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Although platinum-based chemotherapeutics such as cisplatin are the cornerstone of
treatment for ovarian cancer, their clinical application is profoundly limited due to
chemoresistance and severe adverse effects. Sporoderm-broken spores of
Ganoderma lucidum (SBSGL) have been reported to possess antitumor effects.
However, the function and mechanism of SBSGL and its essential composition,
ganoderic acid D (GAD), in the cisplatin therapy on ovarian cancer have yet to be
investigated. Here, we investigated the combined effect of SBSGL and cisplatin in an
ovarian tumor xenograft model. The results showed that combining SBSGL with cisplatin
reduced tumor growth and ameliorated cisplatin-induced intestinal injury and
myelosuppression. We also confirmed that GAD could enhance the therapeutic effect
of cisplatin in SKOV3 and cisplatin-resistant SKOV3/DDP cells by increasing the
intracellular reactive oxygen species (ROS). Mechanistically, we proved that ROS-
mediated ERK signaling inhibition played an important role in the chemo-sensitization
effect of GAD on cisplatin in ovarian cancer. Taken together, combining SBSGL with
cisplatin provides a novel therapeutic strategy against ovarian cancer.

Keywords: sporoderm-broken spores of Ganoderma lucidum, ganoderic acid D, ovarian tumor, chemosensitivity,
adverse effect, reactive oxygen species, ERK signaling

INTRODUCTION

Ovarian cancer is one of the most malignant gynecological cancers with a 5-year survival rate of only
about 48% (Kuroki and Guntupalli, 2020). For advanced-stage ovarian cancer, debulking surgery
combined with platinum-based chemotherapy is still the main treatment strategy (Matulonis et al.,
2016). Although 70% of patients initially respond to platinum-based chemotherapy, most of them
suffer severe adverse effects and inevitably relapse because of chemoresistance (Ushijima, 2010).
Therefore, enhancing the sensitivity of ovarian cancer to chemotherapy and reducing related side
effects are expected to prolong the survival and improve the quality of life for patients with ovarian
tumors.

Frontiers in Pharmacology | www.frontiersin.org 1

February 2022 | Volume 13 | Article 826716


http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.826716&domain=pdf&date_stamp=2022-02-21
https://www.frontiersin.org/articles/10.3389/fphar.2022.826716/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.826716/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.826716/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.826716/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.826716/full
http://creativecommons.org/licenses/by/4.0/
mailto:jiayunlu@zju.edu.cn
mailto:shenp@zju.edu.cn
https://doi.org/10.3389/fphar.2022.826716
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.826716

Cen et al.

Platinum-based chemotherapy is the standard first-line
treatment for advanced ovarian tumors. Cisplatin is widely
used in clinic practice as one of the most important platinum
drugs. In this mechanism, cisplatin binds to nuclear DNA and
generates a DNA lesion followed by a DNA damage response and
mitochondria-mediated apoptosis (Galluzzi et al., 2012). On the
other hand, cisplatin induces oxidative stress by interacting with
cytoplasmic endogenous nucleophiles such as glutathione and
methionine (Galluzzi et al., 2012). In addition, cisplatin
accumulates in mitochondria and forms adducts with
mitochondrial DNA, resulting in mitochondrial dysfunction
and the production of reactive oxygen species (ROS) (Marullo
etal., 2013). Oxidative stress further aggregates the injury of DNA
and other organelles, such as mitochondria and endoplasmic
reticulum, leading to cell cycle arrest and cell death eventually
(Cui et al.,, 2018). However, tumors resistant to cisplatin can
circumvent  cisplatin-induced  death  through  multiple
mechanisms, one of which is the regulation of redox
homeostasis. Cisplatin-resistant ovarian tumors contained less
mitochondrial content and lower mitochondrial ROS (Kleih et al.,
2019). Moreover, the cisplatin-resistant tumor showed
upregulated expression of various antioxidative genes, such as
the superoxide dismutase (SOD) and nuclear factor E2-related
factor 2 (NRF2), to balance the intracellular redox state (Kim
et al.,, 2019). Therefore, readjusting the redox balance and tilting
tumor cells to oxidative stress may provide a new strategy to
overcome cisplatin resistance.

