'." frontiers

in Pharmacology

ORIGINAL RESEARCH
published: 22 March 2022
doi: 10.3389/fphar.2022.832707

OPEN ACCESS

Edited by:

Anuradha Kalani,

University of Kansas Medical Center,
United States

Reviewed by:

Poonam Chaturvedi,

Lovely Professional University, India
Pankaj Chaturvedi,

University of Louisville, United States

*Correspondence:

Yi Shi
shi.yi@zs-hospital.sh.cn
0000-0003-3005-9655
Hao Fang
drfanghao@163.com

TThese authors have contributed
equally to this work

Specialty section:

This article was submitted to
Neuropharmacology,

a section of the journal
Frontiers in Pharmacology

Received: 10 December 2021
Accepted: 14 February 2022
Published: 22 March 2022

Citation:

Hu'Y, Zhou Y, Yang Y, Tang H, Si'Y,
Chen Z, Shi Y and Fang H (2022)
Metformin Protects Against Diabetes-
Induced Cognitive Dysfunction by
Inhibiting Mitochondrial Fission
Protein DRP1.

Front. Pharmacol. 13:832707.

doi: 10.3389/fphar.2022.832707

®

Check for
updates

Metformin Protects Against
Diabetes-Induced Cognitive
Dysfunction by Inhibiting
Mitochondrial Fission Protein DRP1

Yan Hu'?', Yile Zhou", Yajie Yang?, Haihong Tang?, Yuan Si®, Zhouyi Chen’, Yi Shi*°* and
Hao Fang'*

" Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China, 2Department of Anesthesiology,
Jinshan Hospital, Fudan University, Shanghai, China, Department of Anesthesiology, Minhang Branch, Zhongshan Hospital,
Fudan University, Shanghai, China, *Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China,
°Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China

Objectives: Diabetes is an independent risk factor for dementia. Mitochondrial
dysfunction is a critical player in diabetes and diabetic complications. The present
study aimed to investigate the role of mitochondrial dynamic changes in diabetes-
associated cognitive impairment.

Methods: Cognitive functions were examined by novel object recognition and T-maze
tests. Mice hippocampi were collected for electron microscopy and immunofluorescence
examination. Neuron cell line HT22 and primary hippocampal neurons were challenged
with high glucose in vitro. Mitotracker-Red CM-H2X ROS was used to detect
mitochondrial-derived free radicals.

Results: Diabetic mice exhibited memory loss and spatial disorientation. Electron
microscopy revealed that diabetic mice had larger synaptic gaps, attenuated
postsynaptic density and fewer dendritic spines in the hippocampus. More round-
shape mitochondria were observed in hippocampal neurons in diabetic mice than
those in control mice. In cultured neurons, high glucose induced a high
phosphorylated level of dynamin-related protein 1 (DRP1) and increased oxidative
stress, resulting in cell apoptosis. Inhibition of mitochondrial fission by Mdivi-1 and
metformin significantly decreased oxidative stress and prevented cell apoptosis in
cultured cells. Treatment of Mdivi-1 and metformin restored cognitive function in
diabetic mice.

Conclusion: Metformin restores cognitive function by inhibiting mitochondrial fission,
reducing mitochondrial-derived oxidative stress, and mitigating neuron loss in hippocampi
of diabetic mice. The protective effects of metformin shed light on the therapeutic strategy
of cognitive impairment.

Keywords: diabetes, cognitive dysfunction, mitochondrial fission, dynamin-related protein 1, reactive oxidative
stress, apoptosis
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INTRODUCTION

The prevalence of diabetes has reached 11.1% in 2019 (Saeedi
etal, 2019). Diabetic patients have a higher incidence of dementia
than the non-diabetic population by 1.5 fold (Gudala et al., 2013;
Koenig et al., 2017), indicating that diabetes is an important risk
factor for cognitive impairment (Desmond et al., 1993). Diabetes-
associated cognitive impairments are attributed to insulin
resistance (Talbot et al., 2012; de la Monte, 2014), cerebral
vascular endothelial dysfunction (De Silva and Faraci, 2016;
Sheen and Sheu, 2016), enhanced oxidative stress (Yao-Wu
Liu et al, 2016; Gonzdlez-Reyes et al., 2016), and increased
neuron loss (Zuloaga et al., 2016).

Hippocampus is a brain structure, which is critical for learning,
memory, and spatial discrimination. Alterations in the structure and
function of hippocampal neurons have a significant impact on
cognition. In hippocampal neurons of patients with Alzheimer’s
(Fang et al, 2019; Oliver and Reddy, 2019) and Parkinson’s
diseases (Yang et al, 2014; Ho et al, 2018),
mitochondrial fission has been reported. Mitochondrial fission,
when balanced with fusion, maintains mitochondrial dynamics and
is critical for mitochondrial hemostasis (Dorn and Kitsis, 2015; Yang
et al,, 2015). Excessive fission results in mitochondrial fragmentation:
the fragmented mitochondria are cleared by mitophagy (Youle and
Narendra, 2011) and autophagy (Barsoum et al.,, 2006; Twig et al,,
2008); however, when the damaged mitochondria are not effectively
cleared, their accumulation in cells results in increased oxidative stress
(Sanderson et al., 2013) and cell apoptosis (Fossati et al., 2016; Xu et al,,
2016). Mitochondrial fission is regulated by dynamin-related protein 1
(DRP1) (Youle and Narendra, 2011). In neurons subjected to oxygen/
glucose deprivation-induced neuroexcitatory toxicity, the protein
expression and/or phosphorylation at serine 616 residue (an
activation site (Youle and Narendra, 2011)) of DRP1 is increased
(Zhao et al., 2013; Flippo and Strack, 2017; Fang et al,, 2019). The
importance of DRP1 in mitochondrial structure and cell function is
further confirmed by the findings that overexpressing DRP1 protein in
embryonic hippocampal neurons alters mitochondrial structures and
impairs dendritic branch formation (Dickey and Strack, 2011), and
that inhibiting DRP1 protein restores mitochondrial density, increases
ATP generations (Huang et al, 2015), prevents mitochondrial
membrane potential loss (Frank et al, 2001), and protects neurons
from ischemic stroke (Flippo et al., 2018).

