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Cardiotonic steroids are natural compounds that present many physiological and
pharmacological functions. They bind Na+/K+-ATPase (NKA) modifying cellular ion
concentration and trigger cell signaling mechanisms without altering ion balance.
These steroids are known to modulate some immune responses, including cytokine
production, neutrophil migration, and inflammation (peripherally and in the nervous
system). Inflammation can occur in response to homeostasis perturbations and is
related to the development of many diseases, including immune-mediated diseases
and neurodegenerative disorders. Considering the neutrophils role in the general
neuroinflammatory response and that these cells can be modulated by cardiac
steroids, this work aims to review the possible regulation of neutrophilic
neuroinflammation by the cardiac steroid ouabain.

Keywords: innate immunity, inflammation, ouabain, neuroimmune interactions, neuropharmacology

OUABAIN AND NA+/K+-ATPASE

Ouabain is a cardiotonic steroid identified by Hamlyn et al. (1991) in mammalian plasma. Studies
have shown that ouabain can be produced by the adrenal gland, hypothalamus, and pituitary,
being considered a hormone (Pamnani et al., 1981; Hamlyn et al., 1991; Ferrandi et al., 1997). In
relation to the adrenal, ouabain synthesis appears to occur in the glomerulosa of the cortex (Laredo
et al., 1995), and its release can be stimulated by two different hormones, angiotensin II, or
adrenocorticotropic hormone (Laredo et al., 1994). The physiological levels of circulating ouabain
in humans are approximately 0.2 nM and, in rodents, this value can reach 0.5 nM (Blaustein and
Hamlyn, 2020).

Its receptor is the NKA, being the only established receptor for cardiotonic steroids such as
ouabain, which interacts with amino acids located in the extracellular loops of the α subunit of the
enzyme (Dvela et al., 2007). NKA is a membrane protein responsible for establishing and
maintaining high K+ and low Na+ concentrations in the intracellular environment, in addition
to maintaining cellular osmotic balance, the resting potential of most body tissues and the properties
of excitable muscle and neural cells (Blanco and Mercer, 1998). The enzyme is composed of the α
subunit, responsible for the catalytic activity and ion transport function, and the β subunit, which is
necessary for the enzyme activity, regulating the fixation of the α subunit, andmodulating the affinity
for Na+ and K+ ions. There are four α isoforms, with α1 being ubiquitously expressed, while the
α2–α4 isoforms present a more restricted cellular distribution (Markov et al., 2020). The modulating
actions of this receptor affect both the cellular ionic balance, changing different cellular functions,
such as cell migration (Ward and Becker, 1970), but also as an important signal transducer (Liu and
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Xie, 2010; Fan et al., 2017). At low concentrations (usually at
nanomolar range), ouabain can promote conformational changes
in NKA, without inhibiting the transport of sodium and
potassium (Liu et al., 2000; Xie, 2003). This process leads to
the activation/inhibition of many cell signaling proteins,
including Src, MAPKs, and NF-κB (Cui and Xie, 2017).

Therapeutically, cardiotonic steroids are usually
recommended for congestive heart failure, but only digoxin
remains in use (Alpert, 2021). Despite this, ouabain presents
many physiological and pharmacological effects that are more
studied in the cardiovascular system, in the renal and brain tissues
(reviewed in Blaustein and Hamlyn, 2020 and Bagrov et al., 2009).
Other authors also suggest a repurposing of cardiac glycosides,
including ouabain, for cancer therapeutics (Schneider et al., 2017;
Matozzo et al., 2020; Du et al., 2021). Cardiac glycosides also
modulate inflammation and autoimmune diseases (Škubník et al.,
2021). Digoxin can inhibit transcriptional factor RORγt, thus
inhibiting Th17 cells, a cell type involved in autoimmunity (Huh
et al., 2011). Another cardiac glycoside, bufalin, inhibits the
allergic inflammation by suppression of nuclear factor-kappa B
activity (Zhakeer et al., 2017).

