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Paeoniflorin (PF) is a multi-target monoterpenoid glycoside and possesses broad
pharmacological functions, e.g., anti-inflammation, anti-depression, antitumor,
abirritation, neuroprotection, antioxidant, and enhancing cognitive and learning ability.
PF has gained a large amount of attention for its effect on asthma disease as the growth
rate of asthma has increased in recent years. However, its mechanism of action on asthma
is still unclear. In this study, we have explored the action mechanism of PF on asthma
disease. Furthermore, high-throughput untargeted metabolic profiling was performed
through ultraperformance liquid chromatography/electrospray ionization quadruple
time-of-flight high-definition mass spectrometry (QA) UPLC-Q/TOF-MS combined with
pattern recognition approaches and pathway analysis. A total of 20 potential biomarkers
were discovered by UPLC/MS and urine metabolic profiling. The key pathways including
the citrate cycle (the TCA cycle), pyrimidine metabolism, pentose phosphate pathway,
tyrosine metabolism, and tryptophan metabolism were affected by PF. In conclusion, we
have discovered metabolite biomarkers and revealed the therapeutic mechanism of PF
based on liquid chromatography coupled with mass spectrometry untargeted
metabolomics. The untargeted metabolomics combined with UPLC-MS is a useful tool
for exploring the therapeutic mechanism and targets of PF in the treatment of asthma.
Metabolomics combined with UPLC-MS is an integrated method to explore the metabolic
mechanism of PF in the treatment of asthma rats and to reveal the potential targets,
providing theoretical support for the study of the treatment of PF.
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INTRODUCTION

Asthma is characterized by chronic airway inflammation, airway hyperresponsiveness, and airway
remodeling and is a serious public health problem in the world (Chiu et al., 2021). At present, the
inhaled corticosteroids are the standard treatment for persistent asthma, but its antioxidant effect is not
ideal (Koh et al., 2021; Werder et al., 2021). This treatment strategy has serious adverse reactions, such as
headache, tremor, palpitations, and heart failure (Bush et al., 2021; Jin et al., 2021). In recent years, herbal
medicine has received more and more attention due to its wide range of pharmacological effects, low
toxicity, and few adverse reactions. Many herbal medicines and their active ingredients can effectively
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relieve asthma attacks and have become a hot spot for asthma
treatment. Paeoniflorin (PF) is the major bioactive ingredient
derived from Paeonia lactiflora Pall., Paeonia suffruticosa
Andr., or Paeonia veitchii Lynch, which have been widely
used for cardiovascular disease, cerebrovascular disease, and
liver disease. PF is the main active ingredient of the commonly
used Paeonia lactiflora. In recent years, it has been found that
PF has anti-inflammatory, antitumor, antibacterial, antiviral,
immune regulation, and scavenging free radicals and other
pharmacological effects and has less toxic and side effects.

Paeoniflorin, a monoterpenoid glycoside, is derived from
Paeonia lactiflora Pall., Paeonia suffruticosa Andr., or Paeonia
veitchii Lynch which has been used in traditional medical
applications for more than 2000 years. Recent works have
showed that it has a wide range of pharmacologic activities,
including anti-depression, anti-inflammatory, anti-oxidation,
anti-apoptosis, antitumor, and maintaining mitochondrial
function (Chen et al., 2021; Han et al., 2021). Interestingly,
previous scientific evidences suggested that it possesses
promising anticancer activities on diverse tumors/cancers (Yu
et al., 2021; Zhao et al., 2021). Recently, growing attention has
been paid to explore to relieve asthma attack function of PF (Jiao
et al., 2021; Wu et al., 2021). It has been demonstrated to have
potent anti-asthma activity in various types of mouse or rat models
(Shou et al., 2019). Even though the concrete mechanisms are still
not fully clarified, it is speculated to be associated with increasing
the levels of monoaminergic neurotransmitters, inhibiting the
overactivation of the HPA axis, promoting the neurogenesis and
neuroplasticity, suppressing the neuroinflammation reaction,
enhancing neuroprotection, etc (Fan et al., 2020; Wei et al.,
2020; Liu et al., 2021). The numerous studies have focused on
the in-depth mechanism and attempted to investigate the efficacy
of PF in asthma treatment (Guo et al., 2021; Ma et al., 2021).

