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Ethnopharmacological studies have become increasingly valuable in the development of
botanical products and their bioactive phytochemicals as novel and effective preventive
and therapeutic strategies for various diseases including skin photoaging and
photodamage-related skin problems including abnormal pigmentation and
inflammation. Exploring the roles of phytochemicals in mitigating ultraviolet radiation
(UVR)-induced skin damage is thus of importance to offer insights into medicinal and
ethnopharmacological potential for development of novel and effective photoprotective
agents. UVR plays a role in the skin premature aging (or photoaging) or impaired skin
integrity and function through triggering various biological responses of skin cells including
apoptosis, oxidative stress, DNA damage and inflammation. In addition, melanin produced
by epidermal melanocytes play a protective role against UVR-induced skin damage and
therefore hyperpigmentation mediated by UV irradiation could reflect a sign of defensive
response of the skin to stress. However, alteration in melanin synthesis may be implicated
in skin damage, particularly in individuals with fair skin. Oxidative stress induced by UVR
contributes to the process of skin aging and inflammation through the activation of related
signaling pathways such as the mitogen-activated protein kinase (MAPK)/activator
protein-1 (AP-1), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), the
nuclear factor kappa B (NF-κB) and the signal transducer and activator of transcription
(STAT) in epidermal keratinocytes and dermal fibroblasts. ROS formation induced by UVR
also plays a role in regulation of melanogenesis in melanocytes via modulating MAPK,
PI3K/Akt and the melanocortin 1 receptor (MC1R)-microphthalmia-associated
transcription factor (MITF) signaling cascades. Additionally, nuclear factor erythroid 2-
related factor 2 (Nrf2)-regulated antioxidant defenses can affect the major signaling
pathways involved in regulation of photoaging, inflammation associated with skin
barrier dysfunction and melanogenesis. This review thus highlights the roles of
phytochemicals potentially acting as Nrf2 inducers in improving photoaging,
inflammation and hyperpigmentation via regulation of cellular homeostasis involved in
skin integrity and function. Taken together, understanding the role of phytochemicals
targeting Nrf2 in photoprotection could provide an insight into potential development of
natural products as a promising strategy to delay skin photoaging and improve skin
conditions.
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INTRODUCTION

The skin is the largest organ in the body, and one of its main
functions is to protect the body from environmental stressors
including ultraviolet radiation (UVR), which can result in
dermatological disorders, such as skin premature aging,
abnormal pigmentation and inflammatory reactions. UVR has
been generally known to have both beneficial and detrimental
effects on human health. While UVR plays a role in natural
synthesis of vitamin D, melanin, and various peptides in the skin
that have positive biological implications (Slominski et al., 2000;
Lin et al., 2016), excessive exposure to UVR can lead to acute and
chronic adverse effects on the health of skin and is involved in the
pathogenesis of premature aging (or photoaging) and increased
risk of photocarcinogenesis. In addition, UVR is accepted as
human carcinogen through oxidative mechanisms accountable
for increased risk of developing skin cancers including non-
melanoma and melanoma skin cancers (Tran et al., 2008). The
incidence of skin cancer has dramatically risen in particular
among fair-skinned populations, primarily due to lifestyle
changes and increased recreational exposure to UVR including
outdoor activities and sunbathing for cosmetic purposes
(Narayanan et al., 2010). Both male and female independent
of age are affected by dermatological concerns and increasingly
interested in rejuvenation and skin cancer prevention. While the
use of sunscreens is recommended in order to minimize the risk
of photoaging and other UV-related skin disorders, sunscreen
alone does not provide sufficient protection against deleterious
effects of UVR. Oxidative stress plays a crucial role in UVR-
induced photodamage via mediating multiple biological
responses including apoptosis, DNA damage, mitochondrial
dysfunction, inflammation, abnormal pigmentation and
upregulation of matrix metalloproteinases (MMPs) (such as
MMP-1) in related skin cell types including keratinocytes,
fibroblasts and melanocytes (Liebel et al., 2012; Denat et al.,
2014; Silva et al., 2017; Lohakul et al., 2021b). Therefore, cellular
and molecular regulation of antioxidant defenses to combat
oxidative stress and promote redox balance could be a
potential therapeutic and preventive strategies for
photodamaged skin.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an
important transcription factor controlling antioxidant
responses in various tissues including the skin and plays a
major role in cytoprotection against chemical and
environmental insults including UVR (Ikehata and Yamamoto,
2018). Targeting Nrf2 could improve photoaging, wound repair
and dyspigmentation as well as prevent photocarcinogenesis via
regulation of cellular homeostasis involved in skin integrity and
function (Saw et al., 2011; Gegotek and Skrzydlewska, 2015).
Phytochemicals, which are ubiquitously present in plant-based
diets and are active ingredients in several botanical drugs, have
thus gained remarkable attention as promising candidates for
effective photoprotective agents due to their abilities to activate
Nrf2 signaling-regulated redox balance and subsequently
maintain cellular homeostasis involved in skin integrity and
function. Much attention has been focused on the role of
dietary polyphenols in the repair of photodamaged skin and

prevention of solar-induced skin diseases (Surh and Na, 2008;
Saw et al., 2011; Dunaway et al., 2018). In this review, we provide
an overview of the promising roles of phytochemicals in
mitigating UVR-induced skin damage via regulation of Nrf2-
mediated antioxidant response to offer an insight into
ethnopharmacological potential for development of novel and
effective anti-photodamaging agents.

The Role of UVR-Induced Oxidative Stress
in Skin Photodamage
The skin is a primary target of oxidative stress because it is
constantly exposed to environment including UVR, which
induces reactive oxygen species (ROS) generation in the skin.
It has been well accepted that both UVA and UVB rays play a
significant role in the premature aging and photodamage of the
skin through various mechanisms involving oxidative stress
(Lephart, 2016; Gegotek et al., 2017). While UVB has
biological impact on the skin primarily by causing direct
damage to DNA and inflammation (Halliday and Lyons,
2008), UVA accounts for skin photodamage by generating
various types of ROS, such as superoxide anion radical (O2

•-),
singlet oxygen (1ΔgO2) and hydrogen peroxide (H2O2). ROS can
interact with biomolecules and interfere with cell signaling,
affecting cell survival and function of the skin cells (Dunaway
et al., 2018). Considerable studies have reported that UVA
exposure significantly led to ROS accumulation responsible for
oxidative damage to biomolecules including DNA (O’Donovan
et al., 2005), lipid (Dissemond et al., 2003) and protein in the skin
cells including fibroblasts, keratinocytes (Brem et al., 2017) and
melanocytes. Oxidative damage mediated by both UVA and UVB
is associated with apoptosis and necrosis of the skin cells
associated with sunburn reaction and photoaging process
(Didier et al., 2001; Suschek et al., 2001; Kawachi et al., 2008;
Parrado et al., 2016).

Skin Photoaging
Photoaging is characterized by epidermal thickness, termed
hyperkeratosis, due to increased keratinocyte hyperproliferation
as well as degradation or degeneration and disorganization of
collagen fibers caused by upregulation of MMPs (Quan et al., 2009;
Pittayapruek et al., 2016). In addition, dysregulated proliferation of
transformed neoplastic keratinocytes or actinic keratosis is the key
event in the progression from photoaged skin to squamous cell
carcinoma (Berman and Cockerell, 2013). UVR (both UVA and
UVB) is well accepted to play a vital role in photoaging via several
mechanisms including DNA damage, oxidative stress, apoptosis,
senescence, inflammation, immunomodulation (Rijken and
Bruijnzeel-Koomen, 2011; Brand et al., 2017) and degradation
and/or remodeling of the extracellular matrix (ECM) (Bosch et al.,
2015). Generally, the characteristic hallmarks of photoaged skin are
alterations in the ECM including accumulation of disorganized
elastin fibers and depletion of collagens, the main structural
proteins of the dermal connective tissues. Both UVA and UVB
radiation can induce hyperkeratosis and several types of MMPs
(including MMP-1 or collagenase) in mouse models of photoaging
(Chaiprasongsuk et al., 2017; Misawa et al., 2017). Several in vitro
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and in vivo studies have reported that UV irradiation stimulates
expression of MMP-1, MMP-3 and MMP-9, which are the major
UV-inducible collagenolytic enzymes, regulated at the
transcriptional level (Afaq et al., 2009; Quan et al., 2009;
Pittayapruek et al., 2016). MMPs are co-expressed in response
to various stimuli including oxidative insults, inflammatory
cytokines and growth factors (Greenlee et al., 2007; Lee et al.,
2021). MMPs are suggested to be downstream targets within
signaling pathways of upstream response genes, which encode
several signaling proteins that activate different transcription
factors capable of binding the promoters of MMP genes. The key
transcription-binding sites involved in the regulation of MMP
genes include the activator protein-1 (AP-1) site, the nuclear
factor kappa B (NF-κB) site and the signal transducer and
activator of transcription (STAT) site (Fanjul-Fernandez et al.,
2010). In addition, MMPs can be co-regulated because they share
several transcription-binding sites in their promoter sequences.
NF-κB and AP-1 are the transcription factors that can bind the
promoters of MMP-1, 3 and 9 (Watanabe et al., 2004). The AP-1
transcription complex, a family of dimeric transcription factors
composed of members of the Jun and Fos family proteins, is the
main transcription factor regulating MMP-1 gene (Angel et al.,
2001). In general, the c-Jun and c-Fos genes are activated rapidly
and transiently in response to stimuli and are thus considered
immediate-early response genes. Binding of heterodimer
complexes of c-Jun with c-Fos to the AP-1 site, which is
specific DNA sequences (5′-TGAG/CTCA-3′), termed TREs
(TPA (tetradecanoylphorbol-12-Acetate)-response elements),
is responsible for transactivation of AP-1 that regulates
MMP-1, 3 and 9 expressions (Mackay et al., 1992; Watanabe
et al., 2004). Both c-Jun and c-Fos are controlled by mitogen-
activated protein kinase (MAPK) signaling pathways which are
stimulated by extracellular stimuli including growth factors and
cytokines as well as environmental stimuli including UVR. Three
distinct types of MAPKs, ERK (extracellular signal-regulated
kinase), JNK (c-Jun NH2-terminal kinase) and p38 MAPK,
differentially affect AP-1 activity in response to various
stimuli (Karin, 1995). The ERKs generally are triggered by
growth factors and hormones as well as JNK and p38 MAPK
are activated by environmental stresses including UVR and pro-
inflammatory mediators, such as tumor necrosis factor (Chang
and Karin, 2001; Silvers et al., 2003; Whitmarsh, 2007). UVR is
suggested to primarily cause the greatest increases in JNK
activity. Upon exposure to some stimuli, phosphorylation of
c-Fos in the AP-1 complex at two C-terminal sites (Ser362 and
Ser374) by MAPKs, in particular ERK, is required for
transactivation at the specific AP-1 site (McBride and Nemer,
1998). In addition, c-Jun is activated and stabilized by JNK- and
p38-catalyzed phosphorylation at the NH2-terminal sites (Ser63
and Ser73) located within transactivation domain of c-Jun. p38
MAPK indirectly activates AP-1 by phosphorylating other
transcription factors such as AP-1 family proteins ATF2 (the
activating transcription factor) forming a heterodimer with
c-Jun, which then binds to the promoter elements in the
c-Jun gene and regulates its transcription, leading to the
subsequent upregulation of c-Jun expression and synthesis
(Pramanik et al., 2003).

