65 −0.133 0.895
FAB type, (M1/M2/M3/M4/M5) 3/3/4/2/4 2/6/4/3/5 1.080 0.897
BMI 20.34 ± 2.62 20.45 ± 2.75 −0.127 0.899
Bone marrow blasts (%) 53.58 ± 33.03 37.36 ± 39.13 1.159 0.257
Prognosis grouping (favorable/intermediate/adverse) 3/8/5 3/13/4 0.868 0.648
IL-4 2.19 ± 1.40 1.59 ± 1.35 1.300 0.202
IL-10 29.77 ± 71.19 12.66 ± 15.47 1.048 0.302
NEU 4.06 ± 10.96 1.63 ± 3.87 0.901 0.374
HGB 78.20 ± 22.60 74.95 ± 14.89 0.505 0.617
PLT 26.33 ± 26.51 40.79 ± 45.78 −1.086 0.286
LDH 370.00 ± 258.18 982.29 ± 1824.4 −1.150 0.262
ALP 65.51 ± 25.37 88.62 ± 49.88 −1.684 0.101
Ca2+ 2.09 ± 0.14 2.10 ± 0.22 −0.053 0.958
Creatinine 61.74 ± 22.58 61.85 ± 24.45 −0.014 0.989
Albumin 34.81 ± 5.88 34.58 ± 5.45 0.117 0.908
Globulin 24.56 ± 3.81 24.60 ± 5.72 −0.023 0.982
Triglycerides 1.03 ± 0.62 1.54 ± 0.86 -1.791 0.084
Cholesterol 3.17 ± 1.46 3.02 ± 1.00 0.336 0.739
LDL 2.05 ± 1.11 1.80 ± 0.79 0.700 0.490
HDL 0.79 ± 0.39 0.77 ± 0.32 0.188 0.852
Apolipoprotein A1 0.87 ± 0.40 0.90 ± 0.29 −0.233 0.818
Apolipoprotein B 0.71 ± 0.35 0.64 ± 0.21 0.678 0.504

BMI, body mass index; IL-4, interleukin 4; IL-10, interleukin 10; NEU, neutrophils; HGB, hemoglobin; PLT, platelets; LDH, lactate dehydrogenase; ALP, alkaline phosphatase; LDL, low
density lipoprotein; HDL, high density lipoprotein.
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biomarkers was performed by R (version 3.6.1) and the metabolic
pathways were identified using the KEGG database.

3 RESULTS

3.1 Clinical Features of 50 Samples of Acute
Leukemia Patients
The 50 cases of acute leukemia include 14 cases of acute
lymphoblastic leukemia and 36 cases of acute myeloid
leukemia. The average age of 50 leukemia patients is 46 years
and a median age of 48 years, Including 27 cases of males with an
average age of 47.8 ± 21.1 years, and 23 cases of females with an
average age of 44.0 ± 19.5 years. The basic blood routine and
biochemical indexes of the patient are shown in Table 1; Table,2.

3.2 Metabonomics Differences Between
Subjects With Acute Leukemia
To understand the metabolic differences between different acute
leukemia, we performed ametabolomic analysis of sera from patients
with acute leukemia. PCA, which is an unsupervised pattern
recognition analytical method based on the LC-MS data, was then
used to visualize the trends among the groups. In the PCA scores,
each point represents an individual sample, and significant
differences between patients with acute leukemia can be observed
as shown in Figures 1A,B. The model R2X parameters, which
represent the model’s ability to interpret variables, were
determined to be at 0.413 and 0.431 in the positive and negative

ion mode, respectively, which indicates that 41.3 and 43.1% of the
variables are used in building the analysis model in the positive and
negative mode, respectively. In the positive and negative ion mode,
the acute leukemia plasma PCA score could be significantly separated
into two groups (group A and group D), suggesting the existence of
serum metabolic disorder between the two groups of acute leukemia
patients. Combined with the clinical data of the patients, we found
that patients in group A were acute lymphoblastic leukemia and
patients in group D were acute myeloid leukemia. In other words,
there are significantmetabolic differences between patients with acute
lymphoblastic leukemia and patients with acute myeloid leukemia.
Patients with acute myeloid leukemia also showed significant
clustering (group B and group C), so we also analyzed the serum
metabolites of 36 patients with AML, and the PCA results were
analyzed as shown in Figures 1C,D.

