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JAK1 plays a significant role in the intracellular signaling by interacting with cytokine
receptors in different types of cells and is linked to the pathogenesis of various cancers and
in the pathology of the immune system. In this study, ligand-based pharmacophore
modeling combined with virtual screening and molecular docking methods was
incorporated to identify the potent and selective lead compounds for JAK1. Initially, the
ligand-based pharmacophore models were generated using a set of 52 JAK1 inhibitors
named C-2 methyl/hydroxyethyl imidazopyrrolopyridines derivatives. Twenty-seven
pharmacophore models with five and six pharmacophore features were generated and
validated using potency and selectivity validation methods. During potency validation, the
Guner-Henry score was calculated to check the accuracy of the generated models,
whereas in selectivity validation, the pharmacophore models that are capable of identifying
selective JAK1 inhibitors were evaluated. Based on the validation results, the best
pharmacophore models ADHRRR, DDHRRR, DDRRR, DPRRR, DHRRR, ADRRR,
DDHRR, and ADPRR were selected and taken for virtual screening against the
Maybridge, Asinex, Chemdiv, Enamine, Lifechemicals, and Zinc database to identify
the new molecules with novel scaffold that can bind to JAK1. A total of 4,265 hits
were identified from screening and checked for acceptable drug-like properties. A total of
2,856 hits were selected after ADME predictions and taken for Glide molecular docking to
assess the accurate binding modes of the lead candidates. Ninety molecules were
shortlisted based on binding energy and H-bond interactions with the important
residues of JAK1. The docking results were authenticated by calculating binding free
energy for protein–ligand complexes using the MM-GBSA calculation and induced fit
docking methods. Subsequently, the cross-docking approach was carried out to
recognize the selective JAK1 lead compounds. Finally, top five lead compounds that
were potent and selective against JAK1 were selected and validated using molecular
dynamics simulation. Besides, the density functional theory study was also carried out for
the selected leads. Through various computational studies, we observed good potency
and selectivity of these lead compounds when compared with the drug ruxolitinib.
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Compounds such as T5923555 and T5923531 were found to be the best and can be
further validated using in vitro and in vivo methods.

Keywords: JAK1, pharmacophore modeling, virtual screening, molecular docking, molecular dynamics simulation,
density function theory

INTRODUCTION

Janus kinase 1 (JAK1) is the most widely employed JAK,
according to biochemical and genetic research, since it is
involved in the signaling of the gamma common (γc), beta
common (βc), gp130, type I and type II interferon, IL-6, and
IL-10 cytokine subfamilies (Kulagowski et al., 2012). JAK1
comprises seven homology domains (JH1–JH7) (Harpur et al.,
1992). The C-terminal kinase module (JH1) is the protein’s
physiologically active catalytic domain. The JH2 domain is a
catalytically inactive pseudokinase domain that has been found to
interact with the JH1 domain and control its activity (Saharinen
and Silvennoinen 2002). Two Src homology 2 (SH2) domains
(JH3 and JH4) precede the FERM domain (JH5–JH7) at the
N-terminus. The JH1 domain has an ATP-binding site, which has
been the target of a number of small-molecule inhibitors. All four
members of JAK have a highly conserved kinase domain,
particularly at the ATP-binding region, which complicates the
development of particular inhibitors (Caspers et al., 2016). The
active sites of JAKs comprise multiple subdomains that include
the β-glycine loop, the catalytic loop, and activation loops
(Taldaev et al., 2022). The amino acid present in and around
the hinge region serves critical functions in the integrity of kinase
activity control. Furthermore, since this area is adjacent to the
ATP-binding site in the catalytic cleft, it is reasonable to believe
that the mutations in this region might promote constitutive
activation of the kinase (Gorden et al., 2010; Haan et al., 2010).

All STAT proteins (STAT1–STAT6) that are ubiquitously
expressed in all the tissues may be phosphorylated by JAK1
enzyme (Gruber et al., 2020). JAK1 has been shown in mouse
knockout experiments to have a critical function in signal
transduction (Itteboina et al., 2017). According to earlier
research, JAK1 is ascendant over JAK3, and in the absence of
JAK1, JAK3 is unable to activate STATs (Haan et al., 2011).
Furthermore, recent studies have shown that JAK1 rather than
JAK3 kinase is the primary driver of the immune-relevant
cytokine activity (Menet et al., 2015). JAK1 is involved in
various types of cancer. Activation of JAK1 kinase by IL-6
family cytokines appeared to be the mechanism for
constitutive STAT3 activation in human ovarian cancer cells
(Wen et al., 2014). In gastric cancer, by activating the JAK1/
STAT3 pathway, the upregulation of HOXA10 gene increased cell
proliferation, cloning formation, and tumorigenesis and lowered
cell apoptosis (Chen et al., 2019). In lung adenocarcinoma
patients, the overall survival time was substantially reduced in
patients with EGFR-amplified tumors expressing greater levels of
phosphorylated JAK1 compared with individuals with tumors
without one or both of these traits. Additionally, JAK inhibition
was demonstrated to limit the development of human lung
adenocarcinoma with a K-RAS mutation (Xie et al., 2021).

AML and breast cancer patients have exhibited several
STAT5-activating JAK1 mutations (Hornakova et al., 2011).
Moreover, in ER-negative breast cancer cell lines, the
upregulation of phosphorylated JAK1 expression was observed
(Yeh et al., 2007).

According to clinical and experimental investigations,
rheumatoid arthritis synovial response may be influenced by
the JAK1-mediated cytokine (IFN and IL-6) signaling. As a
result, inhibiting JAK1 is regarded as a significant therapeutic
strategy for the successful treatment of rheumatoid arthritis
(Keretsu et al., 2021b). Recently, it has been discovered that
inhibiting JAK1 selectively may be an effective therapy option for
patients suffering from autoimmune and hematological illnesses
because of the role that altered JAK1 signaling plays in these
conditions (Kleppe et al., 2017). Moreover, JAK1 expression in
cancer cells allows individual cells to contract, perhaps enabling
them to transcend their tumor and spread to other areas of the
body (Nordqvist 2011). Mutations in JAK1 are less common than
in T-ALL patients with B-ALL or leukemia of the myeloid origin.
In two AML patients, a JAK1 mutation V623A was found,
emphasizing the capacity of constitutively active JAK1 to
induce a variety of leukemias (Xiang et al., 2008; Raivola et al.,
2021).