ROS participates in the photoaging process through several
mechanisms including DNA damage, apoptosis, upstream
modulation of MAPK/AP-1, NF-κB and JAK (janus
kinase)-STAT signaling cascades, activation of cytokine and
growth factor receptors and immune reaction of melanocytes
and keratinocytes. Upregulation of MAPK/AP-1 signaling
results in induction of transcription and production of
MMPs (such as collagenase-1 (MMP-1), stromelysin-1
(MMP-3), and gelantinase A (MMP-2), that subsequently
degrade ECM including collagen and elastin as well as
suppress the collagen synthesis in the dermal fibroblasts.
Furthermore, keratinocytes play an indirect role in
photoaging through secreting paracrine factors, which
stimulate the signaling cascades-mediated upregulation of
MMPs in dermal fibroblasts. Several studies including ours
suggested that ROS formation is involved in the molecular
mechanisms of photoaging via activating MAPK/AP-1
signaling pathway, resulting in both upregulation of MMPs
and downregulation of procollagen I production (Li et al.,
2019). ROS induced by UVR is implicated in MAPKs-
dependent activation of AP-1 signaling, leading to
upregulation of various MMPs including MMP-1, MMP-3
and MMP-9 in both keratinocytes and fibroblasts (Rittie and
Fisher, 2002; Pittayapruek et al., 2016). Our in vitro and in
vivo studies demonstrated the role of ROS induced by UVA
exposure in upregulation of MMP-1 through activation of
MAPK/AP-1 signaling pathway in keratinocytes and mouse
skin. In addition, UVB has been shown to trigger MMP-1 and
MMP-3 expressions through ROS generation and MAPK/AP-
1 activation in irradiated keratinocytes and fibroblasts (Kim
et al., 2013; Kim et al., 2015; Lu et al., 2016). In addition, UVB
radiation is suggested to induce ROS formation, leading to
increased MMP-9 activity and expression in mouse
embryonic fibroblasts and HaCaT keratinocytes (Chang
et al., 2017; Ma et al., 2018). UVB-induced oxidative stress
was observed to activate MAPK signaling in association with
increased expression of MMP-9 in UVB-exposed dermal
fibroblasts (Gunaseelan et al., 2017). Moreover, ROS was
found to be involved in activation of p38 MAPK and
induction of MMP-9 expression in UVB-exposed HaCaT
keratinocytes (Li et al., 2017b) and mouse dermis (Li et al.,
2017b). In addition to collagen and elastin degradation by
MMPs, UVB plays a role in a reduction of procollagen type I
synthesis through activating AP-1-mediated downregulation
of transforming growth factor beta (TGF-β) signaling
(Pittayapruek et al., 2016; Gao et al., 2018a).

It should also be taken into account that photoaging of the skin
is a complex multifactorial process. Apart from ROS/MAPK/AP-
1 signaling cascades, UVR which can activate various cell surface
receptors can stimulate downstream signaling pathways that
control other different transcription factors regulating
expression of many genes involved in photoaging process.
Eventually, it is important to inhibit ECM degradation that
leads to solar scar, a process taking place with each exposure
to UV even at low doses. Since ROS serve as important second
messengers, which act upstream of MAPK/AP-1 signaling-
mediated induction of MMPs and reduction of procollagen
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implicated in pathogenesis of photoaging, controlling ROS
homeostasis could represent promising pharmacological and
molecular approaches to impede photoaging.

Skin Inflammation and Skin Barrier
Dysfunction
The skin barrier dysfunction and oxidative stress are suggested to
play a role in the development of chronic inflammatory skin
conditions (e.g., dermatitis) and alteration of wound healing
process (Wikramanayake et al., 2014). The accumulation and
alteration of external stimuli exposures result in a compromised
barrier function of the skin through cutaneous inflammation and
the imbalance of skin homeostasis (Egawa and Kabashima, 2018).
Previous studies have demonstrated that UVB irradiation has a
negative impact on epidermal morphology and barrier function
by increasing stratum corneum (SC) thickness, causing changes
in SC lipids and stimulating transepidermal water loss (Biniek
et al., 2012). ROS generation induced by UVR plays a role in
epidermal barrier dysfunction through oxidative damage to
proteins and lipids, leading to alteration of tissue structure
(Rinnerthaler et al., 2015). Regulation of Nrf2 activity has also
been proposed to offer a potential strategy to improve skin barrier
integrity by mitigating UVR-induced damage of keratinocytes
and modulating inflammatory responses of the skin.
Downregulation of Nrf2 signaling was shown to be involved in
UVB-induced upregulation of pro-inflammatory mediators such
as tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-
2), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and
interleukin-8 (IL-8) in keratinocyte HaCaT cells (Park et al.,
2021). A previous study using a mouse model of UVB-induced
photodamage revealed that basal activity of Nrf2 in keratinocytes
of normal skin is vital for improvement of skin barrier integrity
and for prevention of skin carcinogenesis. UVB-mediated
apoptosis of epidermal cells was involved in impaired skin
integrity and activation of Nrf2 was observed to protect
against UVB-induced apoptosis of basal keratinocytes in a
paracrine, glutathione (GSH)/cysteine-dependent manner.
Furthermore, enhanced levels of Nrf2-dependent genes in all
layers of epidermis in response to UVB exposure were involved in
the suppression of apoptosis in vivo (Schafer et al., 2010). The
connection between the Nrf2 and antioxidant response element
(ARE) system proved the protective pathways of skin
inflammation via the regulation of the inflammatory factors
(Saha et al., 2020). The NFE2L2 gene encoding for Nrf2
contains ARE-like sequences, providing a positive feedback
mechanism to amplify antioxidant and anti-inflammatory
signaling such as glutathione S-transferase (GST), NAD(P)H
quinone oxidoreductase-1 (NQO-1), heme oxygenase-1 (HO-
1) (Nguyen et al., 2009; Luo et al., 2018). Nrf2 has been suggested
to play a role in modulating several signaling pathways involved
in the inflammatory responses include NF-κB, MAPK, and JAK-
STAT. Previous studies have reported the crosstalk between Nrf2
and NF-κB pathway. Nrf2 negatively regulated the NF-κB
signaling pathway and proinflammatory cytokine production
by inhibiting oxidative stress-induced NF-κB and preventing
the IκB-α (NF-κB inhibitor) proteasomal degradation (Ma,

2013; Saha et al., 2020). In addition, several proinflammatory
cytokines (e.g., IL-6, TNF-α and IL-1β), growth factors (e.g.,
epidermal growth factor (EGF), fibroblast growth factor,
keratinocyte growth factor (KGF) and vascular endothelial
growth factor (VEGF) and MMPs (e.g., MMP-2 and MMP-9)
play a role in wound repair consisting of a series of multiple stages
including inflammation, proliferation and remodeling (Shao
et al., 2019; Suntar et al., 2021). Activation of Nrf2 in response
to ROS production in inflamed tissues is thus suggested to play a
role in promoting wound healing and regulating repair-related
inflammation. Moreover, Nrf2 transcripts several genes encoding
skin barrier structural and functional components including the
keratins (KRT), the cornified envelope family members, small
proline rich proteins, secretory leukocyte protease inhibitor, and
the EGF family member epigen (Rojo de la Vega et al., 2017). In
addition to Nrf2, STAT3 (in cell proliferation and
differentiation), Smad proteins (in collagen production) and
Forkhead box protein N1 (FOXN1) (in re-epithelization) are
important transcriptional regulators involved in the process of
wound repair. Furthermore, without involvement of
inflammatory cells, upregulation of Nrf2 activity and its target
antioxidant NQO-1 or HO-1 was demonstrated to promote the
migration of corneal epithelial cells during wound repair in vitro
and in vivo (Hayashi et al., 2013). In response to ROS produced in
the early phase of wound repair, upregulation of Nrf2 as a target
of KGF in keratinocytes is involved in the healing process in
association with modulating proinflammatory cytokine IL-1, IL-
6, and TNF-α and TGF-β1 and VEGF in vitro and in vivo (Braun
et al., 2002). Nevertheless, the regulatory role of Nrf2 in epidermal
homeostasis is complex and needs further clarification as
prolonged activation of Nrf2 in keratinocytes could interfere
skin homeostasis. Previous in vitro and in vivo studies
demonstrated that increased activity of Nrf2 in keratinocytes
resulted in epithelial abnormalities, altered epidermal barrier and
development of hyperkeratosis (Kypriotou et al., 2012; Schafer
et al., 2012).

Skin Hyperpigmentation
While melanin plays a crucial role in protecting the skin against
harmful effects of UVR, excessive production of melanin could be
detrimental because melanin precursors and intermediate
metabolites produced during melanogenesis in response to
UVR exert phototoxic properties (Schmitz et al., 1995).
Whereas hyperpigmentation mediated by UV irradiation could
reflect a sign of defensive response of the skin to stress, alteration
in melanin synthesis may be implicated in skin damage,
particularly in individuals with fair skin. UVR-dependent
elevated melanogenesis has been suggested to be biologically
harmful, genotoxic and contributed to development of
melanoma skin cancer, especially in lightly pigmented
individuals. The incidence of skin cancer has dramatically
risen in particular among fair-skinned populations, primarily
due to lifestyle changes and increased recreational exposure to
UVR including outdoor activities and sunbathing for cosmetic
purposes (Narayanan et al., 2010; D’Orazio et al., 2013; Watson
et al., 2016). Furthermore, the growth of skin fairness products is
dramatic particularly in Asia and Africa, although the use of skin

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8238814

Chaiprasongsuk and Panich Photoprotection by Phytochemicals via Nrf2

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


bleaching products is associated with adverse side effects (Shroff
et al., 2017). Thus, there is a need to develop effective and safe
strategies for improvement of skin dyspigmentation or uneven
complexion. Melanogenesis in melanocytes is a complex
biosynthetic process involving the tyrosinase-catalyzed
oxidation of tyrosine. Two main types of melanin,
pheomelanin and eumelanin, are found in human skin and
hair. Eumelanin is the brown/black insoluble pigment,
characterizing dark phenotypes, and pheomelanin is the red/
yellow, sulfur-containing pigment, predominating in red-haired
individuals (Slominski et al., 2004). Eumelanin functions as a UV
absorbent and subsequently has photoprotective action.
Pheomelanin is photolabile and can produce ROS as by-
products that lead to further DNA damage and is thus
suggested to be carcinogenic following UVR (Brenner and
Hearing, 2008).