The medicinal mushroom Ganoderma lucidum has been
widely used in Asian countries for more than 2000 years and
possesses many functions such as anti-inflammation, immune
regulation, and antidiabetic and antitumor effects (Bishop et al.,
2015). In the past, the fruit body and mycelia of Ganoderma
lucidum were considered the major executors of the above
bioactivities (Kuo et al., 2006; Oliveira et al., 2014). However,
with the development of wall-breaking and phytochemical
techniques, various constituents of Ganoderma lucidum spores
have been extracted and identified. Among them, triterpenoids
and polysaccharides are currently the most widely studied and
considered as the main active ingredients of sporoderm-broken
spores of Ganoderma lucidum (SBSGL) (Lin and Yang, 2019).
There is strong evidence demonstrating that SBSGL has a broad
spectrum of bioactivities such as the antitumor effect in
osteosarcoma, cholangiocarcinoma, and colorectal tumors (Li
et al, 2016; Li et al, 2017; Zhang et al, 2019);
immunomodulation (He et al., 2020); and protective effect on
radiotherapy- or chemotherapy-induced toxicity (Dai et al., 2019;
Li et al., 2020). However, whether SBSGL could enhance the
antitumor effect of cisplatin in ovarian cancer and ameliorate
cisplatin-induced side effects still waits to be verified. In addition,
many monomers have been isolated from SBSGL, and their
therapeutic value has been widely studied in different disease
models. Among them, ganoderic acid D (GAD), a highly
oxygenated tetracyclic triterpenoid (Cheng et al., 2013), is a
major component of triterpenoids from SBSGL (Liu et al,
2011). Previously, GAD was reported to have an antitumor
effect in esophageal squamous carcinoma by inducing ROS-
dependent apoptosis (Shao et al., 2020). However, few studies
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have reported the effect of GAD on ovarian cancer and its effects
on redox regulation.

In this study, we examined the potential sensitizing effect of
SBSGL on the therapeutic effect of cisplatin on ovarian cancer in a
xenograft model. We demonstrated that combining SBSGL with
cisplatin could enhance the chemosensitivity of ovarian cancer
cells and attenuate cisplatin-induced intestinal injury and
myelosuppression in nude mice transplanted with ovarian
cancer cells. Furthermore, we proved the synergistic antitumor
effect of GAD with cisplatin in cisplatin-sensitive and cisplatin-
resistant ovarian cancer cell lines. Mechanistically, we found that
combining cisplatin with GAD could upregulate oxidative stress
and subsequently inhibit the activation of the ERK signaling
pathway, eventually leading to the suppression of cell
proliferation, induction of apoptosis, and reversal of cisplatin
resistance.

MATERIALS AND METHODS

Chemical Reagents

Sporoderm-broken spores of Ganoderma lucidum (SBSGL) were
provided by Zhejiang Shouxiangu Pharmaceutical Co., Ltd.
Ganoderic acid D (HY-N1511, purity >99%), cisplatin (HY-
17394), and the ERK agonist, LM22B-10 (HY-104047) were
purchased from MedChemExpress (Shanghai, China). Crystal
violet (C0121) and N-acetyl-L-cysteine (NAC, S0077) were
purchased from Beyotime (Shanghai, China). Primary
antibodies we used were JNK (9252), p-JNK (4668), ERK1/2
(4695), p-ERK (4370), p38 (8690), and p-p38 (4511), and all the
above antibodies were purchased from Cell Signaling Technology
(Danvers, MA, United States).

Sample Preparation and Storage

SBSGL is a commercially available food supplement approved by
the State Administration for Market Regulation (SAMG) in
China. In brief, intact Ganoderma lucidum spores (raw
materials) were first subjected to supersonic air jet milling to
break the sporoderm, and then extracted by water twice, at ten-
fold and eight-fold volumes, respectively. The combined solution
was filtered, concentrated, and dried to obtain the SBSGL used in
this work. The yield of SBSGL was approximately 10% by mass.
As for the preparation of the test solution used in the animal
experiment, SBSGL was reconstituted in ddH,O at 0.2 g/ml and
the mixture was heated in boiling water for 20 min. Since the
mixture was a suspension, the SBSGL was immediately mixed
upside down and aliquoted. Finally, the stock was stored at —20°C
and used up in 1 week.

Animals and Treatment

Female BALB/c nude mice (18 + 2 g, 6 weeks old) were purchased
from Hangzhou Medical College (Hangzhou, China, certificate
no. 20210705Abzz0100018725). The study was approved by the
Institutional Animal Care and Use Committee, Zhejiang Center
of Laboratory Animals (license number: ZJCLA-IACUC-
20050017). All mice were kept in a specific pathogen-free
environmental condition, allowing free access to water and
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food. After 1 week for adaption, each mouse was injected with
0.1 ml of cell suspension containing 4 x 10° SKOV3 into the right
flanks. When tumor volumes reached approximately 100 mm?>,
20 mice were divided randomly into four groups (n = 5 in each
group). They received corresponding treatment as follows: 1)
Control group: mice were orally administered (i.g.,) daily and
intraperitoneally injected (i.p.,) every week with an equal volume
of saline with other groups. 2) SBSGL group: mice were orally
administrated with SBSGL (2 g/kg) every day. 3) Cisplatin group:
mice were intraperitoneally injected with cisplatin (3 mg/kg)
every week. 4) SBSGL + Cisplatin group: SBSGL and cisplatin
were administrated according to the aforementioned regimes,
and mice were pretreated with SBSGL for 3 days. Previous
literature was referred to determine the action concentration
range of SBSGL, and the final dose was calculated by its
clinical recommended dose (4-8 g/lkg per day for an adult)
based on the body surface area (BSA) normalized method (Liu
et al, 2002; Reagan-Shaw et al, 2008; Chen et al., 2016).
Bodyweight and tumor volume were measured every 3 days.
The tumor volume was calculated as follows:

1
Tumor volumes (V) = 3 x length x width?. (1)

Finally, all mice were sacrificed with 2% isoflurane. The blood
samples were collected for the kidney function test and
hematological evaluation. For further histopathological
analysis, organs that are susceptible to cisplatin, such as
kidneys, duodenum, thighbones, and tumors, were collected.