JAK inhibitors, which have been authorized for the treatment
of cancer and autoimmune illnesses, have provided the first
insight on the importance of JAK1 in NK cell biology
(Schwartz et al., 2017). Ruxolitinib, JAK1/JAK2 inhibitor, has
lowered the number of NK cells and hampered maturation and
function in bothmice and human patients (Schönberg et al., 2015;
Bottos et al., 2016). Ruxolitinib’s influence on NK cell
development has been linked to JAK2 as well; therefore, it is
not clear which of the two kinases is accountable for the reported
results (Bottos et al., 2016; Kim et al., 2017). The fascinating
finding by Sohn et al. (2013) has highlighted the importance of
JAK1 inhibitor on the IL-6, IL-22, and INF-pathways. JAK1
inhibitors including ruxolitinib, tofacitinib, filgotinib,
peficitinib, and numerous additional second-generation
inhibitors are now under investigation for the treatment of
inflammatory and autoimmune illnesses. Because of limited
potency, non-targeting, and off-target effects (Keretsu et al.,
2021a), new JAK1 inhibitors with high potency and selectivity
are urgently needed.

Pharmacophore models are widely employed to quantitatively
explore common chemical characteristics among a considerable
number of structures with great diversity (Taha et al., 2008; Xie
et al., 2009). It is one of the widely used approaches to search for
chemical databases and identify novel scaffolds for various targets
(Wang H. et al., 2008; Lu et al., 2007). To discover the potent hits,
the ligand-based and structure-based pharmacophore models can
be used. In this study, the ligand-based pharmacophore models
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TABLE 1 | The chemical structures and the biological activity of JAK1 inhibitors.

Compound 1–21 Compound 22 Compound 23–32 Compound 33–53

S. no. R Ki (nM) pKi S.no R Ki (nM) pKi

1 10 8.000 27 13 7.886

2 1.3 8.886 28 16 7.796

3 0.9 9.046 29 1.8 8.745

4 1.3 8.886 30 7.2 8.143

5 18 7.745 31 1.6 8.796

6 2.8 8.553 32 2.6 8.585

7 150 6.824 33 3.4 8.469

8 1.2 8.921 34 2 8.699

9 9.3 8.032 35 5.2 8.284

10 2 8.699 36 43 7.367

11 1.5 8.824 37 31 7.509

(Continued on following page)
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TABLE 1 | (Continued) The chemical structures and the biological activity of JAK1 inhibitors.

Compound 1–21 Compound 22 Compound 23–32 Compound 33–53

12 4.5 8.347 38 68 7.167

13 6.1 8.215 39 2.8 8.553

14 2.6 8.585 40 5.4 8.268

15 5.8 8.237 41 12 7.921

16 6.7 8.174 42 2.7 8.569

17 1.8 8.745 43 4.9 8.310

18 7.3 8.137 44 0.8 9.097

19 90 7.046 45 1.1 8.959

20 4.8 8.319 46 53 7.276

21 5.4 8.268 47 2 8.699

22 - 0.7 9.155 48 1.2 8.921

(Continued on following page)
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were generated using the 52 JAK1 inhibitors reported by Zak et al.
It elucidates the spatial arrangement of structural features of
various potent and structurally diverse inhibitors crucial for
biological recognition. One efficacious approach toward the
discovery and development of the drugs is the virtual screening
of molecular libraries (Stahl et al., 2006). Virtual screening helps to
identify the potential lead molecules and reduces the time and cost
of the drug discovery process (Reddy et al., 2007). Thus,
pharmacophore-based virtual screening was implemented. In
many research works, it was proposed that the combination of
pharmacophore modeling and molecular docking is a successful
method to discover the novel and potent lead compounds (Sakkiah
et al., 2009; Sakkiah et al., 2010; Sakkiah et al., 2011). Hence, the
results of pharmacophore-based virtual screening were taken for
molecular docking.

Docking results were used to predict the binding
orientations of the hits as well as the filter to select the hits.
The molecular docking results were validated by calculating
the free energy of binding using the molecular mechanics-
generalized born surface area (MM-GBSA) method for the
protein–ligand complexes (Friesner et al., 2006). Furthermore,
induced fit docking (IFD) was carried out to get additional
understanding about the structure and flexibility of these hits
into the binding site since IFD has been reported to be a
powerful method to account for both receptor and ligand
flexibility (Zhong et al., 2009). Subsequently, the cross-
docking method was used to identify the selective hits by
docking every hit to every receptor. By examining the
results, the top five hits were selected and taken for

molecular dynamic simulation and density functional theory
(DFT) study. To identify the potency and selectivity of the
leads, a drug molecule named ruxolitinib was included in the
study. The results of selected lead compounds and the drug
were compared and analyzed.

MATERIALS AND METHODS

Dataset Selection
For ligand-based pharmacophore modeling, a set of 52 JAK1
inhibitors (C-2 methyl/hydroxyethyl imidazopyrrolopyridines
derivatives) reported by Zak et al. (2012) and Zak et al. (2013)
were selected because of their diverse biological activity. The Ki

values of these inhibitors (0.1–150 nM) were derived using
biochemical and cell-based assays. These inhibitors have
shown higher selectivity toward JAK1 over JAK2. The
experimental Ki values were converted into pKi values that
are simply the negative log of the Ki value. The chemical
structures and biological activities of all molecules are given
in Table 1.

Pharmacophore Model Generation
Phase 4.3, a high-performance program module of Schrödinger
2015, was used to generate the ligand-based pharmacophore
models (Dixon et al., 2006). It uses a fine-grained
conformational sampling method to predict a hypothesis
consisting of the common pharmacophore features. The
Ligprep module was used to clean, minimize, and generate

TABLE 1 | (Continued) The chemical structures and the biological activity of JAK1 inhibitors.

Compound 1–21 Compound 22 Compound 23–32 Compound 33–53

23 1.1 8.959 49 1.9 8.721

24 3.5 8.456 50 0.9 9.046

25 10 8.000 51 0.1 10.000

26 0.8 9.097 52 0.3 9.523
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conformations of all compounds. Based on the diversity of the
chemical structure and its biological activity, the quantitative
pharmacophore models were generated using the Develop
Pharmacophore Model option. On the basis of biological
activity distribution (pKi values), the activity threshold value
was set and the inhibitors were divided into actives, inactives,
and moderately actives. In this study, both five and six featured
pharmacophore hypotheses were generated by defining the
minimum and maximum numbers of sites to five and six. The
pharmacophore models were developed possessing different
combinations of hydrogen-bond acceptor (A), hydrogen-bond
donor (D), aromatic ring (R), hydrophobic group (H), positively
ionizable (P), and negatively ionizable (N) groups. The resulting
hypotheses were scored and ranked on the basis of scoring
parameters. The scoring algorithm includes the alignment of
site points and vectors, number of ligands matched, volume
overlap, relative conformational energy, selectivity, and
activity. The difference between the survival score and the
survival inactive score notifies the ability of the hypotheses to
correctly distinguish between actives and inactives.