Tyrosinase, a copper-containing membrane-bound located in
melanosomes, catalyzes hydroxylation of L-tyrosine to L-DOPA,
which is the first and the rate-limiting step of melanogenesis for
both eumelanin and pheomelanin. In addition to tyrosinase,
crucial enzymes involved in eumelanin synthesis include
tyrosinase related proteins (TRP-1) and dopachrome
tautomerase (DCT or TRP-2). Pheomelanin is produced via
benzothiazine intermediates deriving from the oxidative
polymerization of cysteinyl dopa derivatives generated through
the condensation of the cysteine or GSH with the dopaquinone
(Lu et al., 2021). Environmental stimuli (e.g., UVR and drugs),
endogenous factors (e.g., hormone and mediators) and genetic
factors can influence melanogenesis regulated by tyrosinase via
various signal pathways, primarily the melanocortin 1 receptor
(MC1R)-microphthalmia-associated transcription factor (MITF)
signaling. MC1R is a G protein-coupled receptor that controls the
quantity and quality of melanin synthesized in melanocytes.
Important agonists of MC1-R acting as the main intrinsic
regulator of pigmentation are peptide hormones and
neuropeptides including stimulating hormone (α-MSH),
endothelin-1 (ET-1) and adrenocorticotropic hormone
(ACTH), which are cleavage products of proopiomelanocortin
(POMC) (Lin and Fisher, 2007). The major signal transduction
pathways that mediate the regulation of melanogenesis involve
the binding of agonists to MC1R that trigger events inside
melanocytes through raising intracellular cyclic 3′-5′-cyclic
adenosine monophosphate (cAMP) and activating the
adenylate cyclase enzyme, protein kinase A (PKA), leading to
phosphorylation of the cAMP responsive binding element
(CREB), which promotes the activation of MITF, which is the
master transcription factor that regulates expression of several
melanogenic genes including tyrosinase, TYRP1 and TYRP2.
Moreover, upon activation of MC1R, enhanced levels of cAMP
and subsequent activation of PKA were observed to activate the
MAPK signaling cascades including p38, leading to activation of
MITF (Smalley and Eisen, 2000). However, inhibition of MC1R
in normal melanocytes and melanoma cells was observed to
trigger PI3K/Akt and MAPK/ERK pathways, leading to
inhibition of MITF and subsequent suppression of
melanogenesis (Chae et al., 2017; Wu et al., 2018).
Mechanisms underlying the role of phytochemicals in

regulating pigmentation involve the direct suppression of
tyrosinase activity and/or gene expression, direct scavenging of
ROS, promotion of Nrf2-regulated antioxidant defense and
inhibition of signaling pathways involved in inflammatory
responses (Vomund et al., 2017; Boo, 2019). Nrf2 is suggested
to play a role in modulating crucial signaling pathways including
MAPK, PI3K/Akt and MC1R-MITF signaling cascades involved
in regulation of melanin synthesis (Shin et al., 2014;
Chaiprasongsuk et al., 2016). Moreover, exposure of the skin
to UVR can stimulate keratinocytes to secrete hormones
including ACTH, ET-1, α-MSH that bind to MC1R, activating
MITF and upregulating melanogenesis-related proteins.
Activation of Nrf2 has been observed to suppress the
paracrine factors (such as α-MSH) derived from keratinocytes
that results in downregulation of signaling pathways (including
the cAMP/CREB/MITF pathway) involved in melanogenesis in
melanocytes (Hseu et al., 2020; Chen SJ. et al., 2021). Therefore,
application of compounds having abilities to activate Nrf2 might
represent a promising approach to prevent and treat
hyperpigmentation disorders.

Moreover, in response to UVR, melanogenesis acts as a shield
against the harmful effect of UVR on the skin and thus
approaches promoting melanin production can mitigate UVR-
induced melanocyte damage. We previously demonstrated the
role of Nrf2 in regulating the release of paracrine factor α-MSH by
keratinocytes that influenced UVB-mediated melanocyte
responses including DNA damage, oxidative stress, apoptosis
and inflammation (Jeayeng et al., 2017). Several natural
compounds such as flavonoids and coumarins having abilities
to induce melanogenesis and restore melanocyte viability might
thus be useful in the prevention and treatment of
hypopigmentation disorders such as vitiligo (Niu and Aisa,
2017). Therefore, phytochemicals have been proposed to exert
beneficial effects against abnormal melanogenesis via improving
hyperpigmentation or hypopigmentation caused by disruption of
melanocyte homeostasis and/or loss of functional melanocytes.
While this review highlights the studies demonstrating the roles
of phytochemicals in improving UVR-induced
hyperpigmentation via Nrf2-dependent mechanisms, it should
be taken into account that melanocyte biology is complex and the
role of phytochemicals in regulating melanogenesis involved in
maintaining the skin homeostasis needs further clarification.

The Role of Nrf2-Regulated Antioxidant
Defense Against Cutaneous Photodamage
The primary endogenous antioxidant defenses include
antioxidant and detoxification enzymes such as catalase,
glutamate cysteine ligase (GCL) (composed of a catalytic
subunit GCLC and a modifier subunit GCLM), the rate-
limiting enzyme in GSH synthesis, glutathione peroxidase
(GPx), GST, HO-1, NQO-1 and superoxide dismutase (SOD)
regulated by various transcription factors including Nrf2 (Surh,
2003; Hseu et al., 2012). Nrf2 is a master regulator of antioxidant
and cytoprotective genes involved in the human skin adaption to
the environmental insults including UVR and thus plays a
beneficial role in maintenance of skin homeostasis. Activity of
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Nrf2 is tightly regulated by proteins including Kelch-ECH
associated protein 1 (Keap 1) and proteasome degradation
system and thus regulation of Nrf2-mediated antioxidant
response pathway is complicated. Under homeostatic
conditions, two molecules of Keap1 bound to Nrf2 is
responsible for the continuous ubiquitylation and degradation
of Nrf2. In response to Nrf2 activating stimuli or oxidative stress,
Keap1 is oxidized at critical cysteine residues, especially Cys151,
leading to dissociation of Keap1-Nrf2 that allows Nrf2 to escape
from Keap1-mediated ubiquitination. Nrf2 is then translocated
into the nucleus and binds to the ARE promoter, a cis-acting
enhancer sequence located in the 5′-flanking regions of genes
encoding phase II and antioxidant cytoprotective enzymes
including GST, NQO-1 and GCL (Schafer et al., 2010; Liu
et al., 2016; Boo, 2020b).

Nrf2 plays a vital role in maintaining redox homeostasis and
cellular metabolism in skin cells involved in the skin’s structural
integrity and function (Ikehata and Yamamoto, 2018). Oxidative
insults, such as UVR and H2O2, and electrophilic chemicals, such
as butylated hydroxyanisole and its active de-methylated
metabolite tert-butyl hydroquinone (tBHQ); phenolic
flavonoids [e.g., green tea polyphenols and epigallocatechin-3-
gallate (EGCG)]; and the naturally occurring isothiocyanates
including sulforaphane (SFN) and curcumin, can stimulate
Nrf2 activity via modification of Keap1 cysteine residues,
suggested as the stress sensors for Nrf2 activator (Baird and
Yamamoto, 2020). The cysteine modifications result in a
conformational change in the associated motif of Keap1–Nrf2
that facilitates the dissociation of Nrf2 from Keap1 and
subsequently Nrf2 nuclear translocation (Kong et al., 2001).
Generally, various environmental stressors including UVR lead
to post-translational activation of Nrf2 through Keap1
inactivation. The upregulation of Nrf2-mediated antioxidant
defense system was demonstrated in vitro and in vivo to
protect the human skin from harmful effects of UVR. UVA-1-
mediated lipid oxidation induces expression of antioxidant
response genes, which is dependent on the redox-regulated
transcription factor Nrf2 in dermal fibroblasts (Gruber et al.,
2010). Exposure of keratinocytes (including primary human
epidermal keratinocytes and HaCaT keratinocyte cell lines) to
UVA (20 J/cm2) increased Nrf2 activity via enhancing Keap1
expression. UVA exposure led to stimulation of Nrf2 activity and
its target proteins (HO-1, NQO-1, GST) in HaCaT keratinocytes
and dermal fibroblasts, although Nrf2 activity was minimally
affected in UVA-irradiated primary keratinocytes (Rysava et al.,
2020). In fact, the regulatory role of Nrf2 in skin cell survival and
function affected by UVR is complex because UVR can either
upregulate or downregulate Nrf2-mediated antioxidant defense
in various skin cell types. Changes in the Nrf2 activity are
dynamic and dependent on types of UV ray, UVR’s intensity
and time following the exposure (Chaiprasongsuk et al., 2016;
Rysava et al., 2020; Rysava et al., 2021). Previous observations
indicate that both UVA and UVB downregulate Nrf2 antioxidant
signaling pathway in skin keratinocytes, fibroblasts and
melanocytes in vitro and in skin tissues in vivo. UVB exposure
led to reduced expressions of Nrf2 and its target antioxidant HO-
1 proteins in HaCaT keratinocyte cells and mouse skin in vivo

(Rodriguez-Luna et al., 2018; Rodriguez-Luna et al., 2019). UVR
was observed to downregulate antioxidant and detoxifying
enzymes including GST, NQO-1 and γ-GCS (γ-
glutamylcysteine synthetase) in the skin cells through
modulating activity of Nrf2 (Kannan and Jaiswal, 2006;
Lohakul et al., 2021b). The DNA damage or modulation of
signaling cascades (including MAPKs) that take place rapidly
in response to UVR exposure is suggested to mediate the
downregulation of Nrf2 antioxidant response pathway (Lopez-
Camarillo et al., 2012). The p38 was suggested to reduce Nrf2
nuclear translocation and its transcriptional activity (Boo, 2020b).
In addition, activation of Nrf2 signaling has been suggested to
protect against UVR-mediated skin damage via several
mechanisms including promotion of antioxidant and
cytoprotective defense, DNA repair, anti-inflammatory
signaling. Upregulation of Nrf2/HO-1 signaling accompanied
with increased activities and protein levels of catalase, GPx
and SOD was observed to suppress apoptosis induced by UVR
[UVA (3 J/cm2)+UVB (90 mJ/cm2)] via activating the PI3K/Akt
signaling pathway in the 3D skin model (Xian et al., 2019). Thus,
understanding the role of Nrf2 in the pathogenesis of skin
photodamage could give an insight into development of
potential compounds having Nrf2 inducing activity for
prevention and treatment of skin photodamage.