Regarding ouabain, many immune system cells can be
modulated (Olej et al., 1994; Rodrigues-Mascarenhas et al.,
2009). In thymocytes, precursor cells of T lymphocytes,
ouabain inhibits cell proliferation (Szamel et al., 1981), induces
the expression of CD69 (Rodrigues Mascarenhas et al., 2003) and
the increase of free radicals (Smolyaninova et al., 2013). Also, in
thymocytes, ouabain also reduces the activation of the mitogen-
activated protein kinase (MAPK) p38 and the levels of the nuclear
activating factor of T cells c1 (NFAT1c) (Rodrigues-Mascarenhas
et al., 2008). Ouabain also inhibits lymphocyte mitosis.
Furthermore, it was also evidenced that ouabain negatively
modulates the number of B lymphocytes in the bone marrow,
spleen, and peripheral blood (de Paiva et al., 2011), without,
however, changing the levels of immunoglobulin G (IgG) and M
(IgM). On the other hand, ouabain induces an increase in the
number of B lymphocytes in the mesenteric lymph nodes,
probably due to the reduction in the expression of the
adhesion molecule CD62L and the chemokine receptor
CXCR5 (da Silva et al., 2016).

Other immune system cells can also be modulated by ouabain.
Nascimento et al. (2014) demonstrated that ouabain regulates the
maturation of dendritic cells. In human monocytes, ouabain
negatively regulates the expression of mCD14, a cell surface
molecule involved in the response against Gram-negative
bacteria, through the activation of the epidermal growth factor
receptor (EGRF) and MAPK p38 (Valente et al., 2009). In
addition, monocytes treated with ouabain have high levels of
CD69, HLA DR, CD86, and CD80, molecules related to cell
activation, in addition to increasing the phagocytic capacity of
these cells (Teixeira and Rumjanek, 2014). Ouabain also inhibits,
in vitro, the development of an inflammatory monocyte subtype
(mCD14+CD16+) (Valente et al., 2009) and stimulates the
production of cytokines such as IL-1α, IL-1β, TNF-α, IL- 6
and IL-10 (Foey et al., 1997; Matsumori et al., 1997; Teixeira
and Rumjanek, 2014).

Moreover, ouabain can modulate inflammation and
inflammatory cells (reviewed in Cavalcante-Silva et al., 2017).
Dysregulated migration or activation of inflammatory cells, such
as neutrophils are involved in the immunopathogenesis of many
diseases (Leliefeld et al., 2016; Hellebrekers et al., 2018;
Cavalcante-Silva et al., 2021b; Bautista-Becerril et al., 2021;
Parackova et al., 2021). Thus, modulating these cells can be a
therapeutic approach for inflammatory diseases. The ouabain
effect on neutrophil during peripheral and neuro inflammation
will be discussed below.

NEUROINFLAMMATION AND
NEUTROPHILS

For a long time, the central nervous system (CNS) was recognized
as a “privileged immune” organ due to the presence of the blood-
brain barrier (BBB), which was previously considered to be
almost impenetrable. Nevertheless, several studies have pointed
out the flexibility in the BBB in response to inflammatory stimuli,
which can generate a process known as neuroinflammation
(Kanashiro et al., 2020). Neuroinflammation is related to the
emergence of neurodegenerative diseases, such as Parkinson’s
disease, Alzheimer’s disease (AD) and cerebral ischemia as well as
its association with neuropsychiatric disorders. Thus,
neuroinflammation has been studied as an important
therapeutic target for the treatment of neurodegenerative and
neuropsychiatric diseases (Akira et al., 2006).

Inflammation in the CNS is orchestrated by resident immune
cells such as astrocytes and microglia (Doty et al., 2015), as well as
by the migration of monocytes and lymphocytes through the
BBB. (Hawkes andMcLaurin, 2009; Lampron et al., 2013). Several
studies have pointed out the relevance of neutrophils in chronic
neuroinflammatory diseases such as AD, but their role still needs
to be better elucidated. Neutrophil recruitment can cause
neuronal damage and cognitive decline in AD; however, some
granular proteins, such as CAP37, neutrophil elastase and
cathepsin G can promote Aβ cleavage, facilitating Aβ
clearance, preventing the formation of pathogenic aggregates
(reviewed in Stock et al., 2018).