Metformin is a first-line pharmacological treatment of diabetes
by controlling postprandial blood glucose levels, downregulating
glycogen synthesis, and increasing insulin sensitivity (Rena et al,
2017). Tt is reported that metformin treatment improves neuronal
function in patients with diabetes (Campbell et al, 2018),
neurodegenerative disease (Koenig et al, 2017), as well as in
senile populations (Allard et al, 2016; Valencia et al, 2017
Samaras et al., 2020). The protective mechanisms of metformin
include activation of adenosine 5'monophosphate-activated protein
kinase (AMPK) (Frank et al,, 2001; Zifeng Liu et al., 2016; Syngelaki
etal., 2016; Xin et al., 2016; Sam and Ehrmann, 2017; Salvatore et al.,
2020; Yang et al,, 2020), inhibition of DRP1 protein (Wang et al.,
2017), and prevention of ROS-induced cell apoptosis (Bhatt et al.,
2013). Therefore, the present study was aimed to determine the
effects of diabetes on mitochondrial dynamic changes in

excessive
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hippocampal neurons and the outcome on cognitive function of
mice. Moreover, the effects, and the underlying mechanism, of
metformin on hippocampal neuronal mitochondrial dynamic
were investigated.

MATERIALS AND METHODS

Animal Administration
Type 2 diabetic mice, db”" mice, and their genetic control m/m
mice were bought from Cavens Laboratory Animal Corporation
(Zhejiang, China). Eighteen six-week-old db”" and 6 m/m control
male mice were housed in Zhongshan animal facility with 12-h
light-dark cycles. All mice had free access to drinking water and
regular chow. Metformin (=250 mg/kg/d, Sigma-Aldrich, MO)
was added in drinking water since week six (Sun et al., 2018).
Mdivi-1 (1.2 mg/kg/d, Sigma-Aldrich, MO), a specific inhibitor of
DRP1, was administered by a subcutaneous micro-osmotic pump
(Alzet, Braintree, MA) since week eight (Wang et al., 2017). In
week ten, mice were fasted and sacrificed by sodium pentobarbital
injection (100 mg/kg i. p Sinopharm, Shanghai, China).

The newborn mice were purchased from Jiesijie Corporation
(Shanghai, China) for primary neuron isolation.

The Animal Ethics Committee of Zhongshan Hospital Fudan
University approved the study protocols.

Novel Object Recognition Test

A novel object recognition test was applied to evaluate mice memory
(Guimarées et al, 2017). The experiment was carried out in a
40%40%40 cm box. Before the experiment, mice were accustomed to
two identical objects for 10 minutes in the chamber. Short-term
memory was examined in 1hour, and long-term memory was
examined in 24 hours. In the experiment, one of the two identical
objects was replaced by a novel subject. Mice movement in the
chamber was recorded. A discrimination index was applied to
examine their preference for the new object.

Discrimination index

times explored new object — times explored old object « 100%
_ 0

~ times explored new object + times explored old object

Spontaneous Alternation in T-Maze

Spontaneous alternation was examined in a T-maze (Ragozzino
et al., 1996; Maynard et al., 2020). Mice were accustomed to the
maze for 10 minutes. A successful entry was counted when a
mouse entered an arm of the maze. Mice were credited when they
entered the three different arms in three consecutive entries, not
credited when they discontinuously chose one arm and credited
minus when they repeatedly entered the same arm in three
consecutive entries. The final scores were calculated for
5 minutes or a total of 15 entries (Supplementary Figure 1B).

Cell Culture

The HT22 hippocampal neuronal cells (JennioBiotech,
Guangzhou, China) were cultured in 30 mm dishes with
Dulbecco Essential Medium (DMEM, Hyclone, Logan,
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United States), including 10% fetal bovine serum (FBS, Zhong
Qiao Xin Zhou Biotech, Shanghai) and 1% penicillin-
streptomycin (Thermo Fisher Scientific, United States).

Primary Hippocampal Neuron Culture
Primary hippocampal neurons were isolated from newborn
hippocampi with accutase (#A11105-01, Life Technologies, CA).
After filtering through a 40 pum strainer (Falcom, United States), 4 x
10° neurons were seeded in poly-p-lysine (Sigma-Aldrich, MO)-
coated dishes and cultured with DMEM medium containing 10%
EBS and 10% horse serum (Solarbio Life Sciences, Beijing, China).
Six hours later, neurobasal medium (#10888022, Life Technologies,
CA) containing B27 supplement (#17504, Life Technologies, CA),
0.5 mM glutamine (#35050, Life Technologies, CA), and cytosine
arabinoside (1 ug/mL, # C3350000, Sigma-Aldrich, MO) was added.
Culture medium was changed every 2 days. Experiments were
performed on day seven. The primary hippocampal neurons
were positively stained with NeuN (#ab104224, Abcam, UK), a
neuron-specific marker (Supplementary Figure 1C).