Phytochemicals Targeting Nrf2 in Skin
Photodamage: Development of Botanicals
and Phytochemicals as Promising
Photoprotective Agents
Several reports have highlighted the potential role of bioactive
phytochemicals of plant-based diets and botanical drugs that
have been used in ethnomedicine or reported in

FIGURE 1 | Chemical structures of the different classes of phenolic
compounds including phenolic acids, flavonoids, stilbenes and lignans.
Phenolic compounds are classified into different groups on the basis of the
number of phenolic rings they contain and of the structural elements
binding the rings to one another. They are generally divided into four classes
including phenolic acids, flavonoids, stilbenes and lignans. Phenolic acids are
further classified as hydroxyl benzoic and hydroxyl cinnamic acid derivatives
(Johnsson, 2004; Nishiumi et al., 2011).
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ethnopharmacological studies. The bioactive phytochemicals are
naturally occurring compounds in botanical products including
plants and botanical drugs which exert biological activities
providing medical and nutritional benefit. These compounds
exert antioxidant effects by directly scavenging ROS or by
promoting the antioxidant defense system through the Nrf2-
dependent pathway (L Suraweera et al., 2020). Phytochemicals
include polyphenols and the non-phenolic phytochemicals.
Phenolic compounds are classified into different groups on the
basis of the number of phenolic rings they contain and of the
structural elements binding the rings to one another. They are
generally divided into four classes including phenolic acids,
flavonoids, stilbenes and lignans (Figure 1). Phenolic acids are
further classified as hydroxyl benzoic and hydroxyl cinnamic acid
derivatives (Pandey and Rizvi, 2009). The natural sources of
polyphenols include fruits (e.g., apple, berries, cherries, grapes,
strawberries and pomegranate), vegetables, soybeans, cereals, tea,
cocoa, soy and Phlebodium aureum (L.) J.Sm. The common
flavonoids include catechins, quercetin, genistein, epicatechin,

catechin and anthocyanins (Bosch et al., 2015). The common
phenolic acids are hydroxycinnamic acids including caffeic acid
and ferulic acid as well as gallic acid (also known as 3,4,5-
trihydroxybenzoic acid). Gallic acid is the most abundant
phenolic acid found in plant-based diets (Hano and
Tungmunnithum, 2020). For non-flavonoid phenolics, the
most widely studied stilbene is resveratrol. The commonly
studied non-phenolic phytochemicals include carotenoids,
caffeine and sulforaphane (SFN) (Bosch et al., 2015).

Phytochemicals play a crucial role in photoprotection against
UVR-induced skin photodamage via UV-absorbing, antioxidant,
melanin-modulating, anti-inflammatory properties Antioxidant
phytochemicals have been demonstrated to mitigate skin
photodamage in vitro and in vivo via directly scavenging ROS,
promoting antioxidant defense capacity, modulating various
signaling pathways involved in inflammation, controlling DNA
repair, cellular viability and function of the skin (Boo, 2020a;
Garg et al., 2020). This review focuses the photoprotective role of
phytochemicals in UVR-mediated photoaging,

FIGURE 2 | The role of phytochemicals in skin photoprotection via regulation of Nrf2 signaling. Phytochemicals are naturally occurring compounds in botanical
products which exert biological activities providing medical and nutritional benefit. Oxidative stress, an imbalance in the redox state of the cell, is the result of cellular
response to various stimuli including UV and ionizing radiation, pollution, contaminants, heavy metal, pathogens, and chemical reagents. Most of the natural antioxidants
are derived from plant materials such as fruits, vegetables, grains, legumes, botanical drugs, spices and plant-based beverages (including tea, coffee, wine and
cocoa). The bioactive phytochemicals, e.g., isothiocyanates (in broccoli, brussels sprouts, cabbage and cauliflower), flavonoids, carotenoids, resveratrol and stilbinoid,
exhibit a wide range of photoprotective effects, including anti-photoaging, anti-inflammation, and anti-melanogenesis. These protective effects involve activation of
nuclear factor erythroid 2-related factor 2 related to the antioxidant response element (Nrf2-ARE) signaling pathway that regulates expression of its downstream target
genes including glutamate cysteine ligase (GCL), glutathione S-transferase (GST), NAD(P)H quinone oxidoreductase-1 (NQO-1), heme oxygenase-1 (HO-1) and other
antioxidant genes, to cope with various stressors including UVR. The thick arrows and bar-headed lines mean activation and inhibition of the pathway, respectively. The
dash arrow means modulation of Nrf2 signaling by ROS levels.
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hyperpigmentation and inflammation affecting skin barrier
integrity via Nrf2-dependent pathway (Figure 2). The
phytochemicals as electrophiles can promote cytoprotective
proteins and antioxidant defenses via upregulating Nrf2
signaling. Keap1 and Cul3 comprise a unique ubiquitin E3
ligase responsible for degradation of Nrf2. Keap1 is a
homodimeric protein belonging to the BTB (Broad complex,
Tramtrack, Bric-á-brac)-Kelch family of proteins, which are
named Kelch-like 1 to 42 (KLHL1–42). The BTB domain of
Keap1 is necessary for Keap1 homodimerization and for
mediating interactions with cul3/Rbx1 E3 ubiquitin ligase
system. The BTB domain contains reactive cysteine residue
responsible for interaction with electrophiles and thus plays a
crucial role in sensing environmental electrophiles. Post-
translational modifications of the highly reactive Cys 151 in
Keap1 result in dimerization of Keap1, resulting in loss of
Nrf2 ubiquitination, which stabilize the Nrf2 proteasomal
degradation (Shin et al., 2020) and subsequent accumulation
of Nrf2 and activation of the Nrf2-driven cytoprotective gene
machinery (Cleasby et al., 2014). Phytochemicals, which are thiol-
reactive electrophiles, covalently bind to the cysteine residue(s) in
the dimerization domain of Keap1. Then, the activated ligase
complex fails to degrade Nrf2, allowing the transcriptional
activation of Nrf2 target genes (Yamamoto et al., 2008). Well-
known Nrf2 activators including the isothiocyanate SFN, the
alkylating agent iodoacetamide, tBHQ and diethylmaleate were
demonstrated to modify C151 in Keap1, that mediates
proteasomal degradation, leading to Nrf2 stabilization and
enhancing its nuclear accumulation (Deshmukh et al., 2017;
Dayalan Naidu et al., 2018; Dayalan Naidu and Dinkova-
Kostova, 2020; Taguchi and Yamamoto, 2020).

In addition to the role of phytochemicals as indirect
antioxidants by upregulating antioxidant genes,
phytochemicals can act as direct antioxidants by their ROS
scavenging activities (Dinkova-Kostova and Talalay, 2008).
Direct antioxidants, such as (–)-epicatechin-3-gallate and
carotenoids (i.e., β-carotene and lycopene) can protect skin
cells from ROS-induced damage to the skin cells. Their
protective effects are short-lived and involve their abilities to
neutralize ROS. ROS is involved in regulating the activity of
Nrf2 via several mechanisms. Keap1 is considered as a cysteine-
based sensor for a variety of endogenous and exogenous stressors
including electrophiles and oxidants. ROS is involved in
modulate Nrf2 activity via Keap-1-dependent and independent
mechanisms. For Keap1-dependent mechanism, ROS (e.g.,
H2O2) has been demonstrated to promote Nrf2 activity via
oxidative modification of Keap1 cysteines, leading to the
release of Nrf2 and allowing its nuclear translocation
(Espinosa-Diez et al., 2015; Suzuki et al., 2019). For Keap1-
independent regulation of Nrf2 activity, MAPKs and glycogen
synthase kinase-3 (GSK-3) are suggested to play a role in
posttranslational modifications of Nrf2 via phosphorylation
accountable for the alterations in its binding to the proteins
involved in controlling Nrf2 stability and subsequent
transcriptional activity (He et al., 2020). For instance, GSK-3
activation can stimulate Nrf2 nuclear export as well as
ubiquitination and degradation, leading to downregulation of

the Nrf2/ARE signaling pathway of brain ischemia and
reperfusion injury (Chen et al., 2016). In addition, suppression
of GSK-3 by activation of upstream phosphoinositide 3-kinase-
protein kinase B/Akt (PI3K-PKB/Akt) results in Nrf2
stabilization. Activation of ERK leads to Nrf2 downregulation
in diabetic hearts in response to oxidative stress (Tan et al., 2011).
Thus, it is possible that ROS which can act as second messengers
in protein kinase cascades also have a regulatory role in Nrf2
activity via Keap1-independent manner. Phytochemical
polyphenols that act as both pro-oxidants through
autoxidation to generate ROS (Babich et al., 2011) and direct
antioxidants that can increase and decrease cellar ROS levels can
affect Nrf2 activity via both Keap1-dependent and -independent
manners.

In fact, skin is the largest body organ that is continuously
exposed to environmental stressors including UVR. Oxidative
stress induced by UVR plays a role in the stress responses of
keratinocytes, melanocytes and fibroblasts responsible for
photodamaged skin. Hence, development of phytochemicals
that can activate the Nrf2 transcription factor is considered a
promising pharmacological strategy to prevent and treat UVR-
induced skin damage. The phytochemical derivatives that are
effective for these photoprotective strategies include polyphenols,
flavonoids, non-flavonoids and non-phenolic derivatives. The
phytochemicals having ROS scavenging properties could
suppress UVB-induced MMP-1 expression in HaCaT cells and
human dermal fibroblasts and promote type I procollagen
production in human dermal fibroblasts via downregulation of
MAPK/AP-1 signaling cascades in association with upregulation
of Nrf2 signaling (Kim et al., 2015). Moreover, botanical extracts
including extracts of sunflower (Helianthus annuus L.) (Hwang
et al., 2019), cherry blossoms (Li et al., 2018) and Foeniculum
vulgare Mill. (Sun et al., 2016), which are rich sources of
antioxidant phytochemicals, were observed to exert the
protective effect against UVB-induced ROS formation, MMPs
(MMP-1 and MMP-3) production and procollagen type I
depletion via downregulation of MAPK signaling in
association with upregulation of Nrf2 activity in human
dermal fibroblasts. The anti-photoaging actions of the
sunflower extract were also related to suppression of UVB-
induced inflammatory cytokines including IL-6, COX-2, iNOS
(inducible nitric oxide synthase), and TNF-α production (Hwang
et al., 2019). In addition, the phytochemicals acting as direct or
indirect Nrf2 inducers were demonstrated to exert the anti-
photoaging effects via downregulation of MMPs including
MMP-1 via MAPK/AP-1 signaling pathways in mouse skin
(Sun et al., 2016; Li et al., 2018). Thus, indirect or direct
targeting of Nrf2-dependent antioxidant response could offer a
promising pharmacological strategy for prevention and
inhibition of skin photodamage. The crosstalk between Nrf2
and other signaling pathways (e.g., MAPK/AP-1 pathway)
involved in the mechanisms underlying the protective effects
of phytochemicals on photodamaged skin were shown in
Figure 3 (Kim et al., 2015; Sun et al., 2016; Li et al., 2018;
Hwang et al., 2019; Garg et al., 2020). Several in vitro, in vivo and
clinical studies showing the protective roles of botanicals and
phytochemicals against photoaging, inflammation, skin barrier
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dysfunction and hyperpigmentation via Nrf2-dependent
mechanisms are described below and summarized in Table 1.