Cell Lines and Culture Conditions

Human ovarian tumor cell line SKOV3 was obtained from the
American Type Culture Collection (ATCC). Cisplatin-resistant cell
line SKOV3/DDP was generously provided by Professor Weiguo Lv,
Women’s Hospital School of Medicine, Zhejiang University. Both
SKOV3 and SKOV3/DDP were cultured in McCoy’s 5A medium
supplemented with 10% fetal bovine serum. All cells were maintained
at 37°C in a humidified incubator with 5% CO,.

Kidney Function Tests

Serum samples were collected by centrifugation at 4000 rpm for
10 min. Then the levels of blood urea nitrogen (BUN) and serum
creatine (SCR) were measured by a chemical analyzer (LW C400,
Landwind, Shenzhen, China).

Hematological Evaluation

Blood was obtained from mice via the abdominal aorta and
preserved in a micropipette coated with K;EDTA. Cells were
analyzed by an automatic hematology analyzer (BC-5000VET,
Mindray, Shenzhen, China). The parameters of blood cells
included red blood cells (RBC), hemoglobin (Hb), white blood
cells (WBC), neutrophils, platelets (PLT), monocytes,
eosinophils, and basophils.

Histology Analysis
Kidneys, duodenum (Hu et al, 2021), and thighbones were
collected for histological analysis. All tissues were immersed in
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4% paraformaldehyde at room temperature for more than 24 h.
Thighbones were decalcified by EDTA decalcification fluid. Then,
all the tissues were dehydrated and embedded in paraffin. About
4 um thick of paraffin-embedded tissues were sectioned and
stained with hematoxylin-eosin (H&E). Finally, the sections
were observed by an upright optical microscope (Nikon
Eclipse E100, Japan). To evaluate the kidney injury, tubular
damage was scored based on the percentage of the damaged
area of the tubule epithelial cells: 0-normal, 1- <10%, 2-10-25%,
3-26-75%, and 4->75%. Tubular epithelial damage was defined as
degeneration, atrophy, necrosis, and intraluminal aggregation of
cells and proteins, as well as hyperemia and inflammatory cell
infiltration of the mesenchyme (Meng et al., 2017). In addition,
intestinal injury was determined based on morphological changes
of villi, crypts, gland destruction, and lamina propria atrophy
(Wu et al.,, 2019; Zhang et al., 2020). The histological evaluation
was performed in a blind manner.

Ki-67 Staining and TUNEL Assay

The paraffin-embedded tumor specimens were sectioned into
4 um slides. To evaluate the expression of Ki-67, slides were
blocked and incubated with the antibody targeting Ki-67
(Servicebio, GB111499, 1:300) at 4°C overnight. The next day,
slides were incubated with the corresponding second antibody at
room temperature for 50 min. Finally, slides were visualized with
DAB substrate buffer (DAKO, K5007) and photographed using a
light microscope at a magnification of x 400. In addition, the
TUNEL apoptosis detection kit (YEASEN, 40306ES20) was used
to measure the extent of apoptosis in tumors according to the
manufacturer’s instructions. Ortho-Fluorescent Microscopy
(Nikon Eclipse C1, Japan) was used to observe the nuclear
expression of TUNEL-positive cells at a magnification of x200.
Both the ki-67 positive rate and the apoptosis rate were calculated
by counting the number of positive cells/total cells in five fields
randomly selected with Image] software.

CCK-8 Assay

Cell viability was measured using Cell Counting Kit-8 (CCK-8,
Meilunbio, Dalian, China). Cells were seeded in 96-well plates at a
density of 8000 per well. After 24 h for adherence, cells were
treated with different concentrations of cisplatin and GAD alone
or in combination for 24 h. To determine the role of ROS, cells
were exposed to NAC (10 mM), GAD + cisplatin, and NAC +
GAD + cisplatin for 24h, respectively. To explore the role of
p-ERK in the combined treatment, both SKOV3 and SKOV3/
DDP were pretreated with 20uM LM22B-10, an ERK agonist for
6h, followed by GAD + cisplatin for 24 h. At the end of the
treatment, the medium was replaced by 100 pl fresh medium
containing 10% CCK-8 and the cells were incubated at 37°C for
1.5h. The optical density (OD value) was measured by the
microplate reader (Varioskan Flash, Thermo Scientific,
America) at a wavelength of 450 nm. Cell viability relative to
control was calculated as follows:

D — OD (blank
Cell viability (%) = 2D (treated) = OD (blank)

= o
OD (control) — OD (blank) x 100%. (2)
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The half-maximal inhibitory concentration (IC50 value) was
calculated by SPSS 25.0 software.