Western Blotting

Total protein of cultured cells was prepared with lysis buffer
(150 mmol/L NaCl, 1 mmol/L EDTA, 1 mmol/L NaF, 1 mmol/L
dithiothreitol, 10 pg/ul aprotinin, 10 pg/ul leupeptin, 0.1 mmol/L
Na3;VOy,, 1 mmol/L phenylmethylsulfonyl fluoride, and 0.5% NP-
40). Protein extracts (20 pug) were loaded in 10-12.5% sodium
dodecyl sulfate-polyacrylamide gel for electrophoresis. Proteins
were transferred to 0.45 um polyvinylidene fluoride membranes
(Merck Millipore, Darmstadt, Germany). After blocking with 5%
non-fat milk/Tris-buffered saline containing 0.1% Tween-20 at
room temperature for 1 hour, the membranes were incubated
with primary antibodies at 4°C overnight. Then the membranes
were washed and incubated with secondary antibodies (1:1,000)
for 1 hour at 37°C. After washing, protein expression levels were
normalized to B-actin with ImageJ (NIH, Bethesda, MD).

Mitochondrial-Derived Oxidation Product

Detection
Mitotracker-Red CM-H2X ROS (#M7513, Thermo Fisher, CA)
was used to evaluate mitochondrial-derived oxygen-derived free
radicals. After 6-h high glucose stimulation, neurons were
incubated with Mitotracker-Red CM-H2X ROS solution
(1 uM) at 37°C for 15 minutes and Hoechst 33342 (#C1029,
Beyotime Biotechnology, Shanghai, China) for 5 minutes.
Brain samples were fixed with 4% paraformaldehyde, blocked
in 5% goat serum (Absin Biomart, Shanghai, China) at 37°C for
20 minutes. The samples were incubated with dihydroethidium
(10 uM, Beyotime Biotechnology, Shanghai, China) for 1 hour.
Hoechst 33342 (#C1029, Beyotime Biotechnology, Shanghai,
China) for 5 minutes. Fluorescent signals in hippocampal CA1
region were detected using a fluorescence microscope (Olympus,
Tokyo, Japan) and analyzed with Image] (NIH, Bethesda, MD).

TUNEL Assay

Cells and brain slices were fixed with 4% paraformaldehyde, then
incubated with One-Step-TUNEL apoptosis kit (Beyotime
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Biotechnology, Shanghai, China) at 37 °C for 1hour. DAPI
(#C1002, Beyotime Biotechnology, Shanghai, China) for
5 minutes. TUNEL signals in the hippocampal CAl region
were detected by a fluorescence microscope and analyzed with
Image].

Tissue Preparation and

Immunofluorescence Examination

Mice brains were dehydrated with 30% sucrose solution and
embedded in a tissue freezing medium (OCT, SAKURA Tissue-
Tek, CA, United States). The frozen samples were sectioned for
5 um thickness and fixed with 50% ethanol, including 5% glacial
acetic acid and 5% formaldehyde. After washing in phosphate
buffer saline (Sangon Biotech, Shanghai, China), brain samples
were blocked in 5% goat serum at 37°C for 20 minutes. The
samples were incubated with primary antibodies [p-DRP1 (1:800,
#4494, Cell Signaling Technology, Boston, MA), DRP1 (1:50,
#8570, Cell Signaling Technology, Boston, MA), cleaved-caspase
3 (1:400, #9661, Cell Signaling Technology, Boston, MA)],
Dihydroethidium (DHE) and NeuN at 4°C overnight. Tissues
were incubated with secondary antibodies (1:200, #A1034,
Thermo Fisher Scientific, CA; 1:200, #115-585-003, Jackson,
MI) at 37°C for 1hour. Images were obtained using a
fluorescence microscope (Olympus, Tokyo, Japan).

Transmission Electron Microscope (TEM)
Mice brains were fixed with 4% paraformaldehyde with 1%
glutaraldehyde. Hippocampal neurons, including their
mitochondria synapses (Supplementary Figure 1D) and
dendritic spines, were recorded. Neuron mitochondria,
synaptic gaps, postsynaptic density (PSD), and dendritic spines
were measured blindly by lab technicians.

The short axis and the long axis, which is perpendicular to
each other, were measured for the ratio of the short-axis/long
axis. The image was enlarged enough to measure the pixels of
synaptic gap and postsynaptic density and calculated
according to the pixels corresponding to the ruler. Three
points were selected from each synapse and the average
value was taken as the data for statistical analysis. These
measured values agree with those reported in the literature
(Shields et al., 2015). Select the dendrite structure as complete
as possible, observe the synaptic structure formed between it
and surrounding structures, including axons and dendrites,
and count it as the close connection between dendrites and
other structures.

MATERIALS

Hippocampal neuronal cell line HT22 was purchased from Jennio
Biotech  Corporation  (Biotech, = Guangzhou, China).
Mitochondrial Dynamics Antibody Sampler Kit, p-AMPK,
AMPK, caspase 3, cleaved caspase 3, ATG5, ATG7, B-actin
purchased from Cell Signaling Technology (CST, Boston,
MA), while Pinkl antibody was purchased from Novus
Biologicals (Colorado, CO). Horseradish peroxidase (HRP)-
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FIGURE 1 | Diabetic mice exhibit cognitive deficits. Diabetic mice exhibit lower scores in short-term memory (A), long-term memory (B), and spatial orientation tests
(C). (D) Representative picture of mitochondria in hippocampal neurons (upper panel) and the ratio of short/long axis of mitochondria (40 mitochondria from control, 37
from diabetic mice, n = 3) (200,00 x, Bar = 0.5 um) (lower panel). (E) Representative picture of a synaptic gap (upper panel) in the hippocampus and measurement of
synaptic gaps and PSD (lower panel) (28 synapses from control, 25 from diabetic mice, n = 3). (500,00 x, Bar = 200 nm) (F) Representative picture of dendritic
spines in the hippocampus (upper panel) and numbers of dendritic spines per dendrite (lower panel) (19 dendrites from control, 14 from diabetic mice, n = 3) (500,00 x,