Isothiocyanates
Isothiocynates are sulfur-containing compounds having the
general formula R–N=C=S and are commonly found in
cruciferous vegetables from the Brassica genus including
broccoli, brussels sprouts, cabbage and cauliflower. Members
of isothiocyanates widely known as Nrf2 activators including
SFN and phenethyl isothiocyanate (PEITC) protected human ex
vivo full skin against UVR-induced sunburn cells, apoptosis and
the decreased activity of the antioxidant enzyme catalase in
correlation to upregulation of Nrf2 activity and its target genes
(γ-GCS, HO-1, NQO-1) in HaCaT keratinocytes (Kleszczynski
et al., 2013). SFN (0.6 μM/cm2) was observed to exert anti-
photoaging effects on mouse skin via inhibition of MAPK/AP-
1 signaling in UVA-irradiated mouse skin (Chaiprasongsuk et al.,
2017). Treatment of keratinocyte cell line NCTC2544 with SFN
(10 µM) combined with the Fernblock® XP (1 and 2 mg/ml),

obtained from the tropical fern Phlebodium aureum (L.) J.Sm.,
substantially suppressed the production of MMP-1, MMP-3 and
IL-1 in association with a decrease in ROS production. The SFN
(5 and 10 µM) and Fernblock® XP (1 mg/ml) combination also
showed inhibitory effects on melanoma cell growth and
migration in vitro in association with the ability to inhibit the
inflammatory microenvironment and neo-angiogenesis (Serini
et al., 2020).

Benzyl isothiocyanate and 6-(Methylsulfinyl)hexyl
isothiocyanate derived from Wasabi, have been reported to
suppress a transcriptional levels of COX-2, an enzyme
synthesizing the pro-inflammatory mediators (Lee et al., 2009;
Uto et al., 2012). The disturbance of phosphorylated MAPKs
signaling, ERK, p38 kinase, and JNK, was observed in the ITCs
treatment, resulting in the downregulation of the transcription of
inflammatory genes such as COX-2, iNOS, TNF-α, IL-1β, and IL-
6 (Lee et al., 2009; Latronico et al., 2021). The effects of allyl-
isothiocyanate and SFN on the Nrf2 nuclear translocation were
associated with the downregulation of p65 protein, a subunit of

FIGURE 3 | The regulatory mechanism of Nrf2-dependent antioxidant and cytoprotective actions against photoaging, inflammation and hyperpigmentation.
Phytochemicals play a photoprotective role against skin photodamage directly via scavenging reactive oxygen species (ROS) and indirectly via activation of nuclear factor
erythroid 2-related factor 2 (Nrf2) signaling, leading to upregulation of antioxidant and cytoprotective genes. In response to ultraviolet ray (UVR)-induced oxidative stress,
ROS, produced in keratinocytes, melanocytes and fibroblasts, can modulate several related signaling pathways involved in photoaging, inflammation and
melanogenesis. Exposure of human skin to UVR causes cells to produce ROS, which can modulate the signaling pathways involved in upregulation of matrix
metalloproteinases (MMPs) which includesMMP-1/3/9, leading to collagen degradation, inflammation (nuclear factor kappa B also known as NF-κB and its downstream
signaling) and the upregulation of melanogenesis-related genes including the microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), and tyrosinase
related proteins (TRP-1). Dietary phytochemicals as natural sources of antioxidants play the protective roles against UVR-induced ROS by the inhibition of ROS formation
and the activation of Nrf2 signaling. In response to oxidative insults, Nrf2 is activated by the phosphorylation and disassociation of Nrf2 from Kelch-ECH associated
protein 1 (Keap1), a repressor protein in the cytoplasm. Then, Nrf2 translocated to the nucleus binds to the ARE in the promoter region of downstream genes encoding
antioxidant and phase II detoxifying enzymes including glutamate cysteine ligase (GCL), glutathione S-transferase (GST), NAD(P)H quinone oxidoreductase-1 (NQO-1),
heme oxygenase-1 (HO-1). The activation of Nrf2 improves oxidative status of the cells and promotes cytoprotection against skin oxidative damage and inflammation.
The black/red arrows and bar-headed lines mean activation and inhibition of the pathway, respectively. The dash arrow means dissociation of the Keap1–Nrf2 complex.
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TABLE 1 | The protective roles of botanicals and phytochemicals against photoaging, inflammation, skin barrier dysfunction and hyperpigmentation via Nrf2 regulation.

Phytochemicals Active compounds
and sources

Effects Treatment and
study model

Mechanism of action References

Isothiocyanates Sulforaphane (SFN), broccoli,
brussels sprouts, cabbage
and cauliflower

Anti-photoaging Topical administration of
SFN (0.6 μM/cm2) for
2 weeks

↓: MMP-1, 8-OHdG DNA damage,
MAPKs signaling, c-Jun, and c-Fos

Chaiprasongsuk
et al. (2017)

In vivo: BALB/c mice ↑: Nrf2 translocation, Nrf2-target
genes, collagen

SFN, broccoli, brussels
sprouts, wasabi

Anti-inflammation
and improvement of
skin barrier function

Topical administration of
SFN (2.5–10 mg/kg)

↓: Janus kinase 1/STAT3 signaling,
skin thickness and eosinophil
accumulation in atopic dermatitis
mouse skin lesions

Wu et al. (2019)

In vivo: BALB/c mice ↑: Nrf2 and Nrf2-dependent
antioxidant enzymes (HO-1)

SFN Hyper-pigmentation B16F10 cells treated with
10 µM of SFN for 6 h

↓: Tyrosinase activity, melanin
content, ROS and 8-OHdG

Chaiprasongsuk
et al. (2016)

↑: Nrf2 and Nrf2-dependent
antioxidant enzymes (GCL, GST,
NQO-1)

Flavonoids Flavanones (Hesperetin; HSP) Anti-photoaging Topical administration of
HSP (0.3, 1, and 3 mg/cm2)
for 2 weeks

↓: MMP-1, 8-OHdG DNA damage,
MAPKs signaling, c-Jun, and c-Fos

Lohakul et al.
(2021a)

In vivo: BALB/c mice ↑: Nrf2 translocation, Nrf2-target
genes, collagen

Fisetin Anti-inflammation
and improvement of
skin barrier function

Topical administration of
Fisetin (25–100 µM) for
10 weeks

↓: pro-inflammatory mediators
(COX-2, IL-6, and NF-κB),
aquaporin and filaggrin (the protein
markers of skin barrier function)

Wu et al. (2017)

In vivo: BALB/c mice ↑: Nrf2
Caffeic acid, ferulic acid,
quercetin and rutin

Hyper-pigmentation Treatment of cells with of
caffeic acid, ferulic acid,
quercetin and rutin prior to
UVA irradiation

↓: Melanogenesis Chaiprasongsuk
et al. (2016)

In vitro: B16F10 melanoma
cells

↑: Nrf2 and Nrf2 targeted genes

Ellagic acid Treatment with ellagic acid
(20–80 μM) for 24–72 h

↓: protein levels of the paracrine
factors, proopiomelanocortin
(POMC), α-MSH, and AKT/JNK/
ERK signaling

Yang et al. (2021)

In vitro: keratinocyte
HaCaT cells

↑: Nrf2 nuclear protein

Carotenoids Rosemary extract (carnosic
acid)

Anti-photoaging Pre-treatment with
rosemary extract
containing carnosic acid
(2.5–10 µM) for 6–9 h

↓: matrix metalloproteinases
(MMPs)

Calniquer et al.
(2021)

In vitro: HaCaT
keratinocytes and KERTr
keratinocytes

↑: Nrf2/ARE systems

Crystalline lycopene
preparations purified from
tomato extract (>97%),
carotenoid-rich Tomato
Nutrient Complex (TNC),
rosemary extract

Anti-inflammation
and improvement of
skin barrier function

Pre-treatment with the
different compounds at a
concentration of 5 µM

↓: NF-κB activity and IL-6 Calniquer et al.
(2021)

In vitro: HaCaT
keratinocytes

↑: ARE/Nrf2 activity

Fucoxanthin topical application of cream
containing the fucoxanthin
(0.2% w/w) to mouse skin

↓: melanin index and skin edema,
COX and IL-6

Rodriguez-Luna
et al. (2018)

In vivo: Female Swiss CD-1
mice

↑: Nrf2-dependent antioxidant
enzymes; heme oxygenase-1
(HO-1)

(Continued on following page)
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TABLE 1 | (Continued) The protective roles of botanicals and phytochemicals against photoaging, inflammation, skin barrier dysfunction and hyperpigmentation via Nrf2
regulation.

Phytochemicals Active compounds
and sources

Effects Treatment and
study model

Mechanism of action References

Resveratrol and
stilbenoid

Grape peel extract, dried
heartwood of Pterocarpus
marsupium Roxb.

Anti-photoaging Oral administration of either
2 g GPE or 2 mg
resveratrol per kg body
weight in mice

↓: skin wrinkle formation Kim et al. (2019)

In vivo: mice ↑: Nrf2-dependent antioxidant
enzymes; heme oxygenase-1
(HO-1)

Resveratrol Hyper-pigmentation Treatment of UVB-
irradiated skin with
resveratrol

↓: MITF and its target proteins
including TYR, TRP1, TRP2

Lee et al. (2014)

In vivo: Guinea Pig Skin ↑: Nrf2/HO-1 proteins
Pterostilbene extracted from
the dried heartwood of
Pterocarpus marsupium
Roxb.

Treatment with
pterostilbene

↓: melanogenesis and tyrosinase
activity

Li et al. (2017a),
Majeed et al. (2020)

In vitro: B16F10 mouse
melanoma cells

↑: Nrf2-mediated HO-1, γ-GCLC,
and NQO-1 protein expressions

Keratinocyte HaCaT cells
Pterostilbene (Pter) Anti-inflammation

and improvement of
skin barrier function

Pre-treatment with Pter (5
and 10 μM) for 24 h prior to
UVB irradiation
(300 mJ/cm2)

↓: ROS generation Li et al. (2017a)

In vitro: HaCaT
keratinocytes

↑: Nuclear translocation and
phosphorylation of Nrf2, expression
of Nrf2-dependent antioxidant
enzymes, DNA repair activity,
phosphatidylinositol-3-kinase (PI3K)
phosphorylated kinase, Akt

Sesquiterpene
lactones

Santamarine isolated from
Asteraceae scoparia,
artichoke (Cynara
scolymus L.)