Pharmacophore Model Validation
Since the pharmacophore model is just a theoretical model, it is
necessary to analyze whether or not the generated model is able to
predict the active compounds. Thus, two approaches, namely,
potency validation and selectivity validation, were performed to
measure the accuracy of pharmacophores in selecting the active
compounds.

Potency Validation
Potency validation was carried out to test whether the
pharmacophore model is good enough to pick a greater
number of active molecules. This was achieved by screening
the database consisting of both active molecules and decoys.
Active molecules are the known inhibitors of JAK with higher
biological activities, whereas decoys are the molecule that does
not have any activity toward JAK and it was downloaded from
DUD-E (a Database of Useful Decoys-Enhanced) database
(Mysinger et al., 2012). DUD-E datasets were used only after
removing the biasness through docking. Based on the number of
actives and decoys retrieved by the pharmacophore models,
statistical parameters such as Guner-Henry (GH) score, %A, %
Y, and E score were calculated using the following formula:

GH score � (Ha (3A + Ht)
4pHtpA

)(1 − Ht − Ha

D − A
);

%A � Ha

A
p100;%Y � Ha

Ht
p100;E � Ha/Ht

A/D ,

where Ha is the number of actives in the hits list, Ht is the number of
hits retrieved, A is the number of active compounds in the database,
D is the number of compounds in the database, %A is the percentage
of known active compounds obtained from the database, %Y is the
percentage of known actives in the hits list, and E is the enrichment
of the concentration of actives by the model relative to random
screening without a pharmacophoric approach. GH score ranges
from 0 to 1, which indicates a null model and an ideal model,

TABLE 2 | The summary of statistical data obtained for the pharmacophore hypotheses.

S. no. Hypothesis Survival score Survival inactive Post hoc Site Vector Volume

1 ADHRRR 3.514 1.420 3.514 0.72 0.992 0.803
2 AADHRR 3.513 1.396 3.513 0.72 0.994 0.801
3 AAADHR 3.509 1.410 3.509 0.71 0.995 0.805
4 DDHRRR 3.424 1.371 3.424 0.77 0.953 0.705
5 ADDHRR 3.420 1.364 3.420 0.75 0.960 0.710
6 AADDHR 3.398 1.244 3.398 0.73 0.948 0.724
7 AADRR 4.378 2.106 3.607 0.85 0.992 0.761
8 AAADR 4.364 2.141 3.593 0.84 0.969 0.780
9 ADRRR 4.353 2.081 3.582 0.85 0.979 0.757
10 ADDRR 4.339 2.080 3.568 0.89 0.917 0.763
11 AADDR 4.330 1.877 3.559 0.88 0.920 0.755
12 DDRRR 4.292 1.841 3.521 0.87 0.901 0.747
13 ADHRR 4.259 1.747 3.487 0.80 0.979 0.709
14 DHRRR 4.257 1.883 3.486 0.81 0.969 0.710
15 AADHR 4.253 1.744 3.481 0.79 0.985 0.709
16 AHRRR 3.974 1.916 3.510 0.72 0.988 0.803
17 AAHRR 3.972 1.892 3.508 0.72 0.991 0.801
18 AAAHR 3.965 1.907 3.501 0.70 0.993 0.806
19 AAADH 3.954 1.927 3.490 0.69 0.996 0.802
20 DPRRR 3.945 1.666 3.481 0.71 0.993 0.780
21 ADPRR 3.940 1.662 3.476 0.71 0.993 0.776
22 AADPR 3.929 1.631 3.465 0.69 0.993 0.778
23 ADDHR 3.896 1.788 3.432 0.73 0.959 0.741
24 DDHRR 3.896 1.794 3.432 0.78 0.951 0.701
25 AADDH 3.853 1.726 3.389 0.73 0.957 0.701
26 DHHRR 3.441 1.703 2.977 0.44 0.964 0.575
27 ADHHR 3.437 1.612 2.973 0.46 0.961 0.555

A- acceptor, D- donor, H- hydrophobic, R- aromatic ring, and P- positive group. The selected pharmacophore hypotheses are represented in bold.
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respectively. GH score >0.6 indicates the acceptable quality of the
pharmacophore model and is useful in differentiating the known
active molecules from inactives and suitable for retrieving active
JAK1 inhibitors (Sathe et al., 2014; Li et al., 2015).

Selectivity Validation
Selectivity validation was performed to check which
pharmacophore models are more selective in choosing high
number of JAK1 molecules. Selectivity validation was carried
out in two ways. First, a database comprising 30 JAK1, 30 JAK2,
30 JAK3, and 30 TYK2 molecules (Yang et al., 2007; Wang et al.,
2009; Pissot-Soldermann et al., 2010; Ioannidis et al., 2011;
Kulagowski et al., 2012) was created and used for validation.
The ability of pharmacophore models to differentiate the selective
JAK inhibitors was evaluated using virtual screening workflow on
a manually curated database. Second, to further confirm the
selectivity of the selected models, the available 288 JAK1
(Kulagowski et al., 2012; Labadie et al., 2012; Hurley et al.,
2013; Labadie et al., 2013), 627 JAK2 (Lucet et al., 2006; Wang
et al., 2009; Pissot-Soldermann et al., 2010; Harikrishnan et al.,
2011; Ioannidis et al., 2011; Schenkel et al., 2011; Dugan et al.,
2012; Forsyth et al., 2012; Lynch et al., 2013; Vazquez et al., 2018),
and 431 JAK3 (Chrencik et al., 2010; Thoma et al., 2011; Jaime-
Figueroa et al., 2013; Lynch et al., 2013; Soth et al., 2013; De
Vicente et al., 2014; Duan et al., 2014) inhibitors from diverse
research papers that mention either IC50 values or Ki values of
these inhibitors were taken for validation.