Control Diabetes Diabetes

Control

conjugated goat anti-mouse and goat anti-rabbit secondary
antibodies were purchased from Jackson Corporation
(Missouri, MO). Metformin (Metformin hydrochloride),
D-mannitol, mitochondrial division inhibitor 1 (Mdivi-1), and
GSK 621 were obtained from Sigma Chemical (St. Louis, MO).
Compound C (dorsomorphin dihydrochloride) was purchased
from MedChemExpress (New Jersey, NJ). Fetal bovine serum
(FBS) was obtained from Hyclone (Logan, UT). Living cell dye
Mitotracker-Red CM-H2X ROS was obtained from Thermo
Fisher Scientific (California, CA), Hoechst was purchased from
Beyotime  Biotechnology (Shanghai, China). Antibiotic
(penicillin, streptomycin) was purchased from Thermo Fisher
Scientific (California, CA). Subcutaneous micro-osmotic pumps
were purchased from Durect Corporation (California, CA).

Glucophage (metformin sustained-release tablets) was
purchased  from  Sino-American  Shanghai  Squibb
Pharmaceutical Corporation (Shanghai, China). Sodium

pentobarbital is bought from Sinopharm Chemical Reagent
Corporation (Shanghai, China).

Statistical Analysis

All quantitative data were expressed as means + SEM and were
analyzed by one-way analysis of variance (ANOVA) or
Student’s test, as appropriate. A p-value less than 0.05 was
considered statistically significant. All statistical analyses were
performed with GraphPad Prism 7.04 (GraphPad, San
Diego, CA).

RESULTS
Diabetic Mice Exhibit Cognitive Dysfunction

Cognitive functions were examined when mice were seven-
week-old, since db”~ mice had consistently high glucose levels
at week six. In week seven, control and diabetic mice had
comparable scores in memory and spatial orientation tests.
Compared with age-matched control mice, diabetic mice
exhibited lower scores in short-term memory tests since
week eight and in spatial orientation tests since week nine.
In week ten, long-term memory was declined in diabetic mice
as well (Figures 1A-C; Supplementary Figure 1A).

TEM revealed that control mice had slender mitochondria
with clear cristae, while diabetic mice had swelling and round-
shape mitochondria with some vacuolation. Mitochondrial
short axis to its long axis ratio was significantly increased in
diabetic mice (Figure 1D). Compared with control mice,
synaptic gaps in diabetic mice were larger (control vs
diabetes: 16 + 0.67 nm: 18.69 + 0.72 nm, 28 from 3 control
and 25 from 3 diabetic mice, p < 0.05), and PSD in diabetic mice
was significantly attenuated (control vs diabetes: 47.68 =+
1.93 nm: 32.76 + 1.68 nm, 28 from 3 control and 25 from 3
diabetic mice, p < 0.05, Figure 1E) In line, diabetic mice had
fewer dendritic spines in hippocampal neurons than control
m/m mice (control vs diabetes: 2.89 + 1.66: 1.57 + 1.57 per
dendrite, 19 from 3 control and 14 from 3 diabetic mice, p <
0.05, Figure 1F).
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FIGURE 2 | High glucose increases mitochondrial fission in neurons and induces neuron apoptosis in HT22 (A-G, upper panel) and neurons (H-N, lower panel).
Representative blots and densitometric quantification of DRP1, OPA1, and caspase proteins in HT22 (A-C) and neurons (H-J). The phosphorylation of DRP1 (top blots)
was normalized to total DRP1 protein (middle), and total DRP1 was normalized to B-ACTIN (bottom). Fluorescent signals and quantification of Mitotracker-Red CM-H2X
ROS in HT22 (D-E) and primary neurons (K-L) stimulated with high glucose. (200 x, Bar = 800 pm). Hoechst labeled the nuclei (blue), and Mitotracker-Red CM-
H2X ROS was stained in red (Fluor 594). Fluorescent signals and quantification of TUNEL in HT22 (F-G) and primary neurons (M-N) stimulated with high glucose. (200 x,
Bar = 800 um). DAPI labeled the nuclei (blue), and TUNEL was stained in red (Fluor 594). Data presented as means + SEM, *p < 0.05 vs cells under control condition by

Contral Manitel High Glacose

High Glucose Increases Neuron
Mitochondrial Fission and Induces Neuron
Apoptosis

In HT22 cells, a cell line immortalized from primary mouse
hippocampal neuronal, 6-h high glucose stimulation induced a
higher phosphorylated level of DRP1 at serine 616 residue in a
dose-dependent manner, while the total protein expression
was comparable (Figure 2A, and Supplementary Figure 2).
Mannitol, the osmotic control, did not increase the
phosphorylated or total level of DRP1 protein (Figure 2A,
and Supplementary Figure 3A). Therefore, a 60 mmol/L
glucose stimulation was used in the present study. High
glucose significantly reduced protein expression of
mitochondrial fusion protein optic atrophy 1 (OPAl,
Figure 2B), but did not affect protein expression of
mitochondrial fission protein MFF (Supplementary
Figure 3B), the receptor of DRP1. High glucose failed to
change protein expressions of Pinkl, autophagy-related 5
(Atg5), or Atg7 (Supplementary Figures 3C-D).