To improve the classification, we introduced OPLS-DA. The
OPLS-DA score showed significant separation of ALL and AML
(Figures 2A,B), indicating significant metabolic differences between
them, so as the AML groups (Figures 2G,H). This finding is
consistent with the PCA results. Score plots, which supervised the
OPLS-DA analysis, also used in our analysis. The Score plots showed
obvious separation between AML and ALL in both positive
(Figure 2C) and negative (Figure 2D) ion modes, suggesting
biochemical perturbation between AML and ALL due to the
disease. The Score plots analyzed for AML also drew such a
conclusion. Further, in order to ensure the reliability of the
results, permutation test (n = 200) was used to verify the OPLS-
DA model of metabolomics analysis. In the analysis of ALL and
AML, the intercepts of R2 and Q2 parameters reached 0.611 and

FIGURE 1 | Differentiation of metabolic profiles of serum of patients with different types of leukemia. (A,C): Principal component analysis (PCA) score plots based
on serum metabolic profiles of Acute lymphoblastic leukemia (ALL) and Acute myeloid leukemia (AML) groups in positive and negative modes. (B,D) PCA score plots
based on serum metabolic profiles of within the AML group in positive and negative modes.
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0.456, respectively, in positive ion mode, and 0.723 and 0.573,
respectively, in negative ion mode (Figures 2E,F). In the analysis
of AML, the intercepts of R2 and Q2 parameters reached 0.405 and
0.335 respectively in positive ion mode, and 0.505 and 0.413
respectively in negative ion mode (Figures 2K,L). All of those
results further indicate that no overfitting has occurred in our model.

3.3 Identification of Differential Metabolites
In order to identify different metabolites in the serum of patients
with AL, metabolic analysis software and volcano maps were
used. We set at FDR<0.05 as the significance threshold to control

the rate of false discovery. The VIP value, which was obtained
from the OPLS-DAmodel, was used to identify metabolites using
Student’s t-test to ensure that the metabolites selected were
statistically significant. The compounds for which the VIP
value was >1 and p < 0.05 were screened. Twenty-seven
metabolites (18 positive patterns and 9 negative patterns) had
the ability to distinguish between the AML and ALL groups
(groups A and D) (Figures 3A,B, Figure,4A), and 24 metabolites
(16 positive patterns and 8 negative patterns) divided AML into
two groups (groups B and C) (Figures 3C,D, Figure 4B). We
used the MS/MS fragment patterns in HMDB to search for these

FIGURE 2 | Screening of differential metabolites based on orthogonal partial least squares discriminant analysis (OPLS-DA) model. (A,B) OPLS-DA score plots
based on serum metabolic profiles of ALL and AML groups in positive and negative modes. (C,D) OPLS-DA score plots based on serum metabolic profiles of within the
AML group in positive and negative modes. (E–H) Permutation test of OPLS-DA model for different comparison groups.
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potential biomarkers, which include choline, betaine, pubescenol,
Butyl propyl disulfide and other metabolites as shown in Table 3.

3.4 Detection of Leukocyte Surface Antigen
Expression in Bone Marrow Samples by
Flow Cytometry
Flow cytometry is a technique for the quantitative analysis and
sorting of chemical components on the surface of individual cells
or within cells technique. It has the advantages of speed,
sensitivity and accuracy, and a wide range of parameters,
which are important in the diagnosis and differential diagnosis
of hematological tumors. We used flow cytometry to label the
expression of CD34, CD117, CD13, CD33, CD15 surface antigens
in leukocytes from bone marrow samples of these 50 patients and
analysed them statistically. For comparison with sample
subgroups obtained using serum metabolomics analysis.