Anti-photoaging Pre-treatment with
Santamarine (1–10 µM)
for 1 h

↓: ROS levels, MAPKs/AP-1, and
MMP-1/3/9, p-c-Fos and p-c-Jun

Oh et al. (2021)

In vitro: human dermal
fibroblasts

↑: collagen I, TGF-β/Smad signaling,
Nrf2-dependent intracellular
antioxidant mechanism (SOD and
HO-1)

Cynaropicrin (Cyn) Anti-inflammation
and improvement of
skin barrier function

Pre-treatment with Cyn (up
to 100 μM) prior to UVB
irradiation (50 mJ/cm2)

↓: ROS generation, TNF-α, BaP Takei et al. (2015)

In vitro: Normal human
epidermal keratinocyte
(NHEKs)

↑: Nrf2, Nrf2-dependent antioxidant
enzymes (NQO-1)

Tannins Red raspberries (Rubus
idaeus L.) extracts

Anti-photoaging Pre-treatment with Rubus
idaeus L. (1–100 µM)
for 1 h

↓: MAPK/AP-1, NF-κβ and TGF-β/
Smad

Gao et al. (2018b)

In vitro: normal human
dermal fibroblasts (NHDFs)

↑: type I procollagen and Nrf2
nuclear transfer

Alchemilla mollis (Buser)
Rothm. (AM) extract

Treatment with AM (1, 10
and 100 μg/ml) for 4 h after
UVB irradiation
(144 mJ/cm2)

↓: ROS production, TGF-β1, MMP-
1, IL-6, and nucleus NFATc1
dephosphorylation, wrinkle
formation, skin thickening, water
loss, and erythema

Hwang et al. (2018)

In vitro: NHDFs ↑: type I procollagen and elastin
expression, Nrf2-dependent
antioxidant enzymes (NQO-1 and
HO-1)

In vivo: hairless mice

Red raspberries extract (RBE) Anti-inflammation
and improvement of
skin barrier function

Pre-treatment with RBE
(62.5–1,000 μg/ml) for 48 h
prior to UVB irradiation
(100 mJ/cm2)

↓: Cell viability, epidermal thickness Wang et al. (2019)

Topical treatment with RBE
(750 μg/ml)

↑: Nrf2, Nrf2-dependent antioxidant
enzymes (catalase, SOD, NQO-1,
and HO-1)In vitro: HaCaT cells

In vivo: nude mice (ICR-
Foxn/nu strain)

(Continued on following page)
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the transcription factor NF-κB (Wagner et al., 2012). A previous
study also suggested a connection between activation of Nrf2 and
expression of keratin 16, a key intermediate cytoskeletal protein
responsible for maintaining the skin barrier integrity in response
to injury or inflammation. While genetic deletion of Nrf2
caused an early onset of hyperkeratotic lesions in Krt16 null
mice which developed palmoplantar keratoma, topical
treatment with SFN prevented the development of the skin
lesions in footpad skin in association with restoring redox
balance (Kerns et al., 2016).

Isothiocyanates including SFN and 7-methylsulfonylheptyl
isothiocyanate (7-MSI), the sulfur-rich phytochemicals found in
cruciferous vegetables, have been observed to exert anti-
melanogenic effects via downregulation of MAPKs, the main
regulatory pathways of melanogenesis (Shirasugi et al., 2010). 7-
MSI treatment significantly reduced melanogenesis in B16F1
melanoma cells via activation of ERK signaling, leading to
activation of autophagy and downregulation of MITF, tyrosinase
and TRP-1 (Kim et al., 2021). Additionally, SFN exerted protective
effects on particulate matter-induced melanogenesis via decreasing
the release of paracrine factors by keratinocytes (Ko et al., 2020).
Our previous study also revealed that the mechanisms underlying
the anti-melanogenic effects of SFN involved the activation of Nrf2-
mediated antioxidant response (Chaiprasongsuk et al., 2016).

Flavonoids
Flavonoids are most abundant polyphenols found in fruits,
vegetables, grains, chocolate and beverages including tea and wine.
This group has a common basic structure consisting of two aromatic
rings bound together by three carbon atoms forming an oxygenated
heterocycle. The flavonoids include flavanols (e.g., catechin,
epicatechin), flavonols (e.g., quercetin, kaempferol, rutin),
flavanones (e.g., hesperetin), flavones (e.g., apigenin, luteolin,
hispidulin), isoflavones (e.g., daidzein, genistein) and anthocyanins
(e.g., cyanidin) (Panche et al., 2016).

Rutin (Q-3-O-rutinoside) is a flavonol glycoside abundantly
found in plants such as tea, onions, wine, apples and berries.

Previous studies reported the protective role of rutin in aging on
human dermal fibroblasts (HDFs) via upregulation of collagen
type 1 and downregulation of MMP-1 mRNA in HDF.
Application of the rutin-containing cream also improved skin
elasticity as well as length and area of crow’s feet (Choi et al.,
2016). Furthermore, the analysis of proteome profiles revealed
that rutin treatment caused an induction of proteins involved
in the antioxidant defenses and a reduction of proteins
involved in the degradation of Nrf2 in UVB-irradiated
dermal fibroblasts (Gegotek et al., 2018). Hesperidin,
(hesperetin-7-rutinoside), and its aglycone, hesperetin,
mostly found in citrus fruits and botanical drugs, have been
demonstrated to provide in vitro and in vivo anti-photoaging
effects on the skin via stimulating collagen synthesis in
association with the antioxidant properties (Lohakul et al.,
2021a). Citrus sinensis peel extract containing hesperidin
loaded lipid nanoparticles showed photoprotective effects
on UVR-mediated induction of MMP-1 via JNK signaling,
reduction of collagen accompanied by decreased SOD protein
production as well as stimulated inflammatory markers (COX-
2, prostaglandin E2) and lipid oxidation product,
malondialdehyde (MDA), in mouse skin (Amer et al.,
2021). It was also suggested that the protective effect of a
mixture of methylated derivatives of hesperidin on UVB-
induced skin damage might involve the abilities to promote
Nrf2 nuclear translocation and mRNA levels of its target gene
GCLC and HO-1 in keratinocytes (Kuwano et al., 2015). In
addition, a clinical trial showed that a 12-week topical
application of a serum containing 0.1% hesperetin
significantly promoted skin hydration and elasticity via
enhancing the synthesis of hyaluronic acid (Sheen et al.,
2021). Moreover, hesperetin and polyherbal formula
extracts containing hesperetin topically applied to mouse
skin before UVA exposure three times per week for 2 weeks
(a total dose of 60 J/cm2) significantly attenuated MMP-1
upregulation and collagen depletion concomitant with
promoting Nrf2 activity and the level of its target proteins

TABLE 1 | (Continued) The protective roles of botanicals and phytochemicals against photoaging, inflammation, skin barrier dysfunction and hyperpigmentation via Nrf2
regulation.

Phytochemicals Active compounds
and sources

Effects Treatment and
study model

Mechanism of action References

Terpenoids: diterpene,
triterpene and
sesquiterpene

Ginsenosides compound Mx
(C-Mx) from Notoginseng
stem-leaf

Anti-photoaging Pre-treatment with the
Ginsenosides C-Mx (1–20
uM) for 3–72 h

↓: MMP-1 and 3 Liu et al. (2018)

In vitro: NHDFs were
obtained via skin biopsy
from a healthy young male
donor

↑: Nrf2, Nrf2-dependent antioxidant
enzymes (NQO-1 and HO-1),
procollagen

Ginsenoside Rg1 Anti-inflammation
and improvement of
skin barrier function

Pre-treatment with Rg1
(50 μM) for 1 h

↓: IL6 and 8 Li et al. (2016)

In vitro: HaCaT cells ↑: Nrf2, Nrf2-dependent antioxidant
enzymes (GCLC, GCLM, and HO-1)

Ginsenoside C-Y, a
Ginsenoside Rb2 Metabolite
from American Ginseng

Hyper-pigmentation Pre-treatment with C-Y (10,
20, 30 lM) for 72 h

↓: melanin content and tyrosinase
activity

Liu et al. (2019)

In vitro: NHDFs ↑: Nrf2, Nrf2-dependent antioxidant
enzymes (NQO-1 and HO-1)
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(GST and NQO-1) as well as reducing 8-hydroxy-2′-
deoxyguanosine (8-OHdG), a product of oxidatively
damaged DNA damage, in irradiated mouse skin (Lohakul
et al., 2021a). Grape fruit stem extract from Muscat Bailey A
containing catechin, epicatechin and trans-resveratrol showed
protective effects on UVB-induced destruction of collagen
fiber through reduction of MMP-1 expression in association
with a decrease in lipid peroxidation and restoration of GSH
levels in mouse skin (Cho et al., 2018).

Furthermore, flavonoids consequently affect immune
mechanisms that are essential in the development of the
inflammatory processes (Maleki et al., 2019). Treatment of
human epidermal keratinocytes (HaCaT cells) with 6-shogaol,
an active ingredient of ginger, resulted in suppressing the UVB
(180mJ/cm2)-induced iNOS, COX-2 and TNF-α, which are the
keymediators of inflammatory response, throughmodulatingNrf2
signaling (Wu et al., 2011; Du et al., 2018; Chen et al., 2019). In
addition, the flavonoids have been suggested to exert anti-
inflammatory actions in association with Nrf2 activation in vitro
and in vivo. The mechanisms underlying the anti-inflammatory
effects of flavonoids involved inhibition of production of pro-
inflammatory cytokines including IL-33, TNF-α, IL-1β, IL-6 and
downregulation of NF-κB activity (Staurengo-Ferrari et al., 2018).
Gallocatechin-silver nanoparticle was observed to improve wound
healing in diabetic rats via inhibiting TLR4/NF-κB inflammatory
signaling pathway and modulating Nrf2/HO-1 pathway (Ni et al.,
2015). The flavonol Galangin, obtained from Alpinia officinarum
Hance and propolis extracts, was able to mitigate imiquimod-
induced psoriasis-like skin inflammation in BALB/c mice via
inhibiting pro-inflammatory mediators of COX-2, iNOS, NF-κB
pathway and pro-inflammatory cytokines IL-17, IL-23, IL-1β in the
skin as well as IL-6, TNF-α in both skin and serum. The anti-
inflammatory effects of galangin were also associated with its
ability to induce Nrf2 activity (Sangaraju et al., 2021). Recent
evidence has revealed that the flavone luteolin improved impaired
healing and promoted re-epithelization of skin wound in
streptozotocin-induced diabetic rats via suppressing expressions
of inflammatory proteins including MMP-9, TNF-α, IL-6, IL-1β
and downregulating NF-κB in association with activation of Nrf2-
dependent upregulation of antioxidant enzymes (Chen LY. et al.,
2021). Topical application of a flavonoid fisetin (50 and 200 µM)
for 10 weeks to mouse skin after UVB exposure was demonstrated
to mitigate skin photodamage by inhibiting MMP-1 and MMP-
2 protein expressions and collagen degradation as well as by
improving skin barrier dysfunction. The fisetin treatment
resulted in restoring skin hydration and barrier function in
UVB-irradiated mouse skin through promoting contents of
filaggrin, a structural protein in the stratum corneum, and
aquaporins, integral epidermal cell membrane proteins,
responsible for epidermal hydration and barrier function.
The anti-photodamaging effects of fisetin are suggested to
involve upregulation of Nrf2 and downregulation of pro-
inflammatory mediators (COX-2, IL-6, and NF-κB) (Wu
et al., 2017).