Six-hour high glucose stimulation significantly increased the
phosphorylated level of DRP1 (Figure 2H), but not the total
protein expression in primary neurons (Supplementary
Figure 4A). High glucose stimulation significantly reduced the
protein expression of OPA1 (Figure 2I). High glucose did not

affect protein expressions of MFF, Pinkl, Atg5, or Atg7
(Supplementary Figures 4B-D).

Mitochondrial-derived  oxidative stress, detected by
Mitotracker-Red CM-H2X ROS, was significantly increased in
both HT22 (Figures 2D,E) and primary neurons stimulated with
high glucose (Figure 2K-L).

After 24 h, high glucose increased cleaved-caspase 3 protein
expression, but not the total protein, in both HT22 (Figure 2C)
and primary hippocampal neurons (Figure 2J). TUNEL assay
detected more fluorescent signals in cultured cells stimulated with
high glucose (Figures 2F,G, M-N).

Inhibition of Mitochondrial Fission
Decreases Oxidative Stress and Reduces

Apoptosis in Cultured Neurons

To explore the role of DRP1 in high glucose-induced
mitochondrial dysfunction, Mdivi-1 (25 pM) (Cui et al., 2016)
and metformin (10 mM) (Meng et al., 2016) were used in the
present study.

Mdivi-1 incubation did not affect DRP1 protein expressions.
Incubation of metformin significantly reduced the
phosphorylated level of DRP1 in both HT22 and primary
hippocampal neurons. Mdivi-1 and metformin alone
significantly decreased high glucose-induced oxidative levels in

Frontiers in Pharmacology | www.frontiersin.org

March 2022 | Volume 13 | Article 832707


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Hu et al.

Metformin Protects Cognitive Function in Diabetes

p-DRP1 . s mee |sokpa

B

Cleaved

IS
1

HT22 D
Mitotracker-Red CM-H2X ROS
Metformin+Glucose Mdivi-1+Glucose

Control Glucose

- 19KkDa
CASPASE 3 - 17KDR:

CASPASE 3 |-« " 35kDa

DRP] R 0 S0kDa

Mdivi-1

B -ACTIN | M——— — — /5102 B-ACTIN NS - - 5o
Phospho/Total DRP1 Cleaved/Total CASPASE 3 T
L B Metformin = & #® =
= 25 % # Z Mdivi-l - = = +
Z=20 (L £z 4 TUNEL F
£ 2i, . 20 ¥ # #
‘E £ 15 ‘ &. s § Control Glucose Metformin+Glucose Mdivi-1+Glucose 2
¢ g% g € 159
HITEE JUS I el
g< 4 2~ 53 104 =
I g o0 £% LI
HighGlucose  — +  +  + S -+ o+ kS £ 549 i
Mettormia = 4 = Mettoria = = oF = & 1e» .
Maivi-l = = = Maivi-l = = = & mgncmgm -+ 4+ 4+
Metformin - - + -
Mdivi-1 =~ - 2
G H Neuron J e « # #
Mitotracker-Red CM-H2X ROS L4

A
5
p-DRP] [me w— | soxpa  Cleaved- pr—— Control Glucose Metformin+Glucose Mdivi-1+Glucose é .‘_E 3
== = CASPASE 3 | s S 1102 F&,]
DRP] [ M W S W | 5, CASPASE 3 [S s s s | 35k08 s % o
i e * 4
B-ACTIN [ S — ., [ ACTIN [ - —— | 0, §711% &
Phospho/Total DRP1 Cleaved/Total CASPASE 3 ,mc,,_(g: = T T
= 3 * x= # # Mettormin = = =
; = L] Mdivi-l = = = +
= L] "
352 % K runer L g ? &%
35
g2& % %' . Control Glucose Metformin+Glucose Mdivi-1+Glucose s 281 '}
2514 D * L] :P 23 40
[ A aD» e ool
2T ey 'y =% 20 ]
2 = A 59 15
High Glucose + + + - + + + ] ]
o = =+ - - - s - EE
S
= = &
oe

FIGURE 3 | Inhibition of mitochondrial fission decreases oxidative stress and reduces apoptosis in HT22 ((A-F), upper panel) and neurons ((G-L), lower panel).
Representative blots and densitometric quantification of phosphorylated DRP1 and caspase 3 in HT22 (A-B) and neurons (G-H). The phosphorylation of DRP1 (top
blots) was normalized to total DRP1 protein (middle), and total DRP1 was normalized to B-ACTIN (bottom). The cleaved of caspase3 (top blots) was normalized to
caspase3 protein (middle), and caspase3 was normalized to B-ACTIN (bottom). Fluorescent signals and quantification of Mitotracker-Red CM-H2X ROS in

HT22 (C-D) and primary neurons (I-J) stimulated with high glucose (200 x, Bar = 800 pm). Fluorescent TUNEL signals and quantification in HT22 (E=F) and primary
neurons (K-L) stimulated with high glucose. (200 x, Bar =800 pm). DAPI labeled the nuclei (blue), and TUNEL was stained in red (Fluor 594). Data presented as means +
SEM, *p < 0.05 vs cells under control condition, #p < 0.05 vs cells stimulated with high glucose by One-way ANOVA.

- N W
;
L]
ohob e
° *

% of Control

%

Relative expression

HT22 and primary hippocampal neurons. Mdivi-1 and
metformin incubation significantly reduced cleaved-caspase 3
expressions and the TUNEL signals in HT22 and primary
hippocampal neurons (Figure 3).