The results showed no significant difference in the expression
rate ofantigen CD34 in patients with AML and ALL. Expression
rates of CD117, a myeloid-specific marker antigen, differ
significantly between AML and ALL patients (Figure 5,
Supplementary Figure.S1). The expression rates of antigens
CD13 and CD33 and antigen CD15 were significantly higher
in AML compared to ALL, with statistically significant differences
(Figure 5, Supplementary Figure.S1). This also validates the
reliability of the results of the subgroup of leukaemia patients by
serum metabolomics analysis. In contrast, in the two groups of
AML patients separated by serum metabolomics, there were no
significant differences in the expression rates of CD34, CD13,
CD33, CD15, or CD117 antigens (Figure 5, Supplementary
Figure.S1).

3.5 Comparison of Clinical Characteristics
and Laboratory Indexes Among Different
Groups of 50 Leukemia Patients
We used chi-square test and T test to compare the demographic
characteristics and clinical details of these 50 patients in different
groups. The differences in triglycerides and high-density
lipoproteins between 14 patients with acute lymphoblastic
leukemia and 36 patients with acute myeloid leukemia were
statistically significant. There was no statistical difference
between the two groups in laboratory indicators such as
gender, age, BMI, cytogenetic prognostic groupings at first
diagnosis, the percentage of bone marrow blasts, albumin,
globulin, peripheral blood leukocytes, hemoglobin, platelets,
etc (Table 1; Figures 6A,B). Among the 36 patients with
AML, there was no significant difference in demographic
characteristics and cytogenetic prognostic groupings at first
diagnosis, clinical test indicators between group B and group
C (Table2).

3.6 Comparison of Cytokines Related to
Tumor Burden Among Different Groups of
50 Leukemia Patients
We also used an independent sample T test to compare the
cytokines interleukin 4 (IL-4) and interleukin 10 (IL-10) between
different groups of these 50 leukemia patients, which were
obtained by flow cytometry as stated in the previous
complaint. Unfortunately, in these 50 patients with leukemia,
there was no significant statistical difference in the expression of
cytokines IL-4 and IL-10 between different groups (Table1 and
Table2).

3.7 The Relationship Between Different
Metabolites and Different Clinical
Laboratory Indexes and Cytokines in
Different Groups of 50 Cases of Leukemia
Then we analyzed the correlation between these different
metabolites and different clinical test and the cytokines, and
found that there was a significant positive correlation between
choline and triglycerides (p < 0.05), as shown in Figure 6C. The

FIGURE 3 | Candidate biomarkers in serum of patients with different
types of leukemia. (A,B): Differential metabolite volcanic map between group
A and group D in negative/positive mode.(C,D): Differential metabolite
volcanic map between B and group C in negative/positive mode. Group
A Acute lymphoblastic leukemia group D.(include group B and group C):
Acute myeloid leukemia.
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relationship between choline and betaine and cholesterol, high-
density lipoprotein, low-density lipoprotein, apolipoprotein A1,
apolipoprotein B and cytokines is shown in additional files
Figures 2,3. We did not find a significant correlation between
them (p > 0.05).

3.8 Acute Leukemia-Related Metabolic
Pathways
The effect of these screened differential metabolites on metabolic
pathways is of interest to us. Therefore, in order to test the
influence of these differential metabolites on metabolic pathways,
the KEGG pathway enrichment analysis was performed on the
differential metabolites that could be identified in the KEGG
database. As shown in Figure 7A, these metabolites are involved
in betaine metabolism, glycine and serine metabolism,
methionine metabolism, phospholipid biosynthesis, beta
oxidation of very long chain fatty acids and other metabolic
pathways.

Further, we compared and enriched these differential
metabolites with Disease associated metabolite sets (reported

in blood) by using MetaboAnalyst 5.0 software. The results
showed that ethylmalonic encephalopathy, chronic renal
failure, 2,4-dienoyl-coa reductase deficiency, carnitine
deficiency, etc. were involved in the metabolic pathways of
disease. We also analyzed the KEGG metabolic pathway that
these differential metabolites participate in, and the results
showed that the pathways involved in differential metabolites
include fatty acid, phospholipid metabolism, etc, as shown in
Figure 7B.