Metabolomics as an analytical strategy has been used to reveal the
relationship between the chemical component and endogenous
metabolic biomarkers (Sun et al., 2019; Fang et al., 2020; Qiu
et al., 2020). In short, through monitoring metabolic trajectories
and changes in metabolites caused by external factors via
metabolomics (Liang et al., 2015a; Liang et al., 2015b), the natural
product is used to characterize and identify in vivo metabolites to
reveal the effect and mechanisms (Liang et al., 2016a; Liang et al.,
2016b; Zhang et al., 2019a; Zhang et al., 2019b; Xie et al., 2019; Zhang
et al., 2020). Furthermore, the potential molecular mechanisms
corresponding to the anti-asthma effects of paeoniflorin are
lacking which should be focused on further studies. In this study,
ovalbumin (OVA) was used to prepare a mouse asthma model and
explore the effect and mechanism of PF on an asthma rat. Our
present work on anti-asthma effects of PF would be beneficial for the
further molecular mechanism study of PF in the future.

METHODS AND MATERIALS

Chemicals and Reagents
Paeoniflorin was supplied by Chengdu PUSH Bio. Technology Co.,
Ltd. (batch number PS186203-01), and the HPLC chromatography
is shown in Supplementary Material, Figure S1.Wahaha pure water

was supplied by Hangzhou Wahaha Group Co., Ltd. Estradiol
benzoate injection was supplied by Animal Pharmaceutical
Hangzhou, China (batch number 11212511). Watson’s distilled
water was supplied by Watson’s Food & Beverage Co., Ltd.
(Guangzhou, China). Acetonitrile (HPLC grade) and methanol
(HPLC grade) were supplied by Fisher (United States). Leucine
enkephalin was supplied by Sigma-Aldrich (MO, United States).
Other chemicals and reagents were of analytical purity.

Animals
Wistar rats, 4 weeks old, weighing 85–100 g, were obtained from
the Animal Center of Fudan University Pudong Medical Center.
The room temperature and relative humidity were controlled at
the range of 22–26°C and 35–45%, respectively, with a 12 h light/
dark cycle. Prior to the experiment, all rats were put into the
metabolism cages and allowed them to adapt to the environment
for 7 days. Rats were given free access to water and normal food
during this period. Then, we divided the rats into three groups
stochastically: the control group (Con), the asthma model group
(Mod), and the PF group (GY). The processes of the experiment
were ratified by the Animal Care and Ethics Committee at the
Fudan University Pudong Medical Center. In the light of the
declaration of Helsinki, all experiments were carried out.

Preparation of Juvenile Asthmatic Rats
The young rats were divided into three groups according to the
random number method: the control group, the model group, and
the PF group, each with 10 rats. According to the method in the
literature (Han et al., 2017), a juvenile asthma rat model was
prepared. Except the control group, the other groups were
intraperitoneally injected with 0.2ml OVA suspension (OVA
20 μg + 2mg hydrogen) on days 1, 8, and 15. Alumina gel was
sensitized, and the control group was injected with the same amount
of normal saline. From the 16th day, the pups of themodel group and
treatment group were given a 4% OVA normal saline nebulized
inhalation challenge once a day for 7 days. The pups in the control
group were given the same amount of saline inhalation. After 1 hour,
the pups of the control group andmodel groupwere intraperitoneally
injected with normal saline, and the administration group was
intraperitoneally injected with 9mg/kg of PF.

Urine Sample Preparation
The urine samples were collected and then centrifuged at 13,000 rpm/
min in 4°C for 10min. Before the UPLC-MS analysis, the
supernatants were stored at −80°C. Before analysis, the urine
samples were thawed in an ice bath; For analysis, 500 μL urine
and 500 μL ultra-pure water were taken, vortexed for 30 s, centrifuged
at 13,000 rpm for 15min at 4°C, and filtered over 0.22 μm; the
supernatant was injected into the UPLC-MS.

Chromatography
The separation was accomplished through the ACQUITY
UPLCTM phenomenex column (2.1 nm × 50 mm, 1.7 µm),
controlling the column temperature at 40°C. The optimal
mobile phase contained (A) acetonitrile with 0.1% formic acid
and (B) water with 0.1% formic acid. The detailed
chromatographic conditions are in Supplementary Table S1.
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Mass Spectrometry Analysis
High-resolution mass spectrometry was performed on a TOF
MS/MS system (Waters Corporation, United States)
equipped with an electrospray ionization (ESI) source in
both positive- and negative-ion modes. The optimized
conditions were as follows: positive mode parameters: ion
source temperature 110°C, capillary voltage 3000 V, cone
voltage30 V, extraction cone voltage 5.0 V, desolvation
temperature 350°C, cone gas flow 50 L/h, and desolvation
gas flow 800 L/h; negative mode parameters: capillary voltage
2800 V, cone voltage 40 V, and all other parameters the same
as in the positive-ion mode.