Colony Formation Assay

SKOV3 and SKOV3/DDP were exposed to indicated treatments
for 24 h in 12-well plates and subsequently re-plated into new
plates at a density of 600 per well. Ten days later, cells were fixed
with 4% paraformaldehyde and stained with crystal violet. The
images were photographed, and colonies with more than 50 cells
were counted under the microscope.

Flow Cytometry

To detect apoptosis of cells, the Annexin V-FITC/PI apoptosis kit
(70-AP101-100, Multi Sciences, Hangzhou, China) was used
according to the protocol. In brief, after indicated treatments,
the supernatant and cells were collected by digestion with trypsin
without EDTA. Then, cells were resuspended with 200 pl 1x
binding buffer, containing 5l Annexin V-FITC and 10 pl PL
Samples were gently mixed and incubated at room temperature
for 10 min in the dark. Finally, cells were detected by the flow
cytometer (ACEA NovoCyteTM, ACEA Biosciences, America).
To measure the level of intracellular ROS in cells, a DCFH-DA
fluorescent probe (S0033S, Beyotime, Shanghai, China) was used
according to the instructions. After treatments, cells were washed
twice with PBS and incubated in the serum-free medium
containing 5uM DCFH-DA for 20 min at 37°C in the dark.
Finally, cells were washed twice by PBS and collected for
analysis by the flow cytometer.

Western Blotting

The cells or tissues were lysed with NP-40 lysis buffer
(PO013F, Beyotime, Hangzhou, China) supplemented with
1mM PMSF (TS505, Beyotime) as well as a protease
inhibitor cocktail (Sigma-Aldrich). The protein
concentration of samples was measured by the BCA assay
(23227, Thermofisher). An equal amount of protein from the
samples was subjected to SDS-PAGE and transferred to PVDF
membranes (Millipore). Immunoblots were blocked with 5%
defatted milk for 1h and then incubated with the
corresponding primary antibodies at 4°C overnight. After
washing with TBST three times, membranes were incubated
with the corresponding second antibodies for 2h at room
temperature. Finally, protein bands were visualized by a
Pierce Chemiluminescence ECL kit (34577, Thermofisher),
and the grayscale value was quantified by Image] software.

DHE Staining

To measure the level of ROS in tumor tissues, DHE staining was
performed according to previous research (Wang et al., 2021). In
brief, tumor tissue sections were dewaxed, hydrated, and
immersed in the 3% H,O, solution for 15 min, 80% alcohol
for 30 min, and then washed with PBS three times. Next, sections
were blocked and incubated with 20uM DHE solution
(Beyotime, China) for 10 min at room temperature, followed
by washing with PBS. Finally, sections were stained with DAPI
and photographed by a confocal laser microscope (Nikon, Tokyo,
Japan).

SBSGL Chemosensitizes Ovarian Cancer

Statistical Analysis
All data were exhibited as the mean + SD or SEM of the biological

replicates. Statistical analysis was performed with Prism 8. One-
way ANOVA followed by Tukey’s multiple comparison test or
two-way ANOVA was used to compare data among different
groups. ***p < 0.001, **p < 0.01, and *p < 0.05 were considered
statistically significant.

RESULTS

Sporoderm-Broken Spores of Ganoderma
Lucidum Sensitized Ovarian Cancer to
Cisplatin In Vivo

To evaluate the sensitization effect of SBSGL on cisplatin, we first
established a subcutaneous ovarian tumor xenograft model, and
the nude mice were treated with SBSGL, cisplatin, or their
combination (Figure 1A). The results showed that the
bodyweight of mice in the cisplatin group was obviously
reduced relative to the control but had no significant
difference from those in the combined treatment (Figure 1B),
implying that SBSGL would not aggravate cisplatin-induced
weight loss. Meanwhile, compared with the single cisplatin
treatment, the combined treatment of cisplatin and SBSGL
further enhanced the inhibitory effects of cisplatin on tumor
volume and tumor weight (Figures 1C, D). Next, we exfoliated
tumors and performed Ki-67 and TUNEL staining. The results
showed that tumors from the combined treatment group showed
a significantly decreased level of Ki-67 and exhibited higher
fluorescence intensity of TUNEL than those of the cisplatin
group, suggesting that combining SBSGL with cisplatin further
repressed the proliferation and promoted apoptosis of ovarian
tumors in vivo (Figures 1E-G).