The Protective Effect of Metformin Is
Attributed to the Reduced Phosphorylation
of DRP1 but Not AMPK Activation

A large body of literature has reported that metformin exerts its
protective effect through AMPK-dependent (Rena et al., 2017;
Salvatore et al., 2020) or -independent mechanisms (Cui et al.,
2016; Chan et al, 2020; Silva et al, 2021). To study the
involvement of AMPK in DRP1 activation, AMPK agonist
GSK 621 (Jiang et al., 2016) was used in the absence of
metformin, while AMPK antagonist Compound C (Liu et al,
2014) was incubated in the presence of metformin.

In the present study, metformin significantly increased AMPK
phosphorylation in HT22 challenged with high glucose
(Figure 4A). In the absence of metformin, GSK 621 increased
the AMPK expression (Figure 4B), but failed to reduce the DRP1
expressions (Figure 4C). GSK 621 did not prevent high glucose-
induced oxidative stress (Figures 4D,E). In the presence of
metformin, Compound C significantly downregulated the

phosphorylation of AMPK (Figure 4B) and DRPI1
(Figure 4C), and diminished high glucose-induced oxidative
stress (Figures 4D,E).

Metformin significantly increased AMPK phosphorylation
in primary neurons challenged with high glucose (Figure 5A).
In the presence of metformin, Compound C significantly
downregulated AMPK protein expression, but did not
change the phosphorylated level (Figure 5B). Compound C
significantly reduced both phosphorylated and total protein
expressions of DRP1 (Figure 5C), and diminished high
glucose-induced oxidative stress (Figures 5D,E). In the
absence of metformin, GSK 621 activated AMPK
phosphorylation and reduced the total protein expression,
but did not change the phosphorylated level of DRP1
(Figure 5C). Consistently, GSK 621 did not inhibit high
glucose-induced oxidative stress (Figures 5D,E).

Metformin Protects Against Cognitive
Dysfunction in Diabetic by Inhibiting DRP1
Phosphorylation in the Hippocampus

To confirm the protective effects of mitochondrial fission
inhibition on neuron function, diabetic mice were treated with
metformin or Mdivi-1.
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FIGURE 4 | The protective effect of metformin is attributed to DRP1 phosphorylation but not AMPK activation in HT22. (A) Representative blots and densitometric

quantification of AMPK protein in HT22 stimulated high glucose in the treatment of metformin or Mdivi-1. The phosphorylation of AMPK (top blots) was normalized to total
AMPK protein (middle), and total AMPK was normalized to B-ACTIN (bottom). (B) Representative blots and densitometric quantification of AMPK protein in HT22 treated
with AMPK agonist GSK 621 in the absence of metformin, or AMPK antagonist Compound C in the presence of metformin. The phosphorylation of AMPK (top

blots) was normalized to total AMPK protein (middle), and total AMPK was normalized to $-ACTIN (bottom). (C) Representative blots and densitometric quantification of
DRP1 protein in HT22 AMPK agonist GSK 621 in the absence of metformin, or AMPK antagonist Compound C in the presence of metformin. The phosphorylation of
DRP1 (top blots) was normalized to total DRP1 protein (middle), and total DRP1 was normalized to B-ACTIN (bottom). Fluorescent signals of Mitotracker-Red CM-H2X
ROS (D) (200 x, Bar =800 pm) and quantification (E) in HT22 protein in HT22 AMPK agonist GSK 621 in the absence of metformin, or AMPK antagonist Compound C in
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Mdivi-1 did not
significantly reduce serum glucose levels or body weight
(Table 1).

Presences of phosphorylated and total DRP1 protein were
significantly increased in hippocampal neurons in db”" mice,
compared with m/m mice. Metformin or Mdivi-1 significantly
reduced phosphorylated and total protein of DRP1 protein, in
hippocampal neurons (Figures 6A,B).

Signals of oxidative stress were significantly increased in
hippocampal tissue in db”" mice. Metformin or Mdivi-1
administration significantly reduced the signals (Figure 6C).

In line with cultured cells, diabetic mice had significantly
higher fluorescent signals of cleaved caspase-3 protein
(Figure 6D) and TUNEL (Figure 6E), which were suppressed
by metformin or Mdivi-1 treatment.

Treatment of metformin or

In addition, metformin or Mdivi-1 treatment restored
mitochondria morphology (Figure 7A) and synapse structures
and significantly increased dendritic spines (Figures 7B,C) in
hippocampal neurons.

Mdivi-1 treatment restored diabetic mice cognitive function in
memory tests and spatial orientation tests in week ten. Metformin
significantly improved the short-term memory in diabetic mice since
week eight and restored mice cognitive performance in spatial
orientation and long-term memory tests in week ten (Figures 7D-F).

DISCUSSION

This study highlights the critical role of mitochondrial dynamics
in the structure and function of hippocampal neurons. Diabetes/

Frontiers in Pharmacology | www.frontiersin.org

March 2022 | Volume 13 | Article 832707


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Hu et al.