Pharmacophore-Based Virtual Screening
Virtual screening is the process where the complete databases are
used to identify the molecules in the database which are most
likely to bind to a drug target (Vyas et al., 2008). In this study,
pharmacophore-based virtual screening was carried out using the
“find matches to hypothesis” option available in the phase
module which efficiently search for pharmacophore matches
from the database of fixed conformers. The pharmacophore-
based virtual screening was performed against Maybridge
(53,000) (www.maybridge.com), Lifechemicals (12, 92, 000)
(https://lifechemicals.com/), Enamine (24,91,318) (https://
enamine.net/), Chemdiv (15,00,000) (https://www.chemdiv.
com/), Asinex (398,022) (https://www.asinex.com/), and Zinc
chemical and Zinc natural databases (https://zinc.docking.org/)
(44,92,226) (Irwin and Shoichet 2005; Irwin et al., 2012; Sterling
and Irwin 2015) to identify the new molecules with novel
scaffolds. After screening, fitness score that is a measure of
how well the hypothesis matched to the aligned ligand
conformers based on RMSD site matching, volume terms, and
vector alignments was used to filter the molecules.

Absorption, Distribution, Metabolism, and
Excretion Prediction
After virtual screening, the molecular descriptors and
pharmaceutically applicable properties of the hits were
calculated using Qikprop 4.4. Qikprop generates the

TABLE 3 | Pharmacophore validation results from potency validation.

S. no. Hypothesis Ha (#40) Decoys
(#1000)

Ht %A %Y E GH score

1 ADHRRR 11 0 11 27.50 100.00 26.00 0.819
2 AADHRR 11 10 21 27.50 52.38 13.62 0.457
3 AAADHR 11 22 33 27.50 33.33 8.67 0.312
4 DDHRRR 21 0 21 52.50 100.00 26.00 0.881
5 ADDHRR 24 13 37 60.00 64.86 16.86 0.628
6 AADDHR 22 27 49 55.00 44.90 11.67 0.461
7 AADRR 23 106 129 57.50 17.83 4.64 0.248
8 AAADR 21 242 263 52.50 7.98 2.08 0.145
9 ADRRR 23 9 32 57.50 71.88 18.69 0.677
10 ADDRR 26 39 65 65.00 40.00 10.40 0.444
11 AADDR 22 128 150 55.00 14.67 3.81 0.216
12 DDRRR 28 1 29 70.00 96.55 25.10 0.898
13 ADHRR 33 85 118 82.50 27.97 7.27 0.381
14 DHRRR 31 12 43 77.50 72.09 18.74 0.726
15 AADHR 32 252 284 80.00 11.27 2.93 0.213
16 AHRRR 11 3 14 27.50 78.57 20.43 0.656
17 AAHRR 11 78 89 27.50 12.36 3.21 0.149
18 AAAHR 11 141 152 27.50 7.24 1.88 0.106
19 AAADH 11 54 65 27.50 16.92 4.40 0.185
20 DPRRR 11 0 11 27.50 100.00 26.00 0.819
21 ADPRR 11 4 15 27.50 73.33 19.07 0.616
22 AADPR 12 10 22 30.00 54.55 14.18 0.479
23 ADDHR 23 71 94 57.50 24.47 6.36 0.304
24 DDHRR 29 17 46 72.50 63.04 16.39 0.643
25 AADDH 19 132 151 47.50 12.58 3.27 0.185
26 DHHRR 23 53 76 57.50 30.26 7.87 0.351
27 ADHHR 19 164 183 47.50 10.38 2.70 0.164

The number of compounds used for the validation study is mentioned within parenthesis. The selected pharmacophore hypotheses are represented in bold.
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physicochemical properties for a compound to find whether the
compound follows drug likeliness properties. Lipinski’s rule
characterizes the important molecular properties of drug,
including absorption, distribution, metabolism, and excretion
(ADME) that is essential for a drug’s pharmacokinetics in the
human body (Jorgensen and Duffy 2002). Parameters that
determine the ADME of the molecules were Molweight
(Molecular weight), QPlogPo/w (partition coefficient), QPlogS
(water solubility), percentage of human oral absorption, and
intestinal absorption parameters such as Caco-2 and MDCK
permeability. The compounds are expected to be active in
humans only if the molecule passes through Lipinski’s rule of
five. Therefore, the compounds retrieved after filtration were
subjected to ADME prediction and its physicochemical
properties were analyzed.

Molecular Docking
Molecular docking predicts the binding mode and interaction of
the small molecule to the protein. It distinguishes the behavior of
small molecules in the binding site of target protein and explicates
its fundamental biochemical processes (Gschwend et al., 1996;
Lipinski 2000). The binding conformations of the hits inside the
JAK1 ATP-binding site were investigated using Grid-based
Ligand Docking with Energetics (Glide 6.7) module. The ATP-
binding site of JAK1 comprises Leu881, Glu883, Val889, Ala906,
Met956, Glu957, Phe958, Leu959, Gly962, Ser963, Glu966,
Arg1007, Asn1008, Leu1010, Gly1020, and Asp1021 residues.

Before docking, protein preparation wizard was used to prepare
protein structure (3EYG) (Williams et al., 2009) applying the
default parameters that include adding hydrogens, filling missing
atoms and residues using PRIME, assigning correct bond orders,
and hydrogen-bond optimization and minimization. In the
Receptor Grid Generation panel, the center of the gird box
was defined on the centroid of the co-crystallized ligand
(MI1), and the volume in the active-site region of the receptor
was calculated by default settings (van der Waals radius scaling
factor 1.0 and partial charge cutoff 0.25). Molecular docking was
performed using both the Standard Precision (SP) and Extra
Precision (XP) docking modes in which the receptor was held
rigid and the ligand was free to move (Jain 2003; Halgren et al.,
2004). Glide score is a combination of hydrophobic, hydrophilic,
van der Waals energy, metal binding groups, freezing rotatable
bonds, and polar interactions with the receptor. Comparing Glide
SP and XP score, Glide SP score is a softer and more forgiving
function whereas Glide XP score is a harder function and adept at
reducing the false positives. Therefore, Glide XP score was
considered for the selection of hits and further analysis.

MM-GBSA Calculations
The binding free-energy calculations procured via theMM-GBSA
method are more precise and consistent than the glide XP score
and improve the ranking of potential leads (Lyne et al., 2006; Das
et al., 2009; Yang et al., 2009). Therefore, the binding free energy
(ΔG bind) of the protein–ligand complexes was calculated using

TABLE 4 | Pharmacophore validation results from selectivity validation.