Sporoderm-Broken Spores of Ganoderma
lucidum Attenuated Cisplatin-Induced
Intestinal Injury and Myelosuppression

In Vivo

Common adverse effects of cisplatin include nephrotoxicity,
gastrointestinal toxicity, and myelosuppression (Qi et al,
2019). First, to explore the kidney protection effect of SBSGL,
we performed HE of the kidneys and evaluated tubular damage
scores. The kidneys of mice treated with cisplatin or in
combination with SBSGL showed obvious edema and atrophy
of renal tubular epithelial cells along with inflammatory cell
infiltration in the mesenchyme (Supplementary Figure S1A).
Meanwhile, the tubular damage scores of the two groups had no
significant difference (Supplementary Figure S1A). In addition,
we tested serum creatinine (SCR) and blood urea nitrogen (BUN)
in different groups, which are hallmarks of kidney function. The
results showed that cisplatin treatment increased the level of SCR
and BUN in the blood but had no difference from the combined
treatment (Supplementary Figure S1B). The results above
implied that SBSGL had no obvious protective effect on
cisplatin-induced nephrotoxicity.
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The changes of bodyweight of nude mice. (C) The changes of tumor volume. (D) The picture of tumor masses and quantitative analysis of tumor weight. (E) The
expression of Ki-67 in tumor tissues. (F) TUNEL-positive nucleus (green) indicated cell apoptosis. Cell nuclei were detected by DAPI (blue). (G) The quantitative analysis of
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FIGURE 2| SBSGL ameliorated cisplatin-induced intestinal injury and myelosuppression. (A) The morphological changes of duodenum. Arrows indicate atrophy of
glands (yellow), interstitial hyperemia (green), and edema (black) of villus. (B) The histological structures of bone marrow in thighbones of nude mice. Arrows indicate the
increasing proportion of unsegmented megakaryocytes (green) and cytoplasmic atrophy (yellow). (C,D) The number of PLT and RBC, and the content of Hb in blood of
nude mice. PLT: platelets; RBC: red blood cells; Hb: hemoglobin. Data are presented as the mean + SD (n = 3). **p < 0.001; ns, no statistical significance.

Combined

Cisplatin

Cisplatin

Next, we evaluated the intestinal injury of mice with different
treatments. The duodenum in the cisplatin group showed a
disordered structure of villi, gland atrophy, as well as lamina
propria hyperemia (Figure 2A); supplementing SBSGL with
cisplatin could partially attenuate these intestinal damages as
the duodenum of the combined group only exhibited slight
edema of villi (Figure 2A).

Finally, to evaluate hematopoiesis in the bone marrow, we
performed HE on thighbones from nude mice with different
treatments. The results showed that although the bone
marrow of four groups exhibited relatively normal
hematopoiesis, the cisplatin treatment obviously reduced
the proportion of segmented megakaryocytes and induced
cytoplasmic  atrophy of megakaryocytes, implying
dysfunction of megakaryocyte differentiation (Figure 2B).
However, combining SBSGL with cisplatin could recover
the proportion of segmented megakaryocytes and
normalize their morphology (Figure 2B). Furthermore, we
counted various blood cells in peripheral blood. Consistent
with previous HE results, cisplatin significantly reduced the
number of platelets and SBSGL effectively attenuated
cisplatin-induced platelet decrease (Figure 2C). However,

the number of white blood cells (WBC), neutrophils, as
well as monocytes had no difference among the four
groups (Supplementary Figure S2), implying that
granulocytes were not as susceptible as megakaryocytes to
cisplatin. In addition, both cisplatin and SBSGL had no
obvious cytotoxicity on erythroid cells (Figure 2D). Results
from this part of our study thus indicate that combining
SBSGL with cisplatin ameliorates cisplatin-induced
megakaryocyte suppression.

Ganoderic Acid D Enhanced the Effect of

Cisplatin on the Ovarian Tumor In Vitro

To clarify which component of SBSGL had the sensitization effect on
cisplatin in ovarian tumors, GAD, one of the main components of
SBSGL, was selected for further research. The chemical structure of
GAD is shown in Figure 3A. First, CCK-8 was used to test the effects
of GAD and cisplatin on the viability of the cisplatin-sensitive SKOV3
cell line and the cisplatin-resistant SKOV3/DDP cell line. The results
showed that GAD reduced the viability of SKOV3 and SKOV3/DPP
in a time- and concentration-dependent manner (Supplementary
Figure S3A). After 24 h of treatment, the IC50 values of cisplatin were
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39.917 and 207.191 uM in SKOV3 and SKOV3/DDP, respectively
(Supplementary Figure S3B). To explore whether GAD could
enhance the cytotoxicity of cisplatin, the non-toxic
concentration of GAD (200puM for both SKOV3 and
SKOV3/DDP) and IC50 values of cisplatin (40 uM for
SKOV3 and 200 puM for SKOV3/DDP) at 24 h of 2 cell lines
were chosen for the following experiments. The results
showed that the combined treatment further decreased cell
viability in both cell lines, and the inhibitory effect was
positively related to the concentration of GAD (Figure 3B).
Next, we exposed both cell lines to different concentrations of
cisplatin with or without 200 uM GAD for 24 h. The results of
CCK-8 showed that GAD could enhance cisplatin-induced
proliferation inhibition in both SKOV3 and SKOV3/DDP
cells (Figure 3C). Moreover, a colony formation assay,
reflecting the degree of tumor malignancy, was performed
to test the proliferation capability of tumors. The results
showed that compared with the single cisplatin treatment,
combining GAD with cisplatin could further inhibit the
colony formation rate of SKOV3 (Figure 3D). A similar
result was also observed in SKOV3/DDP cells (Figure 3D).
Furthermore, to investigate cell death of SKOV3 and SKOV3/
DDP, Annexin V/PI staining was used, and the results showed
that the apoptosis rate of SKOV3 cells in the GAD + cisplatin
group (12.82%) was 4 times higher than 3.19% in the cisplatin
group. A similar trend was also observed in SKOV3/DDP cells
(Figure 3E). The apoptosis rate of combined treatment was
positively correlated with the concentration of GAD in
SKOV3 but not in SKOV3/DDP cells (Figure 3F).
Interestingly, it was worth noting that in SKOV3/DDP
cells, the combined treatment of GAD and cisplatin
evidently promoted other forms of cell death except
apoptosis, as the combined treatment significantly
increased the PI-single positive rate, which indicated
necrosis of cells, compared with single cisplatin treatment
(Figure 3G). Interestingly, the change in the PI single positive
rate between GAD + cisplatin and the cisplatin group in
SKOV3 was not as obvious as that in SKOV3/DDP cells
(Figure 3G).