4 DISCUSSION

In recent reports, metabolomics techniques have been used to
study acute leukemia. There are few studies to explore the
metabolomics differences between ALL and AML. Meanwhile,
the potential value of using serum metabolites to differentiate
ALL from AML still remains unclear. It was not reported whether
the differences in metabolomics were related to clinical
laboratory-related indicators and cytokines. In our research,
we studied 50 peripheral serum samples including 14 adult

FIGURE 4 | Relationship among different types of leukemia samples, and expression patterns of potential biomarkers in different samples. (A): Relationship
between ALL and AML samples, and expression patterns of potential biomarkers in different samples. (B): Relationship within AML samples. Group A: Acute
lymphoblastic leukemia (ALL), group D (include group B and group C): Acute myeloid leukemia (AML).
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ALL patients and 36 adult AML patients using a metabolomics
approach. We used permutation test to verify the OPLS-DA
model of metabolomics analysis. Results indicate that no
overfitting occurred in our model. Therefore, the multivariate
statistical model should be effective. And we also analyzed the
bone marrow cells of these patients using flow cytometry. The
primitive cell antigen CD34, myeloid-specific marker antigen
CD117, myeloid early differentiation antigens CD13 and
CD33, and myeloid late differentiation antigen CD15 were
selected as surface antigen markers of leukocytes to validate
the sample grouping obtained by serum metabolomics analysis
(Gorczyca et al., 2011; Sandes et al., 2013). The reliability of serum
metabolomics to differentiate leukemia types was confirmed. Our
research shows that there are indeed differences in the
metabolism between acute myeloid leukemia and acute
lymphoblastic leukemia, and these differences may be related
to clinical test indicators.

In Table 3, we see that the levels of choline and betaine in the
serum of patients with acute myeloid leukemia are significantly
higher than those in lymphocytic leukemia. In recent years,
abnormal choline metabolism also has emerged as consistent
hallmarks of cancer, and can be considered as a new target for
cancer treatment (Glunde et al., 2011). Changes in choline
kinase-a, ethanolamine kinase-a, phosphatidylcholine-specific
phospholipase C and D, glycerophosphocholine
phosphodiesterase, and several choline transporters in
different types of tumor microenvironment is not exactly the
same. Changes in these different metabolic pathways have led to
differences in choline metabolism (Glunde et al., 2015). Lower
concentrations of choline may be an essential nutrient for

preventing and protecting degenerative processes such as
aging and DNA damage (Merinas-Amo et al., 2017). Choline
metabolism also shows an increasingly important position in
the diagnosis and treatment of leukemia. The research showed
that the choline level of AML patients was lower than that of
normal controls, and found that choline may be related to
cytogenetic risk (Wang Y et al., 2013). However, in our
study, there was no difference in the prognostic grouping
(initial diagnosis) based on cytogenetics and gene expression
between the AML groups (groups B and C, Table2). 50 patients
were statistically analyzed using the prognostic grouping
method based on cytogenetics. It was found that there was
also no significant statistical difference in the prognosis
grouping at the first diagnosis between the AML and ALL
groups. This suggests that we have not found that the
changes in choline levels are affected by the cytogenetics of
leukemia patients in our study, but we are already conducting
multi-center cooperation to collect more clinical samples for
repeated verification. The phenomenon called “choline
phenotype” is related to the occurrence and progression of
tumors. It is due to the abnormal choline metabolism caused
by the overexpression and over activation of ChoKα, because of
the higher levels of phosphorylcholine (PCho) and total bile
Alkali compound (tCho) (Glunde et al., 2011). Selective ChoKα
inhibitor EB-3D exhibits a potent antiproliferative activity in a
panel of T-leukemia cell lines and primary cultures of pediatric
patients (Mariotto et al., 2018). This shows that by interfering
with choline metabolism, not only can cell apoptosis be induced,
but also the sensitivity of T leukemia cells to chemotherapeutic
agents (such as dexamethasone and L-asparaginase) can be

TABLE 3 | Differences in serum metabolites between groups of ALL and AML and between groups of acute myeloid leukemia.