S. no. Hypothesis No. of inhibitors retrieved

JAK1 (#30) JAK2 (#30) JAK3 (#30) TYK2 (#30) JAK1 (#288) JAK2 (#627) JAK3 (#431)

1 ADHRRR 5 - 1 - 24 0 1
2 AADHRR - 6 1 - - - -
3 AAADHR - 4 - - - - -
4 DDHRRR 8 - 1 - 54 0 1
5 ADDHRR 1 9 1 - - - -
6 AADDHR 2 9 - - - - -
7 AADRR 7 16 3 3 - - -
8 AAADR 4 9 1 - - - -
9 ADRRR 10 - 3 - 77 22 5
10 ADDRR 3 - 4 - - - -
11 AADDR 2 9 1 - - - -
12 DDRRR 18 - 2 - 86 1 10
13 ADHRR 23 - 3 - - - -
14 DHRRR 26 - 1 - 142 56 20
15 AADHR 21 13 1 3 - - -
16 AHRRR - - 7 - - - -
17 AAHRR - 13 1 - - - -
18 AAAHR - 8 1 - - - -
19 AAADH - 4 - - - - -
20 DPRRR 9 - - - 19 0 0
21 ADPRR 9 2 - - 25 0 0
22 AADPR 9 1 - - - - -
23 ADDHR 4 9 - - - - -
24 DDHRR 17 - 1 b 60 6 37
25 AADDH - 9 - - - - -
26 DHHRR 17 13 3 - - - -
27 ADHHR 12 23 4 3 - - -

The number of compounds used for the validation study is mentioned within parenthesis. The selected pharmacophore hypotheses are represented in bold.
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FIGURE 1 | The representation of selected pharmacophore models (A) ADHRRR, (B) DDHRRR, (C) DDRRR, (D) DPRRR, (E) DHRRR, (F) ADRRR, (G) DDHRR,
and (H) ADPRR. Pharmacophore features are colored in light blue, brown, dark blue, brick red, and green contours representing the H-bond donor (D), H-bond acceptor
(A), positives (P), aromatic ring (R), and hydrophobic (H) groups, respectively. The distances between the pharmacophore features (A˚) are given in pink dotted lines.
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the Prime MM-GBSAmodule implemented in Schrödinger 2015.
The Prime MM-GBSA Module incorporates the OPLS3 force
field and the VSGB dissolvable model to look through
calculations (Li et al., 2011). The energy difference between
the free and complex states of protein and ligand was
calculated. The energy components such as covalent binding
energy, van der Waals energy, generalized born electrostatic
solvation energy, Coulomb energy, total energy, and H-bond
correction were retrieved from the calculations.

Induced Fit Docking
In the docking protocol, to retain the flexibility of the receptor, a
mixed molecular docking protocol called induced fit docking
(IFD) developed by Schrödinger 2015 was employed (Wang H.
Y. et al., 2008). IFD uses the refinement module in Prime to
account for the receptor flexibility and Glide to account for the
ligand flexibility (Jacobson et al., 2004). Protein preparation
wizard and the Ligprep module were used for protein and ligand
preparation, respectively. Grid was generated on the ATP-
binding site amino acid residues based on the co-crystallized
ligand. The ATP-binding site residues and their flexibility were
considered for the IFD protocol. IFD was carried out with
default parameters, and 20 conformational poses were
calculated for each ligand. IFD scores (IFD score = 1.0
Glide_Gscore +0.05 Prime_Energy) were calculated based
upon the total energy of the system and the protein–ligand
interaction energy and used to rank the IFD poses (Luo et al.,
2014). The electrostatic interactions formed between the
receptor and the ligand were calculated by the docking scores
under “Electro,” and hydrophilic interactions under “Lipophilic
Evdw” mention the lipophilicity component acquired from the
hydrophobic grid. IFD poses were ranked based on the scores,
and the best pose was chosen for each hit.

Cross Docking
Cross docking is the process of taking a series of complexes of
ligand–receptor pairs and docking every ligand to every receptor.
This is used to study the specificity of the ligands and the
receptors and, thus, yield valuable report regarding the effects
of ligand upon binding. Protein preparation wizard and LigPrep
were used to prepare proteins and the shortlisted hits,
respectively. Grid was generated on the ATP-binding site
residues. The hits shortlisted from the molecular docking
study were docked against JAK1, JAK2, and JAK3 using the
Glide XP module to identify the selective lead compounds.

Molecular Dynamics Simulation
Docking results could be the instantaneous state and were not
considered decisive because binding of the inhibitor to a
protein in an in vivo state is a dynamic process. For
advanced studies, the stable binding mode of the ligand is
more reliable. Hence, to explore the detailed binding modes
and compare the stability and molecular interactions of the
docked lead complexes, molecular dynamics simulation was
carried out for 100ns using GROningen MAchine for Chemical
Simulations (GROMACS version 2016.3 installed in Centos
7.3) software (Abraham et al., 2015). GROMACS works
according to Newton’s laws of motions and simulates the
behavior of bio-molecules such as nucleic acids, proteins,
lipids, ligands, ions, and water. The coordinates for MD
simulations have been achieved from the docking results.
The PRODRG server (http://davapc1.bioch.dundee.ac.uk/cgi-
bin/prodrg) was used to calculate the ligand parameters in the
framework of GROMOS96 54a7 force field. The SPC water
model was used as a solvent during simulation. To achieve the
stability of the simulated system, the potential energy,
temperature, and pressure were monitored during the
simulations. The temperature and pressure of the system
were equilibrated (from ps to ns) till they reach 300 K and
1.05 bar, respectively. The stability of the secondary structure
elements and conformational changes of the simulated
complexes were evaluated by root mean square deviations
(RMSDs), root mean square fluctuation (RMSF), radius of
gyration (Rg), and solvent-accessible surface area (SASA)
values obtained from MD trajectories. The molecular
dynamics study was performed using High-Performance
Computing server (Intel Xeon 14 core processor with 28
threads and 2.40 GHz processor speed).

MM-PBSA Calculation
The molecular mechanics energies combined with the
Poisson–Boltzmann and surface area continuum solvation
(MM/PBSA) method have been applied to predict binding free
energies and to evaluate the relative stabilities of different
bimolecular structures. The MM/PBSA calculations were
performed for the simulated systems using g_mmpbsa, a
GROMACS Tool for High-Throughput MM-PBSA
Calculations (Kumari et al., 2014). Combined with molecular
dynamics (MD) simulations, MM-PBSA can also incorporate
conformational fluctuations and entropic contributions to the
binding energy (Homeyer and Gohlke 2012).

TABLE 5 | Number of hits obtained from pharmacophore-based virtual screening.