Combining Ganoderic Acid D with
Cisplatin Induced Reactive Oxygen
Species-Mediated Cell Proliferation
inhibition and Death

To explore the mechanism of GAD-induced sensitization effect
on cisplatin in ovarian tumors, DCFH-DA was used to test
intracellular ROS levels by flow cytometry. The results showed
that the combination of GAD and cisplatin induced higher ROS
than single cisplatin treatment in both SKOV3 and SKOV3/DDP
cells, while single GAD treatment only slightly increased ROS in
SKOV3/DDP but not in SKOV3 (Figures 4A, B). As ROS plays a
dual role in promoting cell survival or cell death (Aggarwal et al.,
2019), here we explored the role of ROS in mediating the
sensitization effect of GAD on cisplatin by using N-acetyl-L-
cysteine (NAC), a ROS scavenger. The flow cytometry data
showed that 10 mM NAC treatment for 24 h reduced ROS in

SBSGL Chemosensitizes Ovarian Cancer

the combined treatment of both SKOV3 and SKOV3/DDP cells
(Supplementary Figure S4). Next, we performed CCK-8, colony
formation assay, and Annexin V/PI staining on SKOV3 and
SKOV3/DDP, which were exposed to the GAD + cisplatin with or
without 10 mM NAC for 24 h. The results showed that cell
viability and the colony formation rate were obviously
reversed by NAC in both cell lines (Figures 4C-E).
Consistently, the apoptosis rate was reduced in SKOV3 and
SKOV3/DDP, and the cell necrosis was also reversed by NAC
in SKOV3/DDP (Figures 4F-H). Taken together, results from
this part of our study indicate that combining GAD with cisplatin
inhibits tumor growth and promotes cell death via induction
of ROS.

Reactive Oxygen Species/ERK Signaling
Pathway Mediated Sporoderm-Broken
Spores of Ganoderma lucidum and
Ganoderic Acid D-Induced Cisplatin