Metabolites p value (A/D) FC (A/D) p value (B/C) FC (B/C)

Choline <0.01 622.77 0.41 1.08
Betaine <0.01 1159.03 0.03 0.48
Butyl propyl disulfide <0.01 7.71 0.03 0.64
(3-Aminopropoxy)guanidine <0.01 4.46 0.51 0.86
1-Isothiocyanato-7-(methylthio) heptane <0.01 19.65 0.05 0.46
1-Nitroheptane <0.01 5.48 <0.01 0.44
(S)-carnitinium <0.01 0.122 0.27 0.13
Tetrahydro-2,5-furan-diacetic acid <0.01 2.97 <0.01 0.59
N-Methylcalystegine C1 <0.01 367.20 <0.01 1.48
Pubescenol <0.01 239.92 0.03 2.33
N,N,N-Trimethylethenaminium <0.01 355.02 0.06 1.52
(3-Aminopropoxy)guanidine <0.01 282.53 0.02 1.59
Thiabendazole <0.01 428.09 <0.01 0.26
(S)-carnitinium <0.01 18.07 0.02 0.62
Oxamniquine 0.02 207.85 <0.01 34.26
Methionyl-Arginine 0.55 0.63 0.02 43.00
Demethoxyfumitremorgin C 0.03 687.37 <0.01 69.46
29-Norcycloartane-3,24-dione <0.01 240.23 0.41 1.07
Buclizine 0.02 0.41 0.91 1.06
N1,N10-Dicoumaroylspermidine <0.01 9.95 0.04 0.61
Ginsenoyne N <0.01 0.32 0.89 1.16
Esculentic acid (Phytolacca) <0.01 0.09 0.92 1.06
LysoPE (20:3 (11Z,14Z,17Z)/0:0) <0.01 0.04 — —

LysoPE (0:0/22:6 (4Z,7Z,10Z,13Z,16Z,19Z)) 0.02 1137.59 <0.01 23.59
22-Angeloyltheasapogenol A <0.01 103.01 <0.01 0.53
Kuwanon Z <0.01 0.002 — —

Group A: Acute lymphoblastic leukemia, group D (include group B and group C):Acute myeloid leukemia. FC, fold changes.
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enhanced (Mariotto et al., 2018). Betaine is a methyl donor
formed by oxidation of choline (Roe et al., 2017), it is an
isostabilizing amino acid analog. Betaine can cause oxidative
stress, cell growth inhibition, inflammation, cell morphological
changes and apoptosis in DU-145 cells in a dose-dependent

manner (Kar et al., 2019). It can be seen that betaine is also
worthy of further exploration of its anti-cancer effect in
leukemia. On the one hand, we still collect clinical samples
according to strict standards, and will further group them
according to strict cytogenetics and gene expression to

FIGURE 5 | Leukocyte surface antigen expression detected by flow cytometry. (A–D): Expression of leukocyte surface antigen CD34 (C), CD117 (D) in acute
lymphoblastic leukemia (group A); (E–H): Expression of leukocyte surface antigen CD34 (G), CD117 H in acute myeloid leukemia (group B); (I–L): Expression of
leukocyte surface antigen CD34 (K), CD117 (L) in acutemyeloid leukemia (group C); (M): Expression of leukocyte surface antigens CD34, CD117, CD13, CD33, CD15 in
AML (group D) and ALL (group A). (N): Expression of leukocyte surface antigens CD34, CD117, CD13, CD33, CD15 between AML groups (groups B and C).
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explore the relationship between them and serum choline and
betaine in patients with leukemia, and the stability of choline
and betaine as diagnostic markers. We are full of interest in the
role and mechanism of betaine and choline in the occurrence
and development of leukemia. Considering both the complexity
of occurrence and development of tumor, in the subsequent
experiments, we will conduct cell experiments to clarify the
influence of betaine and choline on the internal and external

metabonomics of leukemia cells. At the same time, the leukemia
mice model was established, discussed under the condition of
the tumor microenvironment, betaine and choline in its role in
the development of disease and the corresponding mechanism.