CNS cells, such as astrocytes, release several chemokines
dependent on the IL-17 pathway, such as CXCL5, CXCL2, and
CXCL1, which promote neutrophil migration to the CNS.
Furthermore, IL-17−/− mice have a lower number of
neutrophils infiltrating the CNS, but the same was not
observed in the spinal cord, as neutrophil migration to the
spinal cord appears to be regulated by IFN-γ (Christy et al.,
2013; Simmons et al., 2014; Pierson et al., 2018). On the other
hand, in chronic neurodegenerative diseases such as AD,
neutrophil migration appears to be orchestrated by the
chemokines CXCL12 and CCL2 as well as by the LFA-1
integrin (Zenaro et al., 2015). Interestingly, studies in mice
have shown that blocking the LFA-1 integrin resulted in the
inhibition of neutrophil migration, as well as the activation of
microglia, resulting in reduced cognitive deficit in AD (Zenaro
et al., 2015).
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Neutrophil infiltration in post-ischemic inflammation has
been associated with exacerbation of brain injury and neuronal
damage due to release of pro-inflammatory cytokines,
production of reactive oxygen species and reactive nitrogen
species, and (neutrophil extracellular traps) NETs release.
Furthermore, these neutrophils have a hypersegmented
characteristic and their migration is dependent on the
CXCR2 neutrophil-specific chemokine receptor (Herz et al.,
2015; Neumann et al., 2015). Additionally, it was observed that
blocking through a neutralizing antiserum or selective
pharmacological inhibitor for CXCR2 prevented the
recruitment of neutrophils to the brain of hyperlipidemic
mice ApoE−/− mice (Herz et al., 2015). Furthermore, it was
observed that polymorphonuclear cells develop direct
neurotoxicity through the secretion of TNF-alpha, matrix
metalloproteinase 9, as well as through heterocellular contact,
which may thus contribute to secondary damage after brain
injury, such as cognitive impairment (Dinkel et al., 2004;
Nguyen et al., 2007). Another important point observed in
spinal cord injury models is the participation of NF-κB
signaling in neutrophil activation and infiltration, since IκB
kinase (IKK)-β conditional knockout mice showed lower
secretion of CXCL1 and the consequent neutrophil
infiltration resulted in less neuronal damage,
neuroinflammation and improvement in motor function
(Kang et al., 2011). Furthermore, Zenaro et al. showed that
neutrophil infiltration plays an important role in microglia
activation, accumulation of abnormal Aβ and tau, synaptic
dysfunction, and memory decline in the neuroinflammation
observed in AD (Zenaro et al., 2015).

On the other hand, the neuroprotective role for neutrophils in
post-ischemic inflammation has been observed by different
works. In an in vitro study conducted by Hou et al. (2019) it
was observed that while N1 neutrophils decreased neuronal
viability, N2 polarization promoted an improvement in
neuronal viability against oxygen glucosedeprivation/re-
oxygenation-induced injury, in cultured cortical neurons (Hou
et al., 2019). In addition, using an in vivomodel of injury induced
by transient occlusion of the middle cerebral artery, Hou et al.
(2019) showed that rats spontaneously regenerate over time, and
that there is a negative correlation between the proportion of N2
neutrophils and the number of degenerating neurons, in the
ipsilateral brain parenchyma (Hou et al., 2019). Furthermore, a
study conducted in mice demonstrated that rosiglitazone, a
peroxisome proliferator-activated receptor-γ (PPARy) agonist,
increased the infiltration of N2-type neutrophils, culminating in a
neuroprotective effect after stroke. Interestingly, the
neuroprotective effect of the PPARγ agonist was reversed after
neutrophil depletion, demonstrating their importance in
neuroprotection (Cuartero et al., 2013). In another study,
García-Culebras et al. (2019) demonstrated that mice deficient
in TLR4 have a greater polarization for the N2 profile, resulting in
a smaller infarct volume and neuroprotection, elucidating a role
of TLR4 signaling for neutrophil polarization during the cerebral
ischemia (García-Culebras et al., 2019). In addition, Sas et al.
showed a CD14+ Ly6Glow granulocyte with features of an
immature neutrophil with neuroregenerative and

neuroprotective properties in models of optic nerve and spinal
cord injury, resulting from the secretion of NGF and IGF-1
growth factors by CD14+ Ly6Glow cells (Sas et al., 2020).

The different findings indicate that neutrophils are highly
responsive to CNS lesions and may influence the process of
neuroinflammation and neurodegeneration, as well as
neuroprotection, affecting the development of
neurodegenerative processes. Considering the development of
neuroinflammation, ouabain emerge as a possible player in the
regulation of this process (Figure 1A), as several studies have
demonstrated the importance of digitalis and NKA in
neuroinflammatory regulation (reviewed in Orellana et al., 2016).