S. no. Hypothesis Maybridge Lifechemicals Enamine Asinex Chemdiv Zinc

1 ADHRRR 0 10 5 16 4 0
2 DDHRRR 0 6 9 0 1 0
3 DDRRR 3 117 167 18 16 16
4 DPRRR 1 57 68 9 40 14
5 DHRRR 9 250 321 161 151 155
6 ADRRR 3 134 224 335 17 113
7 DDHRR 9 151 558 44 88 213
8 ADPRR 1 74 436 30 9 202
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Density Functional Theory Study
The density functional theory (DFT) study was carried out to
observe the chemical behavior of the lead compounds using the
electron density-relevant concepts (Zhao et al., 2011). Also, it
provides a quantum-level understanding of the molecules and
assists in building the relationship between the electronic
properties and the biological activity of the molecule
(Nagarajan et al., 2018). Molecular descriptors such as total
energy, highest occupied molecular orbital (HOMO), lowest
unoccupied molecular orbital (LUMO), band energy gap (ΔE),
molecular dipole moment, absolute hardness (η), global softness
(σ), chemical potential (μ), electronegativity (χ), and
electrophilicity index (ω) were studied for the selected lead
compounds using Gaussian 16 software. Initially, the
molecules were optimized using the B3LYP function with a 6-
31G(d) basis set to calculate their molecular properties such as
total energy and molecule dipole moment (Becke 1998). The
dipole moment relates to the electro-chemical reactivity of the
compounds. The electron donating and accepting ability of the
molecules HOMO energy (EHOMO) and LUMO energy (ELUMO),
respectively, were calculated.

RESULTS AND DISCUSSION

Pharmacophore Model Generation
In the phase module, ligand-based pharmacophore model
generation was carried out utilizing 52 JAK1 inhibitors named

C-2 methyl/hydroxyethyl imidazopyrrolopyridine derivatives
(Table 1) along with their activity values. Ten molecules
whose pKi > 8.9 were taken as actives, twelve molecules
whose pKi < 8.1 were taken as inactives, and the remaining
thirty-one molecules were considered to be intermediates.
Twenty-seven different pharmacophore hypotheses (six with
six featured pharmacophores and twenty-one with five
featured pharmacophores) were generated and put through
the stringent scoring function. The generated pharmacophores
were ranked by aligning them with the active ligands, and the
statistical data obtained after scoring are tabulated in Table 2.
Besides the survival active score, survival inactive score, and
post-hoc score, fitness score was considered to measure the
quality of the pharmacophores. The fitness score was
calculated between the pharmacophores and the highly
active (compound 51) and highly inactive (compound 7)
compounds in the dataset. For all pharmacophores, the
fitness score was higher with the highly active compound
compared with the inactive compound. Subsequently, the
pharmacophores were evaluated using different validation
methods.

Pharmacophore Model Validation
Potency Validation
For potency validation, a database containing 40 JAK1 actives and
1,000 decoys was created. The generated pharmacophore models
were allowed to screen this database to calculate the GH score. It
was observed that six featured hypotheses have picked less

FIGURE 2 | The binding of highly active compound 51 into the ATP-binding site of JAK1.
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number of decoys compared with five featured hypotheses. The
ADHRRR, DDHRRR, and DPRRR hypotheses were more potent
because they do not pick any decoys. DDRRR, ADPRR, and

AHRRR have picked very less number of decoys. DDRRR,
ADHRR, DHRRR, AADHR, DDHRR, and DDRRR have
picked more active molecules. The results of potency

FIGURE 3 | The chemical structure of selected lead compounds. (A) T6649932, (B) ST088474, (C) T5923555, (D) T5923531, and (E) T6763842.

TABLE 6 | The drug likeliness properties of the selected lead compounds and the drug.

S. no. Molecule ID molMW
(130.0–725.0)

dHB (0.0–6.0) aHB (2.0–20.0) logPo/w
(–2.0–6.5)

logS
(–6.5–0.5)

logBB
(–3.0–1.2)

PCaco
(<25 poor>500

great)

PMDCK
(<25 poor>500

great)

1 T6649932 426.5 2 8 3.5 −5.3 −1.1 756.168 365.722
2 ST088474 297.3 4 10 −0.4 −2.1 −1.3 132.825 95.256
3 T5923555 416.9 2 7 3.3 −5.1 −0.8 582.955 674.629
4 T5923531 410.5 2 7 3.4 −5.4 −1.1 679.576 325.851
5 T6763842 351.4 1 6 2.7 −4.4 −1.2 385.229 176.425
6 Ruxolitinib 306.4 2 4.5 1.4 −3.3 −0.4 941.735 463.628

molMW, molecular weight; dHB, donor atoms; aHB, acceptor atoms; logPo/w, partition coefficient; logS, aqueous solubility; logBB, brain/blood partition coefficient; PCaco, predicted
apparent; Caco-2, cell permeability in nm/sec; PMDCK, predicted apparent MDCK cell permeability in nm/sec. The qikprop recommended values are given inside the parenthesis.

TABLE 7 | Molecular docking results of the selected JAK1 lead compounds and the drug.

S. no. Molecule ID XP score Glide energy Glide evdw Glide ecoul H-bond interaction

1 T6649932 −10.335 −61.771 −53.839 −7.932 Leu959, Glu957, Arg1007
2 ST088474 −10.653 −50.800 −34.600 −16.200 Leu959, Glu957, Leu881, Ser963, Glu966
3 T5923555 −10.015 −57.500 −49.348 −8.151 Leu959, Glu957, Arg1007
4 T5923531 −10.303 −57.350 −49.885 −7.465 Leu959, Glu957, Arg1007
5 T6763842 −10.671 −51.703 −46.166 −5.536 Leu959, Glu957
6 Ruxolitinib −9.282 −57.553 −43.488 −14.065 Leu959, Glu957
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validation are tabulated in Table 3. Based on the number of
actives and decoys retrieved by the hypotheses, the GH score was
calculated. The hypotheses such as DDHRRR, ADHRRR,

ADDHRR, DDRRR, DPRRR, DHRRR, ADRRR, AHRRR,
DDHRR, and ADPRR have obtained the GH score >0.6
indicating the goodness of these hypotheses.