Biomarker Identification
The metabolic profiles (.raw data) obtained by using the UPLC-
MS system were imported into Progenesis QI software (V2.1,
Waters Corporation, MA) for alignment, peak picking, and
normalization. Then, resultant data matrices (.usp data) were
opened by Ezinfo software (V3.0) for multivariate statistical
analysis through pattern recognition methods. Metabolic data
matrices between the control group and PF group were
analyzed by OPLS-DA. A preliminary VIP value was
selected for primary screening of potential biomarkers. The
secondary screening was carried out according to the principle
that each metabolite in the control and model groups had a
significant difference (p < 0.05) which could be considered to
be the possible biomarkers. Then, the mol file and secondary
mass spectrometry information were matched. Finally, the
urine biomarkers of asthma were confirmed.

Metabolic Pathway Analysis
The KEGG, HMDB, or the name of the compound of the detected
biomarker was introduced to the website http://www.
metabioanalyst.ca for metabolic pathway analyses. The
metabolomic pathway related to metabolites was found by
analyzing the topological characteristics of the pathway. The
metabolic pathways related to the ECB model are obtained and
mapped, and then, the schematic diagram of each metabolic
pathway was obtained. The impact threshold was set to 0.10.
Any pathway beyond this threshold was classified as a potential
target pathway.

Statistical Analysis
Data was conveyed by Student’s t-test and expressed as means ±
SD. Differences in the average value were calculated statistically
significant, and p < 0.05 was considered statistically significant
and p < 0.01 meaning an extremely significant difference.

RESULTS

Metabolic Profiling Analysis
The obtained UPLC-MS/MS urine metabolic spectrum data were
entered into Progenesis QI for chromatographic peak alignment,
data normalization, peak extraction, and multivariate statistical
analysis. PCA of the data was performed by the MetaboAnalyst
software module, and it was determined whether the model creation
resulted in changes in endogenous components. The PCA pattern
recognition was performed on the control group’s urine metabolic
profile and the model group (Figure 1). PCA was conducted using
urine sample data, and the final model revealed that the data profile

FIGURE 1 |Metabolic profile characterization of PCA score plots for the
control and model groups.

FIGURE 2 | Hierarchical clustering dendrogram for the control and
model groups.
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of the model group was far away from that of the control group,
which indicated a significant change in the metabolic network in the
model group (Figure 1). To further distinguish the differences
between different groups, hierarchical clustering dendrogram
analysis was performed on urine metabolites in the two groups
(Figure 2). There are clear differences between the control and
model groups, indicating that the model group’s metabolism has
changed after asthma. The VIP-plot is employed to screen potential
biomarkers (Figure 3), the student’s t-test is applied to analyze the
difference ions with VIP>1, and the normalized abundance is

statistically significant (p < 0.05); these important difference ions
are considered as potential biomarkers, combining MS and MS/MS
structural information, including gluconic acid, 2-furoic acid, 2-
ethylhexanoic acid, glyceraldehyde, cucurbic acid,
N-acetylarylamine, and fumaric acid, and finally, these potential
biomarkers were found to be closely related to asthma
(Supplementary Table S2).

Identification of Urine Biomarkers
A UPLC-MS/MS high-throughput analyzer coupled with
Progenesis QI was used to determine the precise molecular
mass and to generate MS/MS data for the structural
identification of biomarkers. MetaboAnalyst was used to analyze
the blood metabolic profiles of rats in the model and control
groups, and hierarchical clustering dendrogram diagrams, which
directly reflect the contribution of each component to the change in
the metabolic profile, were created (Figure 4) to highlight the
maximum difference between groups. The selected
components were identified by determining their relative
molecular weight by primary MS and obtaining their
structural fragment information. A total of 20 potential
biomarkers were collected using multiple databases,
including the HMDB, KEGG, and METLIN, and the
expression levels of the potential biomarker in the control
and model groups are showed in Figure 4.

Metabolic Pathway Analysis
MetPA was used to construct and analyze metabolic pathways; the
species was set to rat, and the HMDB numbers of the potential
metabolites were entered for this pathway analysis. Using topological
analysis, the cutoff value of themetabolic pathway influencewas set to
0.01, and pathways with a value greater than 0.01 were selected as
potential key metabolic pathways. A total of 5 metabolic pathways
were identified as related to asthma, including the citrate cycle (TCA
cycle), pyrimidine metabolism, pentose phosphate pathway, tyrosine

FIGURE 3 | Top significant features of the metabolite markers based on
the VIP projection.