Metformin Protects Cognitive Function in Diabetes

Neuron

P-AMPK [ — ﬁ| ekpa  p-AMPK

— e ——— | 62kDa

p-DRPl[ - e - |80kDa

AMPK g # s s | 210

AMPK | oo v e =

l 62KkDa

DRP] [# S0 o % e | o0

B-ACTIN [ - .o

B -ACTIN ‘ -— D = —— | 45kDa

B -ACTIN ’_m l 45kDa

Phospho/Total AMPK

Phospho/Total AMPK

Phospho/Total DRP1

G3K 62 1!(h(;lumse+Metform1n+Glucose

¥ 4 g % 4 ¢ @ = 3 A
%% 3 A 233 A 83
s £ ] 3 E E £ 27
= ] s 8 A s 3
€ 3 21 oA A g2 A 4V el . i
S ° S © B - o
izt ® 51 AAg—Ai R ﬁ i
] S v
£ o £ ol £ el
AMPK AMPK # DRP1
= 251 i X g 1957 # 4 #
5 2 z 2 4a A z g °
Z 2 = 2.0 [} £ 7 - ° Z 2=
= ZE5ET15 £ £ £ 1.04
0551_5_ . GEE a_I_ o U;rig10 @:.Q A
S8 S8810] @ Y* &, =22 A M
2210 o 3g i s s E  £:%os & B+
2 3% 0.5 o a4 %%*0'5 ALY ag° s ¥
~ 0 & 0.0 o 0.0
High Glucose ~ — * & + High Glucose = + + + + High Glucose = + + + +
Metformin - - + - Metformin - - + = + Metformin = = 4 e +
Maii1 = & - + o a2t = - - + - S B - - i N
Compound C = - = = + Compound C = = = = £
D Mitotracker-Red CM-H2X ROS
Control Glucose Metformin+Glucose
= 15 * # #
S
£E 10 oo
53
25 & s
=8
2 C o t &
High Glucose - + + % %
Metformin = = + = g3
GSK-621 = = N i =
Compound C = = = = +

Compound C

FIGURE 5 | The protective effect of metformin is attributed to DRP1 phosphorylation but not AMPK activation in primary neurons. (A) Representative blots and

densitometric quantification of AMPK protein in primary neurons. The phosphorylation of AMPK (top blots) was normalized to total AMPK protein (middle), and total
AMPK was normalized to -ACTIN (bottom). (B) Representative blots and densitometric quantification of AMPK protein in primary neurons stimulated high glucose in the
presence of GSK 621 or Compound C. The phosphorylation of AMPK (top blots) was normalized to total AMPK protein (middle), and total AMPK was normalized to

B-ACTIN (bottom). (C) Representative blots, and densitometric quantification of DRP1 protein in primary neurons stimulated high glucose in the presence of GSK 621, or
Compound C. The phosphorylation of DRP1 (top blots) was normalized to total DRP1 protein (middle), and total DRP1 was normalized to B-ACTIN (bottom). Fluorescent
signals of Mitotracker-Red CM-H2X ROS (D) (200 x, Bar =800 pm) and quantification (E) in primary neurons stimulated with high glucose in the presence of GSK 621, or
Compound C. Data presented as means + SEM, *p < 0.05 vs cells under control condition, #p < 0.05 vs cells stimulated with high glucose by One-way ANOVA.

TABLE 1 | General conditions in diabetic mice.

m/m control (n = 6)

db™" mice (n = 8)

Metformin treated db™”" Mdiv1 treated db™"

mice (n =7) mice (n = 6)
Weight (g) 21.63 + 0.48 46.58 + 1.04* 45.6 + 0.58* 46.48 + 0.51*
Blood glucose (mmol/L) 5.57 £ 1.16 22.03 + 1.04* 18.67 + 1.83* 21.83 + 3.01*

Data shown as the means + SEM, *p < 0.05 vs m/m control group.

hyperglycemia alters mitochondrial dynamics in favor of fission,
resulting in enhanced oxidative stress and apoptosis in neurons.
Inhibiting mitochondrial fission reduces oxidative stress and
protects mice from diabetes-induced cognitive impairment.

In this study, diabetic mice presented cognitive deficits with
short-term memory loss, impaired spatial orientation, and

declined long-term memory in chronological order, resembling
the development of dementia in humans (Gale et al., 2018). These
data provide scientific evidence that diabetes is an important risk
for cognitive dysfunction (Desmond et al., 1993).
Mitochondria  participate ATP  production,
neurotransmitter synthesis, and cell apoptosis (Flippo and

in
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FIGURE 6 | Metformin protects against cognitive dysfunction in diabetes by inhibiting DRP1 phosphorylation in the hippocampus. Presences of phosphorylated
DRP1 (A) (400 x) and total DRP1 protein (B) (400 x) in hippocampal neurons. (C) Presences of oxidative products in hippocampal neurons (200x). (D) Presences of
cleaved caspase-3 in hippocampal neurons (400x). (E) Presences of TUNEL signals in hippocampal neurons (200x) DAPI labeled the nuclei (blue), and TUNEL was

stained in red (Fluor 594).

Strack, 2017; Flippo et al., 2018). An imbalance in mitochondrial
dynamics, due to increases in fission and/or decreases in fusion,
leads to mitochondrial fragmentation and oxidative stress
(Shenouda et al., 2011; van der Bliek et al., 2013). In the
present study, the hippocampal neurons of diabetic mice had
swelling and round-shape mitochondria with disordered cristae,
implying that the progression of diabetes is associated with
abnormal mitochondrial dynamics in the hippocampal
neurons. This, in turn, accounts for the neuronal dysfunction,
as indicated by the increased synaptic gaps, attenuated PSD, fewer
dendritic spines of the hippocampal neurons (Kamat et al., 2016),
and impaired cognitive performance of diabetic mice.