FIGURE 4 | The representation of docked lead compounds and drug ((A) T6649932, (B) ST088474, (C) T5923555, (D) T5923531, (E) T6763842, and (F)
ruxolitinib) present inside the ATP-binding site of JAK1 after molecular docking.
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Selectivity Validation
Initially, the selectivity validation was performed with a set of
30 JAK1, 30 JAK2, 30 JAK3, and 30 TYK2 molecules retrieved
from different studies. DPRRR has picked only JAK1
molecules. The DHRRR, ADHRR, DDRRR, and DDHRR
hypotheses have picked a high number of JAK1 molecules
and very less JAK3 molecules. ADHRRR and DDHRRR have
picked only few JAK1 and one JAK3 molecules. The results of
selectivity validation are tabulated in Table 4. The fitness score
for JAK1 inhibitors was greater than or equal to 1.5, whereas
for other JAK inhibitors, the fitness score was <1.5 for most of
the molecules indicating that the pharmacophore models were
able to map well with the JAK1 inhibitors (Sathe et al., 2014;
Babu et al., 2015).

Six feature pharmacophore hypotheses were more potent but
not highly selective to JAK1. Based on potency and selectivity
validation results, the DDHRRR, ADHRRR, DDRRR, DPRRR,
DHRRR, ADRRR, DDHRR, and ADPRR hypotheses were
selected because they were successful in retrieving active
compounds from the database. The representation of the
selected JAK1 pharmacophore models showing the distances
between the pharmacophoric sites is shown in Figures 1A–H.
On mapping the selected pharmacophore models with highly

active compound 51 and inactive compound 7, it was observed
that the fitness score was >2.5 for the highly active compound
mapping with all pharmacophore features whereas inactive
compound 7 could map with either four or five
pharmacophore features with low fitness score. The highest
fitness score with compound 51 suggests screening using these
models would pick the similar active compounds. From the
results, we suggest the combination of two or three aromatic
rings (R) and one or two donor atoms (D) with a hydrophobic
(H) group is an important pharmacophoric feature for identifying
the selective JAK1 inhibitors. The important pharmacophore
features obtained were compared with the contribution maps
obtained through the hologram-based fingerprint technique
(Supplementary Figure S1). The contribution maps depict the
imidazopyrrolopyridine ring which possesses one donor and
three aromatic rings responsible for the intermediate
contribution of the inhibitory activity. From the highly active
compounds, we observed the cyano group attached to
cyclohexanes (yellow) and the hydroxyethyl group attached to
imidazopyrrolopyridines (green); a hydrophobic and an
aromatic/donor group, respectively, are strongly responsible
for the higher activity. Thus, these pharmacophore features are
highly important for the inhibitory activity of JAK1.

TABLE 8 | MM-GBSA results of the selected JAK1 lead compounds and the drug.

S. no. Molecule ID ΔG _Bind ΔG_Bind_Coulomb ΔG_Bind_Covalent ΔG_Bind_Lipo ΔG_Bind_vdW

1 T6649932 −46.430 −10.816 6.512 −15.475 −55.026
2 ST088474 −44.915 −29.704 5.740 −8.571 −36.645
3 T5923555 −45.936 −11.512 13.940 −15.199 −45.837
4 T5923531 −41.698 −14.070 4.485 −11.368 −47.637
5 T6763842 −43.157 −6.535 5.179 −15.922 −48.815
6 Ruxolitinib −46.184 −18.883 1.186 −13.853 −38.185

TABLE 9 | Induced fit docking results of the selected JAK1 lead compounds and the drug.

S. no. Molecule ID XP score IFD score Lipophilic EvdW Electro H-bond interaction

1 T6649932 −8.557 −598.316 −5.175 −0.353 Leu959, Glu883
2 ST088474 −8.791 −594.272 −2.492 −0.519 Leu959, Glu957, Arg1007
3 T5923555 −9.343 −598.889 −4.142 −0.638 Leu959, Glu957, Ser963
4 T5923531 −9.941 −598.697 −4.919 −0.701 Leu959, Glu883
5 T6763842 −9.550 −599.541 −5.590 −0.236 Ser963
6 Ruxolitinib −9.725 −595.395 −3.654 −1.055 Leu959, Glu957

TABLE 10 | Cross-docking results of the selected JAK1 lead compounds and the drug.

S. no. Molecule ID Glide XP Gscore Glide energy (Kcal/mol)

JAK1 JAK2 JAK3 JAK1 JAK2 JAK3

1 T6649932 −10.623 −6.065 −8.192 −65.073 −59.156 −57.574
2 ST088474 −10.784 −8.938 −7.963 −52.980 −44.112 −40.231
3 T5923555 −10.650 −7.314 −8.298 −56.889 −54.956 −54.964
4 T5923531 −10.608 −7.810 −8.344 −59.950 −57.629 −55.855
5 T6763842 −10.652 −5.243 −8.754 −51.761 −48.136 −48.034
6 Ruxolitinib −9.178 −9.091 −10.209 −49.475 −48.884 −48.434
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To confirm the selectivity of the selected pharmacophore
models (DDHRRR, ADHRRR, DDRRR, DPRRR, DHRRR,
ADRRR, DDHRR, and ADPRR), the second round of
selectivity validation was carried out with a set of 288 JAK1,
627 JAK2, and 431 JAK3 inhibitors with diverse activity. It was
observed (Table 4) that all the selected pharmacophore models
were able to pick more number of JAK1 inhibitors compared with
its subtypes. Hence, the selected pharmacophore models were
capable of discriminating the JAK1 inhibitors and appropriate for
retrieving the novel and selective JAK1 inhibitors.

Pharmacophore-Based Virtual Screening
The selected pharmacophore models were screened against
Maybridge, Lifechemicals, Enamine, Chemdiv, Asinex, and
Zinc (chemical and natural) databases for the identification of
new hits. The identified hits contain the structural features that
overlap with the selected pharmacophore models. The hits
obtained were ranked and filtered based on the fitness score.
The fitness score was set to >1.5 for the Maybridge, Asinex,
Chemdiv, Lifechemicals, and Enamine databases, whereas for the
Zinc database, the fitness score was set to >2 because of high

FIGURE 5 | The change in RMSD values of the backbone Cα atoms of JAK1 systems over a period of 100 ns after binding with the lead compounds and drug.

FIGURE 6 | The change in RMSF values of JAK1 residues over a period of 100 ns after binding with the lead compounds and drug.

FIGURE 7 | The change in Rg values over a period of 100 ns after binding with the lead compounds and drug.
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number of molecules retrieved from the Zinc database. As a result
of screening and filtration, 4,265 compounds were retrieved. The
total numbers of hits retrieved from different databases are
tabulated in Table 5.