We previously observed that caffeic acid, ferulic acid,
quercetin and rutin provided anti-melanogenic effects via
enhancing Nrf2-mediated antioxidant defense responses in

UVA-irradiated B16F10 cells (Chaiprasongsuk et al., 2016).
Ellagic acid was shown to suppress α-MSH-induced melanin
synthesis and tyrosinase activity by downregulating cAMP-
mediated CREB and MITF signaling in B16F10 cells. Ellagic
acid also had ability to suppress protein levels of the paracrine
factors, POMC and α-MSH, through Nrf2 activation in
keratinocyte HaCaT cells (Yang et al., 2021).

Licorice root extracts have traditionally been used for skin
problems and are suggested as one the top cosmeceutical
ingredients for hyperpigmentation (Searle et al., 2020). The root
and rhizome extracts of licorice and several flavonoids identified as
its bioactive ingredients have been suggested to provide beneficial
effects on the skin through tyrosinase inhibitory activity, ROS
scavenging activity, anti-inflammatory activity and Nrf2 inducing
activity (Ciganovic et al., 2019). Glycyrrhiza flavonoids and
licochalcone A, a major component of the licorice root extracts,
showed the inhibitory effects onmelanogenesis via activation of ERK
and the subsequent downregulation of MITF/tyrosinase pathway in
B16F10 cells. Isoliquiritigenin, a flavonoid component from the
hydrolysis products of licorice root, was observed to exert anti-
melanogenic effects on α-MSH-, ACTH- and UV-induced melanin
synthesis and on melanocyte dendricity and melanosome transport
through downregulation of melanogenic proteins including
tyrosinase, TRP-1, DCT, Rab27a and Cdc42 in melanocytes (Lv
et al., 2020).

Tannins
There are three major classes of tannins: condensed tannins (e.g.,
proanthocyanidins, flavonol-based compounds); hydrolyzable
tannins (gallotannins and ellagitannins) and phlorotannins.
Gallic acid, a chemical constituent of tannins, and its
derivatives are found in almost all organ of a plant including
bark, wood, leaf (in particular tea leaves), fruit, root and seed.

Red raspberries (Rubus idaeus L.) extracts containing high
levels of anthocyanins and ellagitannins including Sanguiin H-
6 and lambertianin C showed the protective effect on UVB-
induced photoaging in normal human dermal fibroblasts
(NHDFs). Treatment with the red raspberry extracts
resulted in a significant reduction of MMPs secretion and
production of pro-inflammatory mediator IL-6 possibly via
downregulating MAPK, NF-κβ and AP-1 as well as increased
procollagen type I production via activating the TGF-β/Smad
pathway. The anti-photoaging effects of the tannin-rich
botanical drugs involved promotion of Nrf2 activity and its
target antioxidants including HO-1 and NQO-1 (Gao et al.,
2018b). Alchemilla mollis (Buser) Rothm. ethanolic extract
possessing gallic acid showed protective effects on UVB-
induced photoaging in NHDFs and in mouse skin in vivo.
Treatment with Alchemilla mollis (Buser) Rothm. ethanolic
extract led to a substantial reduction in ROS formation as well
as MMP-1 and IL-6 promotion through downregulating AP-1
activity in NHDFs exposed to UVB (144 mJ/cm2) irradiation.
Furthermore, treatment with Alchemilla mollis (Buser)
Rothm. extract and gallic acid protected against UVB-
induced a reduction of type I procollagen levels in
association with promotion of TGF-β1 in vitro and in vivo.
Oral administration of Alchemilla mollis (Buser) Rothm.
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extract and gallic acid also improved UVB-induced wrinkle
formation, skin dryness, epidermal thickening and collagen
fiber density in hairless mice. The antioxidant mechanism
underlying the anti-photoaging effects of Alchemilla mollis
(Buser) Rothm. extract also involved the upregulation of
Nrf2/HO-1 pathway (Hwang et al., 2018). Black tea
(Fuzhuan-brick tea, rich in gallic acid and tea polyphenols)
and gallic acid were also demonstrated to provide anti-
photoaging effects via upregulation of Nrf2/HO-1 signaling
in association with activation of MAPK signaling (p38 and
ERK1/2 phosphorylation) in UVB-exposed keratinocyte
HaCaT cells (Zhao et al., 2018). Cocoa phytochemicals
including procyanidins and the flavanol catechin and
epicatechin have been suggested to have several biological
activities including antioxidant and anti-inflammatory
activities possibly responsible for their beneficial effects on
various age-related diseases including skin aging (Kim et al.,
2014). Long term consumption of cocoa beverage for 12 weeks
protected against UV-induced skin erythema and improved
skin conditions (including erythema, skin roughness and
scaling) in women (Heinrich et al., 2006). Procyanidins
showed abilities to activate Nrf2 signaling in various
in vitro and in vivo models (Truong et al., 2014). Therefore,
it is possible that mechanisms underlying the anti-photoaging
effects of procyanidins involve activation of Nrf2-regulated
antioxidant defenses.

Phlorotannins (PTNs) are tannins found primarily in brown
algae and play a role in protecting cells against UVR. PTNs applied
topically attenuated radiation-induced inflammatory responses by
downregulating NF-κB signaling and its downstream COX-2 and
inflammasome activation in amousemodel of radiation dermatitis.
PTNs also showed the abilities to promote wound healing process
by enhancing aquaporin 3 involved in epidermal hydration and
homeostasis. The mechanisms underlying the anti-inflammatory
and wound healing-promoting effects of PTNs on irradiated
mouse skin also involved upregulation of Nrf2/HO-1 signaling
(Yang et al., 2020).

Gallic acid, gallotannin, valonia tannin and extracts of plants
(e.g., Ceylon olive leaves and pomegranate peel) containing gallic
acid exerted antimelanogenic effects directly by acting as a
competitive inhibitor of tyrosinase and indirectly by inhibiting
tyrosinase via antioxidant actions that affect melanogenesis
pathway in vitro and in vivo (Chen et al., 2009; Panich et al.,
2013; Su et al., 2013; Kanlayavattanakul et al., 2020; Huang et al.,
2021; Liu et al., 2021). A randomized, double-blind, placebo-
controlled clinical trial demonstrated that continuous
administration of apple polyphenol rich in procyanidins for
12 weeks improved UV-induced skin pigmentation in heathy
women (Shoji et al., 2020). Our previous study demonstrated
that gallic acid protected against UVA (8 J/cm2)-induced
melanogenesis via modulation of Nrf2 signaling and promotion
of antioxidant defenses (including GSH, catalase, GPx and GST) in
B16F10 melanoma cells (Onkoksoong et al., 2018).

Resveratrol and its Derivatives
Resveratrol was observed to provide photoprotective effects in
UVB-induced photoaging via the antioxidant, anti-inflammatory

and antiapoptotic actions in human keratinocyte HaCaT cells and
ICR mice in vivo. The mechanism underlying its antiphotoaging
actions involves upregulation of Nrf2 signaling and the antioxidant
defenses (including HO-1, NQO-1, SOD1, GPx-4) in association
with suppression of aging markers (MMP-1 and MMP-9) and
proinflammatory mediators (IL-6, TNF-α, VEGF-B) by inhibiting
ROS-mediated MAPK and COX-2 signaling cascades (Cui et al.,
2022). Oral administration of grape peel extract and resveratrol
exerted the anti-photoaging effects on UVB-induced skin wrinkle
formation via promotion of Nrf2/HO-1 signaling cascades (Kim
et al., 2019). In addition, a formulation containing 0.4%
pterostilbene, the resveratrol analog, extracted from the dried
heartwood of Pterocarpus marsupium Roxb., showed substantial
reduction of aging markers and improvement of wrinkles, skin
hydration elasticity in healthy volunteers (Majeed et al., 2020).

Topical treatment with pterostilbene, the resveratrol analog,
suppressed an acute UVB radiation-induced skin inflammation
and prevented chronic UVB radiation-mediated carcinogenesis
in mice. The mechanisms involved in the photoprotective effects
of pterostilbene might be attributed its ability to absorb UVB,
protect against oxidative damage to DNA, protein and lipid,
promote activities of antioxidant enzymes including catalase,
SOD and GPx as well as activate Nrf2-dependent antioxidant
response (Pastore et al., 2012; Sirerol et al., 2015). Moreover,
resveratrol was observed to promote wound healing by restoring
cell proliferation and migration, along with increased Nrf2
activity and Mn-SOD expression in the diabetic rat model
(Zhou et al., 2021).

Resveratrol acting as a direct antioxidant, Nrf2 activator and
tyrosinase inhibitor has been suggested to suppress melanogenesis
(Wang et al., 2018; Boo, 2019). Resveratrol treatment led to a
substantial reduction of UVB-induced melanogenesis via
downregulation of MITF and its target proteins including TYR,
TRP1, TRP2 in correspondence to upregulation of Nrf2/HO-1
proteins in melanocytes (Jian et al., 2011). Topical
administration of 0.4% resveratryl triacetate and 0.4%
resveratryl triglycolate twice daily for up to 8 weeks after
the artificial pigmentation was shown to provide whitening
efficacy in human subjects (Ryu et al., 2015; Jo et al., 2018).
Pterostilbene, a stilbinoid, found in blueberries and grapes was
demonstrated to exert anti-melanogenic effects via promotion
of autophagy in melanocytes and downregulation of CREB
(cAMP response element-binding protein)-MITF-tyrosinase
pathway in B16F10 cells treated with HaCaT conditioned
medium. The protective effects of pterostilbene on
melanogenesis involved suppression of UVA-induced α-
MSH expression and upregulation of Nrf2-mediated HO-1,
γ-GCLC, and NQO-1 protein expressions in HaCaT cells
(Hseu et al., 2021). Additionally, the application of a 0.4%
formulation of natural pterostilbene for 4 and 8 weeks showed
the skin brightening and anti-aging effects, respectively, in
healthy volunteers in an open-label, single-arm, monocentric
efficacy study (Majeed et al., 2020).