Sensibilization in Ovarian Tumor

The mitogen-activated protein kinase (MAPK) signaling pathway
is an important executor of the downstream effects of ROS and
regulates various cellular processes like cell proliferation,
differentiation, and apoptosis (Jalmi and Sinha, 2015).
Therefore, we speculated that MAPK signaling might
participate in the ROS-mediated sensitization effect of GAD
on cisplatin. To verify our conjecture, Western blotting was
used to detect the change in protein expression of the MAPK
signaling pathway, including the extracellular regulated kinase
(ERK1/2), c-Jun N-terminal kinase (JNK), and p38 kinases as well
as their phosphorylated forms. Although p-JNK and p-p38 had
no difference between cisplatin and the combined treatment in
SKOV3 and SKOV3/DDP cells (Figure 5A), p-ERK was
obviously induced by cisplatin, while it was inhibited in the
combined treatment in both SKOV3 and SKOV3/DDP cells
(Figure 5A). As a kinase, ERK is known to phosphorylate a
series of downstream target proteins to mediate cell survival
(Salaroglio et al., 2019). To verify the role of ERK signaling in
the combined treatment, LM22B-10, an ERK agonist, was used
(Yang et al., 2019; Huang et al., 2021). First, we determined the
optimal concentration and action time of LM22B-10. SKOV3 and
SKOV3/DDP were incubated with different concentrations of
LM22B-10 for 6 h, and the cell viability was determined after 24 h
by the CCK-8 assay. The results showed that concentrations of no
more than 20 uM of LM22B-10 are non-toxic for SKOV3 and
50 uM for SKOV3/DDP at 24 h (Supplementary Figure S5A).
Then, the non-toxic concentrations of LM22B-10 were chosen
and further tested. The result showed that pretreating 20 pM
LM22B-10 for 6 h effectively activated ERK signaling both in
SKOV3 and SKOV3/DDP treated with GAD + cisplatin
(Supplementary Figure S5B). Next, we performed CCK-8 and
Annexin V/PI staining to test cell viability and death of the
combined treatment with or without LM22B-10. The results
showed that pretreating SKOV3 and SKOV3/DDP cells with
20 uM LM22B-10 for 6 h could partially increase cell viability
(Figure 5B). Likewise, LM22B-10 pretreatment also reduced the
apoptosis rate in SKOV3 and the necrosis rate in SKOV3/DDP
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cells (Figures 5C-E). Such an observation thus indicates that the
combined effects of GAD and cisplatin in SKOV3 and SKOV3/
DDP are mediated by ERK signaling inhibition. Furthermore, to
identify the relationship between enhanced ROS production and
impaired ERK activation, we measured the p-ERK in the
combined treatment complementing with NAC and found that
NAC significantly enhanced the p-ERK in both SKOV3 and
SKOV3/DDP cells with the combined treatment of GAD and
cisplatin (Figure 5F). Such results thus support our notion that
ERK inhibition in the combined treatment is mediated by
oxidative stress. Finally, to explore whether SBSGL promoted
cisplatin sensitization of ovarian tumors through the ROS-ERK
pathway in vivo, DHE staining and Western blotting were used to
test ROS and p-ERK levels in tumor tissues, respectively. The
results of DHE staining showed that the combined treatment
group had higher fluorescence intensity than cisplatin treatment,
implying a higher level of ROS in the combination treatment
group (Figure 5G). In addition, p-ERK/ERK in the tumor tissue
lysate was significantly increased by cisplatin treatment, while it
was reduced by the combined treatment (Figure 5H). The above
results thus indicate that combining SBSGL or GAD with
cisplatin could induce oxidative stress, leading to the
inhibition of p-ERK signaling, and eventually suppression of
cell proliferation and promotion of cell death in ovarian
tumors (Figure 6).

DISCUSSION

Ovarian tumor is one of the most fatal gynecological
malignancies around the world. Although some novel
treatment strategies are emerging in preclinical studies,

SBSGL Chemosensitizes Ovarian Cancer

platinum-based chemotherapy is still the standard first-line
treatment for advanced ovarian tumors (Lheureux et al,
2019). Cisplatin is one of the most important platinum drugs.
However, drug resistance and severe adverse effects limit its
clinical application (Ushijima, 2010). Therefore, enhancing
cisplatin  sensitivity and alleviating its side effects are
important to help delay tumor progression and improve
prognosis in ovarian cancer patients.

SBSGL is processed from the traditional medicinal
mushroom Ganoderma lucidum. During the past decades, the
antitumor effects of SBSGL have been tested in different cancer
models (Wang et al., 2015; Sang et al., 2021; Shi et al., 2021). For
instance, Zhao et al. showed that SBSGL could inhibit ovarian
cancer cell growth by regulating cell cycle and apoptosis (Zhao
et al, 2011). However, the synergistic effect of SBSGL and
cisplatin on ovarian tumors and their combined toxicity still
needs to be evaluated in vivo. Therefore, we constructed the
ovarian tumor xenograft nude mouse model to examine the
combined effects of SBSGL and cisplatin. In our study, tumors
treated with SBSGL and cisplatin exhibited lower expression of
Ki-67 and a higher apoptosis rate relative to the cisplatin
treatment, thus demonstrating the sensitization effect of
SBSGL on cisplatin in ovarian cancer.

The common adverse effects of cisplatin include
nephrotoxicity, gastrointestinal toxicity, and myelosuppression
(Ghosh, 2019). In the present study, we found that SBSGL neither
aggravated nor  protected  against  cisplatin-induced
nephrotoxicity. Importantly, SBSGL could obviously reduce
cisplatin-induced intestine damage, suggesting that SBSGL has
a protective effect against cisplatin-induced intestinal toxicity.
This result was consistent with an earlier report that
polysaccharide extracted from spores of Ganoderma lucidum
could ameliorate paclitaxel-induced intestinal injury (Li et al,
2020). For bone suppression, cisplatin-induced
myelosuppression often presents as anemia, leukopenia, and
thrombocytopenia in clinics (Oun et al, 2018). In our nude
mouse models, cisplatin  treatment mainly induced
megakaryocyte dysfunction along with a reduced number of
platelets, without any obvious cytotoxic effect on the
granulocytes and erythrocytes. Species differences might
contribute to this different response of marrow cells to
cisplatin. Meanwhile, we also found a larger proportion of
megakaryocytes in the bone marrow of the control group than
in a normal healthy person. This result was partially consistent
with Sonali Sinha’s finding that megakaryocytes were the most
affected blood cells by the cisplatin treatment (Sinha et al., 2015).
To conclude, our results proved that combining SBSGL with
cisplatin could reverse cisplatin-induced intestinal injury,
megakaryocyte suppression, and loss of platelets, without
having a protective effect on nephrotoxicity.