FIGURE 4 | Hierarchical clustering of the differential metabolites in the control and model groups.
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metabolism, and tryptophan metabolism (Figure 5; Supplementary
Table S3). Therefore, the above metabolic pathways were identified
as target pathways. The results showed that these biomarkers are
involved inmultiplemetabolic pathwayswhichwere closely related to
the asthma model.

Therapeutic Effect of PF on Asthma Model
Rats
The metabolic profile of urine at the last day of administration was
input into the Progenesis QI software for processing. Subsequently,
these ions were processed by MetaboAnalyst to obtain score plots
(Figure 6) that can reflect the trend among groups. The control
group and the asthma model group showed obvious clustering and
separation. After the administration, the model rats had a tendency
approach to the control group. By analyzing the trend of the urine
biomarkers, we found that PF can affect the microbiological changes
of potential biomarkers in model rats, and the content of these
biomarkers tends to approach the control group (Figure 6). The
spatial distribution of PCA scores revealed that rats in the model
group could be obviously distinguished from those in the control
group, indicating that endogenous regulation alone cannot
normalize the metabolic changes in asthma rats to match
metabolite levels in control rats after treatment. After the oral
administration, the position of these treated rats was far from
that of model rats and close to that of the control rats, which
indicates that PF was able to normalize the asthma metabolic profile
(Figure 7). PF can reverse the abnormal levels of these biomarkers,
and the relative levels of biomarkers before and after treatment are
shown in Figure 8.

DISCUSSION

Paeoniflorin is a pinane monoterpene glycoside with various
bioactivities, such as anti-oxidative stress, anticancer effects,
antiplatelet aggregation, and anti-inflammatory and reducing

FIGURE 5 | Metabolic pathway analysis with the MetaboAnalyst.

FIGURE 6 | PCA score plots of multivariate data analysis.

FIGURE 7 | Hierarchical clustering dendrogram for the control, model,
and treatment groups.
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blood viscosity activity, and these pharmacological effects lay the
foundation for PF of being a potential therapeutic agent for several
diseases. Interestingly, the previous studies suggested that it possesses
promising anticancer activities. Paeoniflorin has gained a large
amount of attention for its effect on asthma disease as the growth
rate of asthma has increased in recent years. This work will explore
the related molecular mechanisms, which would be beneficial for the
further exploration and development of this natural compound.
However, the current investigations on action mechanisms of PF
are lacking of in vivo experiments.

The high-throughput metabolomics could monitor the
metabolites’ changes in vivo (Liang et al., 2016c; Liang et al.,
2016d; Yu et al., 2017; Zhang et al., 2017; Kachroo et al., 2021).
The current metabolomic analysis strategy is widely employed in
the metabolic mechanism research and discovery of biomarkers
(Zhang et al., 2015; Zhang et al., 2016; Liang et al., 2017).

In this study, UPLC-Q/TOF-MS was used to develop an
untargeted metabolomics analysis of asthma rats to explore the
overall metabolic changes and characterize biomarkers. As a result, a
total of 20 biomarkers with VIP>1 and normalized abundance
significant p < 0.05 were discovered. It is worth noting that PF
reversed the levels of biomarker metabolites after treatment, which
participated in 5 metabolic pathways including the citrate cycle
(TCA cycle), pyrimidine metabolism, pentose phosphate pathway,
tyrosine metabolism, and tryptophan metabolism. The biomarkers
involved in these metabolic pathways play an important role in
asthma. There are defects in this experiment. First of all, the current
detection technology cannot analyze all the metabolites of the body
at the same time and cannot reasonably interpret all the information
obtained. It is necessary to further improve themetabolomic analysis
detection technology and data processing technology. Further
research is needed in terms of their use in clinical diagnosis.

CONCLUSION

In this study, an advanced, high-sensitivity and high-throughput
UPLC-MS was used to prove the PF-possessed therapeutic effects
on asthma in some degree. This study explored the mechanism of
PF in improving the rat model of asthma by metabolomics; a total
of 20 potential biomarkers were identified in asthma rats. In
addition, these biochemical indicators were regulated
significantly after the treatment of PF, and five related
pathways were significantly affected by PF. Our research had
demonstrated that PF was effective against asthma. It has
provided the scientific evidence for PF treatment for asthma
disease.
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