Carotenoids
Carotenoids, which belong to the tetraterpenes family, are
liposoluble pigments responsible for the yellow, orange or red
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color of fruits, leaves and flowers. The carotenoids are divided
into carotenes, xanthophylls and lycopene, and are abundantly
present in tomato, carrots, pumpkin, seaweeds and algae (Milani
et al., 2017). The main carotenoids including astaxanthin,
canthaxanthin, β-carotene, lycopene and lutein have been
suggested to exert photoprotective effects against UVR-
induced skin photodamage via inhibition of inflammatory
responses and photoaging biomarkers as well as promotion of
antioxidant defense system in several in vitro, in vivo and clinical
studies (Aust et al., 2005; Camera et al., 2009; Cavinato et al.,
2017; Cooperstone et al., 2017; Kohandel et al., 2022). Previous
reports have suggested that the carotenoids including astaxanthin
and lycopene exert pharmacological activities including
antioxidant, anti-inflammatory and chemopreventive activities
against skin damage via activation of Nrf2 signaling (Wang et al.,
2020; Ahn and Kim, 2021; Kohandel et al., 2021).

Dietary carotenoids combined with rosemary extract containing
carnosic acid having abilities to activate Nrf2/ARE system exerted an
inhibitory effect on UVB (20–60mJ/cm2)-induced TNF-α and
MMP-1 secretion from dermal fibroblasts (Calniquer et al., 2021).
The tomato extracts rich in lycopene also protected against H2O2-
induced photodamage of fibroblasts via promotion of pro-collagen
secretion and suppression of apoptotic cell death and ROS formation
(Darawsha et al., 2021).

Lutein, a xanthophyll carotenoid obtained from green leafy
vegetables and egg yolk, has been reported to exert the anti-
inflammatory effects via modulation of oxidant-sensitive
inflammatory signaling pathways including NF-κB and STAT3
pathways and suppression of inflammatory cytokines (such as IL-
1β, IL-6, TNF-α, COX-2, iNOS) (Ahn and Kim, 2021).
Astaxanthin was demonstrated to exert anti-inflammatory
effects by suppressing the expression of pro-inflammatory
cytokines, for example, COX-2, LOX-1, NF-κB p65, TNF, and
IL-1 (Kishimoto et al., 2010). Additionally, combinations of
tomato nutrient complex containing lycopene and carotenoids
and rosemary extract containing carnosic acid were observed to
protect against UVB-induced oxidative stress, photoaging and
inflammatory responses by inhibition of NF-κB activity and IL-6
production, along with activation of the ARE/Nrf2 system using
HaCaT and KERTr keratinocyte cell lines (Calniquer et al., 2021).
Bixin, an apocarotenoid isolated from the Achiote (Bixa
Orellana L.), is one of the most consumed food colorants
and topical preparations of seed extracts of the achiote have
been in ethno-pharmacological use for treatment of wound
healing and the pathologies related to epithelial barrier
disruption. The mechanisms underlying the
pharmacological actions of bioxin in improving skin barrier
function were suggested to involve activation of Nrf2-
mediated antioxidant systems including thioredoxin (TRX)/
thioredoxin reductase (TXNRD1), regulation of peroxisome
proliferator-activated receptors (PPARs), responsible for skin
homeostasis and epithelial repair and modulation of Toll-like
receptor 4 (TLR4)/NF-κB inflammatory signaling pathway
(Rojo de la Vega et al., 2017). The marine carotenoid
fucoxanthin (found in brown seaweeds, the microalgae and
diatoms) showed anti-inflammatory actions through
inhibiting proinflammatory cytokines including TNF-α, IL-6

and IL-8 levels as well as suppressing UVB-mediated oxidative
stress in keratinocyte HaCaT cells. Moreover, topical
application of cream containing the fucoxanthin to mouse
skin protected against UVB-induced skin inflammation and
hyperplasia via downregulation of COX-2 and iNOS, along
with upregulation of Nrf2 activity and its target protein HO-1
(Rodriguez-Luna et al., 2018).

Terpenoids: Diterpene, Triterpene and
Sesquiterpene
Santamarine, a sesquiterpene lactone, isolated from sunflower
family provided anti-photoaging effects via suppression of UVA
(8 J/cm2)-induced MAPK/AP-1 pathways involved in
upregulation of MMPs and via promotion of TGF-β/Smad-
mediated collagen production in HDFs. Furthermore,
santamarine treatment led to a significant restoration of UVA-
mediated downregulation of Nrf2-dependent antioxidant
defenses including SOD-1 and HO-1 at the mRNA and
protein levels (Oh et al., 2021). Zerumbone (ZER), a natural
sesquiterpene, from Zingiber zerumbet (L.) Roscoe ex Sm.
rhizomes was demonstrated to protect against UVA
irradiation (3 J/cm2)-induced ROS formation, MMP-1 activity
and collagen III degradation in HDFs. ZER was suggested to exert
the anti-photoaging effects via downregulation of AP-1 activity
and promotion of Nrf2/ARE pathway (Hseu et al., 2019).
Furthermore, treatment of dermal fibroblasts with rosemary
extracts rich in the diterpene carnosic acid having abilities to
induce ARE/Nrf2 reporter activity protected against TNF-α-
induced MMP-1 secretion (Calniquer et al., 2021).
Ginsenosides, triterpene saponins, are major bioactive
compounds responsible for pharmacological activities of Panax
(ginseng), which has traditionally been used to treat and prevent
various conditions associated with aging including skin aging.
Previous studies demonstrated that the rare minor ginsenosides
(C-Mc and Mx), which may act as potential antiphotoaging
compounds, suppressed MMP production via regulating
MAPK/AP-1/NF-κB pathway and promoted collagen
production via the TGF-β/Smad pathway in association with
upregulation of Nrf2 signaling in UVB-irradiated human dermal
fibroblasts (Liu et al., 2018; Liu et al., 2022).

Cynaropicrin, a sesquiterpene lactone, is the major bioactive
phytochemical in the artichoke (Cynara cardunculus L.) that can
activate aryl hydrocarbon receptor (AhR), resulting in nuclear
translocation of Nrf2. Activation of AhR/Nrf2/NQO-1 pathway
by cynaropicrin was involved in its inhibitory effects on
UVB-mediated production of proinflammatory cytokines
including IL-1 and TNF-α in keratinocytes (Takei et al., 2015).
Hemistepsin A, a sesquiterpene lactone isolated from Saussurea
lyrata (Bunge) Franch., has been demonstrated to exert
pharmacological actions including anti-inflammatory and
antioxidant activities. Treatment of keratinocyte HaCaT cells
with hemistepsin A protected against H2O2-induced
cytotoxicity, DNA damage and apoptosis-mediated by
mitochondrial dysfunction via upregulation of Nrf2/HO-1
signaling pathway (Park et al., 2020). The ginseng leaf extract
rich in ginsenosides (including ginsenoside Rg1) applied topically
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tomouse skin protected against UVB-induced photoaging and skin
barrier dysfunction through suppression of MMP-2, MMP-9 and
MMP-13 protein expressions (Hong et al., 2017). Moreover,
ginsenoside Rg1 showed anti-inflammatory effects against UVB-
induced glucocorticoid resistance in keratinocyte HaCaT cells via
promotion of Nrf2 activity (Li et al., 2016).

The sesquiterpene lactone eupalinolide A and B from
Eupatorium lindleyanum DC. showed inhibitory effects
against UVB-induced melanogenesis, skin damage and
inflammatory responses in vitro and mouse skin in vivo
(Yamashita et al., 2012). Previous evidence revealed that, apart
from the anti-photoaging effect, a minor ginsenoside (C-Y) having
ability to induce Nrf2 activity was observed to exert whitening
effects by inhibiting melanin production, tyrosinase activity in
Melan-a and zebrafish embryos (Liu et al., 2019).

Cannabidinol
Cannabidiol (CBD), the second most prevalent active ingredient
in cannabis, is the non-psychoactive phytocannabinoid that has
antioxidant and anti-inflammatory effects. CBD has been
reported to provide photoprotective effects against UVA and
UVB-induced damage to skin cells including NHDFs and
keratinocyte HaCaT cells (Vacek et al., 2021). Treatment of 2D
and 3D cultured fibroblasts with CBD caused a substantial
attenuation in the levels of lipid peroxidation-derived aldehydes
(4-hydroxynonenal (HNE), MDA and acrolein-protein adducts) in
UVA (20 J/cm2)- and UVB (200 mJ/cm2)-irradiated cells (Gegotek
et al., 2019). The formation of aldehyde-protein adducts induced
by the highly reactive aldehydes could subsequently change the
structure and/or function of several proteins including main ECM
elastin in hairless mice exposed to UVA (Larroque-Cardoso et al.,
2015). In addition, 4-HNE was suggested to play a role in UVA-
induced fibroblast senescence in skin photoaging (Swiader et al.,
2021). The compounds having abilities to neutralize aldehydes and
inhibit the formation of protein adducts could thus have a
beneficial role against skin photoaging.

Moreover, the analytical chemistry revealed that CBD
compound could interact with the Nrf2/NF-κB transcriptional
activity (Jastrzab et al., 2019). The biological effects of CBD have
been found to maintain membrane integrity by preventing
protein and phospholipid modifications (Atalay et al., 2020)
and prevent the inflammatory responses (nuclear receptor
coactivator-3 and paralemmin-3) (Atalay et al., 2021).

CONCLUSION AND FUTURE
CHALLENGES: INSIGHT INTO
ETHNOPHARMACOLOGY
Ethnopharmacology is defined as “the interdisciplinary
exploration of biologically active agents traditionally employed
or observed by man” (Bruhn and Rivier, 2019). Identifying the
ingredients and exploring the effects of the ingredients are

crucial in the study of traditional medicine. Phytochemicals
are bioactive compounds in plant-based products that have
been historically used to rejuvenate the skin and alleviate skin
disorders. Bioactive compounds of plant origin have thus been
considered as invaluable sources of potential preventive or
therapeutic agents for dermatological indications due to their
pharmacological activities including antioxidant, UV
absorption and anti-inflammation. The phytochemicals
exert antioxidant effects by directly scavenging ROS or by
promoting the antioxidant defense system through activation
of Nrf2 signaling. It should also be taken into consideration
that while Nrf2 plays a crucial role in maintaining cellular
homeostasis under stress and inflammatory conditions, several
studies have discussed a detrimental aspect of Nrf2 defined as
the “dark side of Nrf2” in the cancer biology as enhanced Nrf2
activity is involved in a pro-carcinogenic effect and therapeutic
resistance of cancer cells (Sporn and Liby, 2012). Thus, dietary
phytochemicals having the potential to provide either
chemopreventive or cancer-promotive properties, depending
on the stage of carcinogenesis (L Suraweera et al., 2020). This
review discusses the protective role of Nrf2 against UVR-
induced skin photodamage and thus application of
phytochemicals acting as Nrf2 activators is regarded as a
promising strategy to prevent and treat premature aging
and photodamage-related skin problems. Targeting Nrf2-
dependent antioxidant and cytoprotective response has been
suggested to represent a promising pharmacological strategy
for development of effective and safe anti-photoaging and
photoprotective agents. Furthermore, the therapeutic
potential of phytochemicals can be limited by their poor
bioavailability and thus development of drug delivery
systems (such as nano-engineered formulations) is needed
to improve efficacy of promising bioactive compounds as
effective photoprotective agents.
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