With the development of phytochemical techniques, more and
more monomer components of SBSGL are being extracted, and
their therapeutic value is waiting to be further tested. Among
them, GAD, one of the main components of triterpenoids in
SBSGL, has been reported to possess antitumor activity (Liu et al.,
2018; Shao et al., 2020). However, the effect of GAD on ovarian
tumors is still unknown. Herein, our data showed that GAD alone

marrow
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(up to 200 uM) had no obvious cytotoxicity to SKOV3 and
SKOV3/DDP cells. Similar results were reported in colon
cancer (Liu et al., 2018). In addition, we also found that
the combined treatment of GAD and cisplatin induced
apoptosis in SKOV3 cells, while apoptosis and necrosis
were induced SKOV3/DDP cells. The different types of
death might attribute to the different characters of
cisplatin-sensitive and cisplatin-resistant cells.
Cisplatin-resistant tumor is characterized by apoptosis
resistance and high expression of various anti-apoptotic/
pro-survival proteins such as Bcl-2 and survivin (Galluzzi
et al,, 2012; Wang et al., 2020). As a result, the cisplatin-
resistant SKOV3/DDP cells were more inclined to necrosis
than apoptosis.

ROS is an important mediator in signaling cascades, regulating
various cellular events, including proliferation, differentiation,
and apoptosis (Moloney and Cotter, 2018). Previous studies
proved that cisplatin’s cytotoxicity largely depended on the
accumulation of ROS and antioxidants could reverse cisplatin-
induced apoptosis (Ma et al, 2014). Therefore, we explored
whether ROS participated in the synergistic effect of GAD on
cisplatin. We found that the combination of GAD and cisplatin
obviously increased intracellular ROS in both SKOV3 and
SKOV3/DDP cells. More importantly, the addition of an
antioxidant like NAC could significantly reverse the effects of
the combined treatment on cell proliferation and death. These
results support the notion that the sensitization effect of GAD on
cisplatin is most likely mediated via elevated intracellular ROS
levels. Furthermore, we also found that although GAD increased
the level of ROS only in SKOV3/DDP cells, it did not affect the
cell viability and death of SKOV3/DDP. This might be attributed
to several reasons that cisplatin-resistant ovarian tumors have
high expression of antioxidant proteins like H-Ferritin (Salatino
et al,, 2019) and signaling such as the Nrf2 pathway (Xia et al,,
2014) to ameliorate oxidative stress. In addition, as mentioned
above, cisplatin-resistant ovarian tumors are more apoptosis
resistant and have higher expression of pro-survival proteins.

Consisting of ERK1/2, JNK, and p38 kinases, the MAPK
pathways regulate various cellular events, including cell
survival, apoptosis, and stress response (Achkar et al., 2018).
These phosphorylation cascades could work either upstream or
downstream of ROS (Jalmi and Sinha, 2015). It has been well
established that activation of ERK is a critical mediator in
cisplatin resistance in ovarian tumors. For instance, cisplatin
could induce the activation of ERK1/2 in SKOV3 and
inhibiting ERK1/2 activity with PD98059 could enhance
cisplatin cytotoxicity (Cui et al, 2000). In addition, p-ERK
promoted cisplatin resistance in ovarian tumors through
stabilizing HIF-la by phosphorylating PHD2, an enzyme
hydroxylating HIF-la and inducing its degradation by a
ubiquitin-mediated pathway (Li et al., 2019). In the current
study, an ERK agonist, LM22B-10, was able to reactivate
p-ERK and subsequently reverse the sensitization effect of
GAD on cisplatin in the ovarian tumor. Therefore, we
conclude that ERK signaling inhibition mediated the
sensitization effects of GAD on cisplatin in the ovarian tumor.
Moreover, we further clarified that ERK phosphorylation

ovarian
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inhibition in the combined treatment was regulated by
increasing the ROS level since reduced p-ERK level in the
combined treatment group could be restored by ROS
scavenger, NAC. To conclude, our research demonstrated that
the combined treatment of GAD and cisplatin increases the
intracellular level of ROS, inhibits ERK phosphorylation
activation, and subsequently suppresses cell proliferation and
promotes cell death in the ovarian tumor. However, the
potential mechanism of ROS-mediated regulation of ERK
phosphorylation in ovarian tumors needs to be explored in
future studies. Meanwhile, the therapeutic value of GAD also
needs to be further verified in vivo.

CONCLUSION

In summary, our present study proved that SBSGL could
enhance the antitumor effect of cisplatin on ovarian tumors
and attenuate cisplatin-induced intestinal damage and
myelosuppression in vivo. Furthermore, we clarified that
GAD, one of the main components of SBSGL, contributed
to the cisplatin sensitization in the ovarian tumor. The
mechanism was related to the increased ROS followed by
the inhibition of the ERK signaling pathway. Conclusively,
our study suggests that SBSGL is beneficial to ovarian cancer
patients under cisplatin chemotherapy and that GAD is a
promising component that deserves further development and
clinical verification.
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