Studies have demonstrated an in vivo and in vitro
neuroprotective activity of ouabain. Kinoshita et al. (2014)
have observed in vivo that ouabain has a protective effect
against LPS-induced neuroinflammation in the rat
hippocampus, through a reduction in the activation and
consequent translocation of nuclear factor kappa B (NF-κB),
leading to reduction in the expression of iNOS and IL-1β.
Furthermore, it was observed that the administration of
ouabain reduced the activation of astrocytes, in the dentate
gyrus, through a reduction in the expression of glial fibrillary
acidic protein (GFAP) (Kinoshita et al., 2014). In addition,
in vitro studies of LPS-stimulated astrocytes found that
treatment with ouabain reduced the release of IL-1β
(Forshammar et al., 2011). On the other hand, an in vitro
study using LPS-stimulated rat microglial cell culture, it was
shown that treatment with Ouabain did not alter the release of
TNF-α and IL-1β, thus suggesting a lack of modulating effect of
ouabain on this cell type (Forshammar et al., 2013). Additionally,
in a recently published study, Mázala-de-Oliveira et al. (2021)
have shown that nanomolar concentrations of ouabain reduced
the expression of inflammatory receptors, such as TNFR1, TLR4
and CD14 of rat retinal ganglion cells culture after optic nerve
axotomy, in all tested periods. It was also observed that ouabain
produced an increased survival of retinal ganglion cells after 48h,
and the mechanism was dependent on autophagy, since the use of
3-methyladenine, an autophagy inhibitor, lead to a complete
inhibition of the neuroprotective role of ouabain (Mázala-de-
Oliveira et al., 2021).

On the other hand, it was shown that α2-NKA knockdown in
superoxide dismutase 1 (SOD1) mutant astrocytes protected
motor neurons from degeneration (Gallardo et al., 2014).
Furthermore, it was observed that the silencing of α2-NKA in
primary culture of glial cells from mice promoted a lower
responsiveness to the stimulus with LPS, by reducing the
production of TNF-α, as well as the activation of ERK and
NF-kB, suggesting the participation of α2-NKA in the
modulation of LPS-induced neuroinflammation (Kinoshita
et al., 2017). Ouabain, in vitro, protected motor neurons from
degeneration induced bymutant SOD1 astrocytes (Gallardo et al.,
2014). Heterozygous KI mice, carrying the G301R disease
mutation (α2+/G301R mice), exhibited familial hemiplegic
migraine type 2 (FHM2)-related phenotypes, including mood
depression and obsessive-compulsive disorder (OCD)-like
symptoms (Isaksen and Lykke-Hartmann, 2016). Surprisingly,
when subjected to spinal cord injury, α2+/G301R mice show better
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functional recovery and decreased lesion volume compared to
littered controls (α2+/+). These phenotypes were associated with
alterations in pro and anti-inflammatory cytokines levels, such as
IL-6, TNF, and IL-10 (Ellman et al., 2017). Furthermore, it was
observed that α2+/G301R mice showed a reduction in the systemic
levels of the proinflammatory cytokines TNF-α, IL-6 and IL-1β
after LPS administration, as well as a reduction in the
hypothermic and neuroinflammatory response in the
hippocampus and hypothalamus (Leite et al., 2020).

Additionally, peripheral inflammation can also be modulated
by ouabain. This steroid can alter vascular permeability induced
by different inflammatory agents. In the sheep skin and pleural
cavity, ouabain reduces vascular permeability caused by
turpentine, an irritant agent (Lancaster and Vegad, 1967).
Additionally, in mice peritoneal cavity this steroid decreases

vascular permeability induced by zymosan, a fungal wall
component (Leite et al., 2015). Also in mice, ouabain can
inhibits paw edema, a cardinal signal resulting of increased
vascular permeability, induced by carrageenan, compound 48/
80, zymosan, prostaglandin E2, and bradykinin (de Vasconcelos
et al., 2011). This effect of ouabain in vascular parameters could
be related to its effects on histamine (Okazaki et al., 1976) and/or
cytokines release (Leite et al., 2015). Indeed, it has been reported
that ouabain decreases levels of cytokines TNF-α, IL-1β (Leite
et al., 2015), and IFN-γ (Jacob et al., 2013) in peritoneal
inflammation.