As we all know leukemia is a malignant disease of the blood
system, studies have shown that its way of evading tumor
immune surveillance is mainly related to the inhibition of
natural killer (NK) cells and macrophages (Jaiswal et al., 2009;
Al-Matary et al., 2016). ILs have important functions such as
promoting lymphocyte differentiation and regulating cell
proliferation (Makavos et al., 2020). IL-4 is a pleiotropic
cytokine that can regulate a variety of immunological
processes under physiological conditions (Kiniwa et al., 2016).
Interestingly, IL-4 has two completely opposite effects in
regulating mouse phagocytosis, it enhances macrophage-
mediated killing of leukemia cells, but also induces CD47
expression, protecting target cells from excessive phagocytosis
(Pena-Martinez et al., 2021). IL-10 is a key cytokine that regulates
the intensity and duration of the immune response to infection
(Couper et al., 2008) studies have shown that its high level is
related to the risk of children suffering from ALL. IL-10 gene
polymorphism is significantly associated with the susceptibility
and pathogenesis of ALL in childhood (Liu et al., 2020). So we
used flow cytometry to detect IL-4 and IL-10 in 50 leukemia
patients, and compared their differences between different
groups. But it was found that there was no significant
difference in the levels of IL4 and IL10 between acute
lymphoblastic leukemia (group A) and acute myeloid leukemia
(group D), so as different groups in AML (group B and C).

Then we compared the differences in laboratory indicators
between different leukemia groups. It was found that the lipid
profile between the group A (ALL) and D (AML). was different.
The triglycerides and high-density lipoproteins of ALL patients
were significantly higher than those of AML patients, and the
difference was statistically significant, this is consistent with the

FIGURE 6 | Comparison of clinical data and correlation analysis of
metabolites between different leukemia groups. (A): Comparison of High
density lipoprotein between acute lymphoblastic leukemia and acute myeloid
leukemia; (B): Comparison of High density lipoprotein between acute
lymphoblastic leukemia and acute myeloid leukemia; (C): Comparison of High
density lipoprotein and choline.

FIGURE 7 | The enrichment analysis of potential biomarkers. (A): KEGG pathway enrichment analysis of potential biomarkers, (B): Disease-related pathway
enrichment analysis of potential biomarkers.

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 79404211

Xiong et al. The Taxonomic Features of Leukemia

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


research of Hina Usman et al. (2015). Hypertriglyceridemia can
be used as one of the diagnostic criteria for hemophagocytic
lymphohistiocytosis (HLH) associated with certain malignant
tumors (Henter et al., 2007). Some studies believe that the
degree of lipid abnormalities in patients with ALL and non-
Hodgkin’s lymphoma is directly related to the potential tumor
burden, especially related to bone marrow involvement (Spiegel
et al., 1982). Leukemia patients receiving drug chemotherapy may
also affect their blood lipid profile. Studies have shown that the
levels of low-density lipoprotein, cholesterol and triglycerides in
patients with chronic myeloid leukemia treated with ponatinib
for 3 months are significantly increased (Caocci et al., 2020), and
the use of l-asparaginase in the treatment of ALL is also associated
with severe hyperlipidemia (Bhojwani et al., 2014). A prospective
study conducted in children with ALL showed that dyslipidemia
returned to normal after completing chemotherapy (Halton et al.,
1998). These findings about dyslipidemia suggest that the blood
lipid profile of patients with leukemia may be a diagnostic/
prognostic factor in the treatment of acute leukemia. In the
exploration of leukemia resistance to chemotherapy, some
studies have found that renin-angiotensin system (RAS) gene
can divide AML patients into different subtypes, and may also be
a biomarker of AML drug sensitivity and prognosis (Turk et al.,
2020). Excitingly, it has been reported that inhibition of RAS
remodels the triacylglycerol network (Sas et al., 2021). This makes
our findings worth examining in larger cohorts to determine the
association between lipid profiles and leukemia metabolism and
the underlying mechanisms. Finally, we further explored the
correlation between the differential metabolites of ALL and
AML and the patients’ blood lipids and cytokines, and found
that there is a significant correlation between the choline and
triglycerides. However, there is no significant correlation between
the levels of IL-4 and IL-10 and the expression of choline and
betaine. Lipid overload may disrupt choline metabolism (Yan
et al., 2012). It has been reported that, relative to the effect of
placebo, the choline metabolite betaine increases plasma LDL-
cholesterol concentration and increases the total cholesterol/
HDL-cholesterol ratio (Olthof et al., 2005). In a study on
cardiovascular metabolism, it was found that higher plasma
phosphatidylcholine concentrations were associated with
higher LDL cholesterol and triglycerides (Roe et al., 2017).
Because phosphatidylcholine biosynthesis in the liver is
involved in the assembly and secretion of lipoprotein particles
(Cole et al., 2012). Therefore, our results show that the correlation
between triglycerides and choline can be explained. The finding
also suggests the mechanism of choline metabolism disorder in
leukemia may be closely related to lipid metabolism. We will
verify this in subsequent in vivo and in vitro experiments and
conduct in-depth exploration of the mechanism.