The detrimental effect of diabetes on mitochondrial dynamic
appears to be the consequence of elevated blood glucose level, since
hippocampal neuronal cells incubated with high glucose
concentration showed an increased activation of DRPI, the
protein essential for the activation of mitochondrial fission
(Fonseca et al, 2019). Activation of DRP1 is associated with
pathological neurological conditions, such as brain tumor
initiation (Xie et al, 2015), traumatic brain injury (Wu et al,
2016), and neurodegenerative diseases (Akhtar et al, 2016;
Chuang et al., 2016). Inhibition of DRP1 preserves mitochondrial
morphology and synaptic plasticity in the hippocampus of diabetic
mice (Huang et al., 2015) and reduces microcystin-leucine-arginine-
induced neuron apoptosis (Zhang et al., 2020). In agreement with
these findings, treatment with diabetic mice with the DRP1 inhibitor
Mdivi-1 prevents mitochondrial fission, inhibits neuron death, and
restores cognitive function in diabetic mice, thus implying the critical
role of DRP1 protein for neuronal functions. Nevertheless, serum
glucose levels are comparable among diabetic groups, and the

glucose levels are not correlated to mice cognitive performances
(Supplementary figure 6). Of importance, metformin produces
similar protective effects to those of Mdivi-1 against
mitochondrial and cognitive dysfunction in diabetic mice.
Therefore, the protective effects of metformin are attributed to
the restoration of mitochondrial hemostasis (Wang et al., 2017)
(Izzo et al, 2017), as confirmed by the finding that the
phosphorylation and hence activation of DRP1 is decreased
following metformin treatment.

Metformin exerts its beneficial pharmacological effects
through AMPK-dependent (Mancini et al., 2017; Yang et al,
2020) and -independent (Cui et al., 2016; Meng et al., 2016)
mechanisms. It is reported that AMPK is an upstream signal of
mitochondrial fission since activation of AMPK inhibits
mitochondrial fission and protects against energy stress in
human osteosarcoma U20S cells (Toyama et al., 2016) and
lead-exposed human neuroblastoma SH-SY5Y cells (Yang
2020). On the other hand, metformin protects retinal
pigment epithelial cells against NalO; stress by stabilizing
respiratory complex I, without activating AMPK (Meng et al,,
2016). In the present study, DRP1 is not activated by the AMPK
agonist GSK 621, thus suggesting that the protective effect of
metformin against mitochondrial dysfunction in hippocampal
neurons is through an AMPK-independent mechanism (Cui
et al,, 2016; Meng et al., 2016; Silva et al., 2021).

The mitochondrial fragments resulted from increased
mitochondrial fission can be eliminated either by mitophagy
(Youle and Narendra, 2011) or autophagy (Barsoum et al., 2006;
Twig et al, 2008); these processes prevent the accumulation of
damaged mitochondria in cells, thereby preventing the elevation of

et al.,
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FIGURE 7 | (A) Representative picture of mitochondria in hippocampal neurons (upper) and measurement of mitochondria short/long axis ratio (lower) (39
mitochondria from metformin treatment, 45 from Mdivi-1 treatment, n = 3, 200,00x, Bar = 0.5 um) (B) Representative picture of a synaptic gap in the hippocampus
(upper) and measurements of synaptic gap and PSD (lower) (30 synapses from metformin treatment, 26 from Mdivi-1 treatment, n = 3, 500,00x, Bar = 200 nm). (C)
Representative picture of dendritic spines in the hippocampus (upper) and counts of dendritic spines per dendrite (lower) (23 dendrites from metformin treatment,

14 from Mdivi-1 treatment, n = 3, 500,00, Bar = 200 nm). Metformin and Mdivi-1 protect against diabetes-induced cognitive dysfunction in short-term memory (D),
long-term memory (E), and spatial disorientation (F). Data presented as means + SEM, *p < 0.05 vs m/m control, #p < 0.05 vs db”" control by One-way ANOVA (G)
Schematic diagram. High glucose increases mitochondrial fragments by activating DRP1 protein, resulting in elevated oxidative stress and cell apoptosis. Metformin
inhibits DRP1 phosphorylation, reduces mitochondrial-derived oxidative stress, and prevents neuron loss.
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oxidative stress (Sanderson et al., 2013) and induction of cell
apoptosis (Fossati et al., 2016; Xu et al, 2016). In the present
study, while high glucose stimulates mitochondrial fission in
hippocampal neurons, neither mitophagy proteins nor autophagy
proteins are upregulated, suggesting that the elimination processes
are not triggered (Ashrafi and Schwarz, 2013). Collectively, the
findings provide the explanation for the increased oxidative stress
and neuronal apoptosis under high glucose conditions (Fossati et al.,
2016; Xu et al., 2016).

Vascular endothelial dysfunction, especially in microvascular,
is a critical mechanism underlying diabetic complications (Shi

and Vanhoutte, 2017). Endothelial dysfunction in the blood-
brain barrier has been intensively studied in diabetic patients and
experimental animal models (Mather et al., 2001; Hernandez-
Mijares et al., 2013; Daulatzai, 2017; Wang et al., 2017; Bangen
etal., 2018; Wang et al., 2020; de Marafoén et al., 2021; Jahn et al,,
2021; Silva et al., 2021). Treatments with metformin reduce
leukocyte-endothelium interaction (Hernandez-Mijares et al,
2013; Wang et al, 2017; de Maranén et al, 2021), inhibit
oxygen-derived free radicals (Kapitulnik et al., 2012), improve
endothelial-dependent relaxation (Mather et al., 2001), enhance
microvascular responsiveness to insulin (Jahn et al., 2021). Thus,
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it is reasonable to presume that metformin-elicited protective
effects on endothelial cells play a partial role in diabetic mice.
In summary, diabetes-induced neuron loss and cognitive
impairment are attributed to DRP1 protein activation and
increased mitochondrial fragments, leading to enhanced oxidative
stress. Metformin inhibits mitochondrial fission, reduces
mitochondrial-derived oxidative stress, and restores cognitive
function (Figure 7G). Thus, DRP1 may be a potential target for
the prevention/management of cognitive impairment in diabetes.
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