It is noteworthy that many studies related that ouabain
possesses a proinflammatory effect and facilitates immune cell
migration (Kennedy et al., 2013; Gonçalves-de-Albuquerque
et al., 2014; Chen et al., 2017). The possible dual effect of

FIGURE 1 | Effect of ouabain on neutrophils in peripheral and neuroinflammation. (A) In neuroinflammation ouabain can reduces NF-κB and iNOS activation and
inflammatory cytokines (IL-1), however, the effects of this steroid in neutrophils remains to be elucidated. (B) Impairment of neutrophil migration caused by ouabain may
involve reduction of adhesion molecule CD18, P-p38 MAPK, and decrease of inflammatory cytokines. Created with BioRender.com.
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ouabain on inflammation may be due to different animal species
studied (i.e., BALB/c, Swiss, or C57BL/6 mice; rats; humans) since
it could impact NKA sensitivity to ouabain. Moreover,
administration route used, presence of a previous
inflammatory stimulus, or even different concentrations of this
steroid leads to different outcomes. In fact, high levels of ouabain
could cause an immune system activation and promote a
pathological inflammatory response (Blaustein and Hamlyn,
2020).

NEUTROPHILS: MODULATION BY
OUABAIN

During inflammation, endothelial cell activation by cytokines
induces vascular permeability and enables migration of immune
cells into tissues. Usually, neutrophils are the first immune cell to
reach inflamed tissue (Liew and Kubes, 2019). Neutrophils are
polymorphonuclear segmented cells with antimicrobial
properties (Burn et al., 2021). However, these cells present
many other immune functions and participate in the
stimulation of adaptive immune responses (Minns et al.,
2019), in the resolution of inflammation (Jones et al., 2016)
and healing (Phillipson and Kubes, 2019), and have anti or
pro-tumor activity (Mishalian et al., 2017; Ocana et al., 2017;
Burn et al., 2021). Outside of neutrophils’ essential role in
immune system homeostasis, they are also involved in
autoimmune and inflammatory diseases, such as arthritis
(O’Neil and Kaplan, 2019) and COVID-19 (Cavalcante-Silva
et al., 2021b). In these pathological conditions, neutrophils
may have a dysregulated migration or activation (Hidalgo
et al., 2019).

Neutrophil migration requires the interaction between
adhesion molecules present on neutrophils and vascular
endothelium (Nourshargh and Alon, 2014). Classic neutrophil
recruitment involves different steps such as capture, rolling,
adhesion, crawling, and subsequent transmigration towards
inflammatory signals (Kolaczkowska and Kubes, 2013). Several
works have demonstrated the usually low concentrations of
ouabain impairs mice neutrophil migration into different
tissues. Leite et al. (2015) showed that ouabain reduces
neutrophil migration into the peritoneal cavity induced
zymosan. Similar findings were obtained using L. amazonensis
as an inflammatory stimulus (Jacob et al., 2013). Other works
provide evidence that ouabain also inhibits neutrophil
transmigration into lung tissue in mice models of
inflammatory allergy (Galvão et al., 2017) and acute
pulmonary injury (Wang et al., 2018). In vitro studies also
presented the inhibitory effect of ouabain on rabbit (Ward and
Becker, 1970), human (Ray and Samanta, 1997), and mice
neutrophil chemotaxis (Cavalcante-Silva et al., 2021a). The
cardiotonic steroid marinobufagenin also reduces neutrophil
migration during inflammation, corroborating the ouabain
effect (Carvalho et al., 2019) (Figure 1B).

The exact mechanism of action of ouabain in impairment
neutrophil migration remains to be fully elucidated, however,
some evidence is emerging. Chemoattractant gradients trigger

neutrophils intracellular signaling that guides these cells
towards inflammatory tissues. The MAPK signaling
mediates neutrophils chemotaxis (Liew and Kubes, 2019).
It was observed that ouabain reduces p38 phosphorylation,
but not ERK activation in mice neutrophils (Cavalcante-Silva
L. H. A. et al., 2021). Neutrophil’s receptors, including
adhesion molecules, can be regulated by p38 MAPK-
dependent signaling (Kim and Haynes, 2013). Indeed,
ouabain can reduce α (Ninsontia and Chanvorachote, 2014)
and β (Cavalcante-Silva et al., 2020) integrins in different
types of cells, nevertheless the real impact of this effects in
neutrophil migration should still be addressed. On the other
hand, ouabain does not reduce the chemokine receptor
CXCR2 expression in mice neutrophils or modulates the
levels of its ligands CXCL1 (Cavalcante-Silva et al., 2020).
However, in human neutrophils, ouabain interferes with
chemokine receptor (CXCR1/2) recycling, which in turns
decreases neutrophil migration (Ray and Samanta, 1997).