In order to better understand the pathways of action of the
different metabolites between the above-mentioned different
types of leukemia, we carried out KEGG enrichment analysis. As
seen in Figures 3G–I, the KEGG enrichment pathways of
different metabolites between different types of leukemia are
mainly concentrated in amino acid metabolism (glycine and
serine metabolism, methionine metabolism), lipid metabolism
(phospholipid biosynthesis and beta oxidation of very long

chain fatty acids), betaine metabolism and so on. Leukemia
cells often rely on specific amino acids for survival, and it is the
deficiency of these specific amino acids that provides treatment
opportunities for different types of leukemia (Tabe et al., 2019).
Amino acids are not only components of proteins but also
intermediate metabolites fueling multiple biosynthetic
pathways (Tabe et al., 2019). Report shows the proliferation
of T-ALL cell lines is dependent on Phosphoserine phosphatase
(PSPH), it is generally up-regulated in ALL patients and is
associated with high levels of serine and glycine in xenograft
mice (Kampen et al., 2019). Serine provides precursors to
produce lipids, purines, pyrimidines and antioxidants (Reid
et al., 2018). Silence of the phosphoglycerate dehydrogenase
(PHGDH) enzyme involved in the serine biosynthesis pathway
is detrimental to the growth and survival of leukemia cells
(Nguyen et al., 2019). The synthesis of glycine uses serine as
an important substrate. It is reported that after restricting the
diet of glycine and serine, the growth of colon cancer is inhibited
(Maddocks et al., 2013). The study of Barve et al. showed that
disturbing the metabolism of methionine and
S-adenosylmethionine (SAM) can lead to significant
apoptosis and overall changes in cell methylation in AML
cells (Barve et al., 2019). Perhaps such a treatment strategy
can also be considered in leukemia.

Interestingly, there are reports of a direct correlation between
obesity and the recurrence rate of ALL children (Tabe et al.,
2019), and fat cells may play an important role in the amino acid
metabolism of leukemia. Multiple reports have shown that BM
adipocytes treated with asparaginase (ASNase) have an adverse
effect on leukemia cells, Gln synthase produced by BM fat cells is
up-regulated after chemotherapy, Adipocytes inhibit the
cytotoxic activity of ASNase by releasing Glutamine into the
leukemia microenvironment (Ehsanipour et al., 2013; Parmentier
et al., 2015). ASNase treatment can induce apoptosis by
consuming Gln, because cancer cells need a large amount of
Gln to maintain TCA replenishment and support cell survival
(DeBerardinis et al., 2007). These may further explain the reason
for the difference in lipid profile between ALL and AML in this
study. We boldly speculate that the difference in lipid profile
between ALL and AML patients may be used as an important
means of differential diagnosis and treatment entry for
lymphocytic leukemia.