Additionally, in models of peritoneal (Leite et al., 2015) and
pulmonary (Wang et al., 2018) inflammation, ouabain also
inhibits NF-κB pathway. The activation of this transcription
factor is associated with release of proinflammatory cytokines,
which in turn stimulates endothelial and immune cells (Netea
et al., 2017). In fact, ouabain reduces TNF-α and IL-β release
(Leite et al., 2015), therefore this may be associated with
impaired migration of neutrophils. Moreover, in A549 cells,
this steroid decreases the TNF-α-induced expression of ICAM-
1, an adhesion molecule that binds integrin (Takada et al.,
2009).

The mechanisms used by neutrophils during an immune
response include phagocytosis, NETs, formation of reactive
oxygen species and release of microbicidal molecules
contained in cytoplasmic granules (i.e., myeloperoxidase,
neutrophilic elastase, and others) (Yang et al., 2017).
Neutrophils also produce different cytokines (eg, IL-1Ra,
IL-12, IL-23, TNF-α, G-CSF, among others) and
chemokines (eg, CXCL-1, CCL-20, CCL-2, among others)
that modulate the immune response (Mantovani et al.,
2011; Yang et al., 2017; Burn et al., 2021). In human
neutrophils, it has been shown that ouabain at 100 nM
induces DNA release, without promote necrosis, suggesting
NETs release (Silva et al., 2021). Additionally, in rat
neutrophils, ouabain reduces generation of free radical
induced by NO donors, this effect could be related to
membrane depolarization (Patel et al., 2009).

Although studies have shown that ouabain interferes with
neutrophil infiltration induced by different stimuli in the
periphery, such as concanavalin A (de Vasconcelos et al.,
2011), Zimosan (Leite et al., 2015), ovalbumin (Galvão et al.,
2017) and Leishmania amazonensis (Jacob et al., 2013), as well
as the activation of these cells, since ouabain modulate the
generation of free radicals induced by nitric oxide donors
(Patel et al., 2009) and the release of NETs (Silva et al., al,
2021), studies lack data about ouabain modulation on
neutrophils in the neuroinflammation; however, a study
observed the presence of neutrophils in a model of
ouabain-induced injury in zebrafish. Mitchell et al. (2018)
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observed that the retinal lesion resulting from the
administration of ouabain was accompanied by an early
leukocyte infiltration, followed by a period in which there
was proliferation of immune cells, possibly from the resident
microglia and macrophages derived from extra-retinal
regions. Furthermore, the presence of neutrophils was
observed in the vitreous leukocyte population, identified by
the expression of myeloid-specific peroxidase (mpx) +,
supporting that retinal injury induced by ouabain is
accompanied by an early migration of leukocytes from the
bloodstream. After 24, 48 and 72 h of ouabain administration,
very few mpx + neutrophils were identified, suggesting that
there was no significant increase in the number of neutrophils
at these times (Mitchell et al., 2018).

Despite there is no compelling data on the effects of ouabain
and its receptor, NKA, on neutrophil dynamics in
neuroinflammatory diseases, robust studies point to the
importance of ouabain-NKA signaling in neuroinflammation
(reviewed in Orellana et al., 2016; Leite et al., 2020). In
addition, the immunomodulatory role of ouabain in
neutrophil dynamics has been observed in classical models of
peripheral inflammation (Leite et al., 2015; Cavalcante-Silva et al.,
2020). These data together suggest that ouabain-NKA signaling
may be an important marker to be investigated in neutrophil
dynamics in neuroinflammatory diseases, thus favoring a better
understanding of the pathophysiology involved in the
progression of these diseases, as well as aiding in the discovery
of new strategies for neurodegenerative diseases.
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