Studies have shown that the difference in serum metabolites
between leukemia patients and normal controls can be
measured because the proliferation of leukemia cells requires
lipids, cholesterol and phospholipids (Wojcicki et al., 2020).
Our research results are consistent with those of Musharraf, SG
and others (Musharraf et al., 2016), choline and lipids are the
main substances responsible for the classification of leukemia.
Compared with the report of Musharraf, SG et al., we did not
only compare the differential metabolites between AML and
ALL patients, we also analyzed the correlation between these
differential metabolites and common laboratory indicators for
monitoring patient condition changes in clinical work. Find the
connection between leukemia metabolomics and clinical
practice, and establish the direction for its further
mechanism research. The abnormal metabolic pathways
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involved include fatty acid metabolism and lipoprotein changes.
In metabolomics, the function of lipids has surpassed
membrane composition and energy storage to affect gene
regulation and signal transmission (Wojcicki et al., 2020).
Experiments have proved that compared with the healthy
control group, the expression of steric acid and oleic acid in
the acute leukemia group and the acute myeloid leukemia group
are up-regulated, while the expression of palmitic acid is down-
regulated (Musharraf et al., 2017). The observation results
indicate an increase in fatty acid synthesis. It is suggested
that the role of fatty acid metabolism is helpful to the
diagnosis and treatment of hematological malignancies. After
comparing the plasma samples of 8 children with FLT3-ITD and
8 children with wild-type FLT3, it was found that the difference
in lysophospholipids was significant. Although the sample size
was small, it still suggested that phospholipid metabolism may
be related to the imbalance of gene expression (Stockard et al.,
2018). Unfortunately, our clinical laboratory indicators do not
include genes that affect lipid metabolism, and we will further
explore in future studies.

Our findings show that serum metabolomics can successfully
differentiate acute lymphoblastic leukaemia from acute myeloid
leukaemia, this was also verified with flow cytometry. Admittedly,
serum metabolomic analysis does not replace flow cytometry and
bone marrowmorphology in clinical practice for the identification of
leukaemia types. By combining this approach with existing
techniques we expect to be able to better differentiate between
types of leukaemia. And the metabolism of serum reflects the
metabolic changes of the whole body, as the most readily available
sample for clinical works; we also hope to gain a better understanding
of the physiological characteristics of leukemia. The advantage of our
study is that it combines the most common biochemical indicators in
clinical work to explore the metabolic characteristics of leukemia,
with the expectation that metabolomics will be more easily applicable
to clinical work. We present an opportunity to uncover the
underlying mechanisms of molecules (choline and betaine) that
may differentiate between different leukemia types through lipid
profiling. Due to the limited sample size of the single center, we were
unable to further enrich the exploration of themetabolicmarkers that
distinguish the respective subtypes in AML and ALL. Leukemia is a
very heterogeneous hematological tumor, and there are individual
differences in the bonemarrowmicroenvironment. Therefore, even if
we have established strict inclusion and exclusion criteria, the impact
of tumor heterogeneity on patient metabolism cannot be ruled out.
Next, we will further collectmore clinical samples to verify the results.
We are actively collaborating with other centers and look forward to
enriching clinical samples through multi-center collaboration. The
study screened out the different metabolites between different
leukemias, whether these differential markers can be used
clinically as the diagnostic criteria for different types of leukemias
needs further confirmation and in subsequent research through
targeted metabolomics and the correlation analysis of metabolic
differentials with leukemia classification in larger clinical samples.
Third, our study only analyzed the differential metabolites between
different leukemias. The reason for the differential metabolites
between different types of leukemia is still unclear, and the
detailed mechanism still needs further study.

5 CONCLUSION

There are obvious metabolic differences between AML and
ALL. The metabolism of choline and betaine may also be
significantly related to the patient’s blood lipid profile. The
main enrichment pathways for distinguishing differential
metabolites in different types of leukemia are amino acid
metabolism and lipid metabolism, including glycine, serine,
arginine, proline, and methionine metabolism, respectively.
Differential metabolites and lipid profiles can identify
different types of leukemia based on existing clinical
diagnostic techniques, and their rich metabolic pathways
help us to better understand the physiological
characteristics of leukemia.
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