The potentiality of the pharmacophore models was validated
using receiver operating curves (ROCs) utilizing the screened
molecules (Hevener et al., 2009); 10 compounds identified from
the pharmacophore-based virtual screening were seeded with 500
decoys. Enrichment was estimated based on how well the
compounds were fetched. After ranking the decoy set and

docked compounds by the Glide score, the enrichment was
calculated using the ROC plot that provides the report on
sensitivity and specificity. The ROC plot inferred that Glide
XP ranked seven compounds in top 10% with the ROC value
as 0.93 and the AUC value as 0.92. 80% of the true positives were
fetched in top 20% which indicates its capability of retrieving the
active compounds. The gentle increase in the ROC curve
(Supplementary Figure S2) was noticed in the beginning,
which implies that number of true positives was sacrificed to
reduce the amount of false positives.

FIGURE 8 | The change in SASA values over a period of 100 ns after binding with the lead compounds and drug.

FIGURE 9 | The number of hydrogen bonds formed by lead compounds and drug over the simulation time.

TABLE 11 | The protein–ligand interaction analysis of the selected JAK1 lead compounds and the drug before, during, and after MD simulation.

S. no. Molecule
ID

H-bond interaction

Before simulation During simulation After
simulation25 ns 50 ns 75 ns 99 ns

1 T6649932 Leu959, Glu957, Arg1007 - Leu959 - Leu959 -
2 ST088474 Leu959, Glu957, Leu881,

Ser963, Glu966
Asp1021 Arg1007, Val1009 Arg1007 Asp1021 Asp1021

3 T5923555 Leu959, Glu957, Arg1007 Leu959, Glu957 Leu959, Glu957 Leu959, Glu957,
Leu881

Leu959, Glu957 Leu959,
Glu957

4 T5923531 Leu959, Glu957, Arg1007 Leu959, Glu957 Leu959, Glu957 Leu959, Glu957 Leu959, Glu957 Leu959,
Glu957

5 T6763842 Leu959, Glu957 Ser963 Ser963 Ser963 Ser963 Ser963
6 Ruxolitinib Leu959, Glu957 Leu959, Glu957,

Leu881
Leu959, Glu957,
Leu881

Leu959, Glu957 Leu959, Glu957,
Arg1007

Leu959,
Glu957
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FIGURE 10 | The representation of final conformation of the docked lead compounds and drug ((A) T6649932, (B) ST088474, (C) T5923555, (D) T5923531, (E)
T6763842, and (F) ruxolitinib) present inside the ATP-binding site of JAK after molecular dynamics simulation.
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Absorption, Distribution, Metabolism, and
Excretion Prediction
Compounds that pass Lipinski’s rule of five and other ADME
properties of the drug are expected to be active in humans.
Properties such as molecular weight, H-bond donors, H-bond
acceptors, log p, van der Waals surface, aqueous solubility,
blockage of HERG K+ channels, apparent Caco-2 cell
permeability, apparent MDCK cell permeability, brain/blood
partition coefficient, skin permeability, binding to human
serum albumin, and human oral absorption of the hits were
studied. Finally, 2,856 compounds whose drug-like properties
were in the acceptable range (according to qikprop recommended
range) were selected and subsequently exposed to glide SP and XP
docking protocols to remove both the false-positive and false-
negative hits.

Molecular Docking
The molecular docking study was carried out using the Glide SP
and XPmodes to explore the bindingmode and interaction of hits
on the ATP-binding site. The crystal structure of JAK1 protein
3EYG in complex with MI1 (Williams et al., 2009) was used to
perform molecular docking. The grid was developed on the
centroid of co-crystallized ligand MI1 surrounding the ATP-
binding site residues (Leu881, Glu883, Val889, Ala906, Met956,
Glu957, Phe958, Leu959, Gly962, Ser963, Glu966, Arg1007,
Asn1008, Leu1010, Gly1020, and Asp1021) of JAK1. Initially,
the docking of MI1 into the ATP-binding site was performed to
check the accuracy and reproducibility of the docking program.
Subsequently, the highly active compound 51 and 2,856 hits were

docked into the ATP-binding site. Considering the docking result
of compound 51 (glide XP score -9.691), the glide XP threshold
value was set to ≥ −9.60 to identify the novel hits. We observed
that 90 molecules have exhibited glide score greater than the
threshold and it was shortlisted (Supplementary Table S1).
Among the JAK1 ATP-binding site residues, Leu959 and
Glu957 that are present in the hinge region were found to be
the most selective amino acid residues for the H-bond interaction
and also crucial for selective inhibition of JAK1. Hence, the
interactions with Leu959 and Glu957 were investigated for the
hits. Compound 51 has shown H-bond interactions with Leu959,
Glu957, and Leu881. The selected 90 hits have exhibited H-bond
interaction with either Leu959 or Glu957 or both residues.
Additionally, the Leu881, Glu883, Ser963, Glu966, and
Arg1007 residues were involved in H-bond interaction with
most of the hits. The hydrophobic interactions were formed
mainly by the residues Leu881, Val889, Ala906, Val938,
Met956, Phe958, Pro960, and Leu1010. The binding of
compound 51 into the ATP-binding site is shown in Figure 2.

MM-GBSA Calculations
The highly ranked hits selected from glide docking were taken for
MM-GBSA calculations to predict the binding energy of the
protein–ligand complexes. The calculated free energy of binding
(ΔG bind) was lower than glide energy. It was observed that van der
Waals (ΔG_Bind_vdW) energy contributes more for the ligand
binding, whereas covalent interaction (ΔG_Bind_Covalent) and
electrostatic salvation (ΔG_Bind_Solv_GB) energy terms disfavor
for the inhibitor binding.

TABLE 12 | MM-PBSA results obtained from the molecular dynamics trajectory for the selected JAK1 lead compounds and the drug.

S. no. Molecule ID van der
Waals energy

(kJ/mol)

Electrostatic energy
(kJ/mol)

Polar solvation
energy (kJ/mol)

SASA energy
(kJ/mol)

Binding energy
(kJ/mol)

1 T6649932 −194.226±16.777 −74.970±32.984 203.123±32.793 −18.207±1.508 −24.281±30.279
2 ST088474 −135.299±6.176 −19.370±4.198 97.066±9.529 −14.916±0.839 −22.519±9.921
3 T5923555 -212.143±8.554 -2.460±7.922 256.402±9.826 -19.217±0.649 -42.581±11.158
4 T5923531 −214.550±9.829 −13.931±5.705 219.798±14.381 −20.106±0.900 −38.790±15.145
5 T6763842 −163.284±11.976 −89.322±11.300 230.810±17.465 −15.839±0.839 −27.636±15.186
6 Ruxolitinib −185.994±50.799 −34.821±65.738 206.801±108.464 −17.040±6.025 −24.054±36.312

TABLE 13 | The statistical results of the DFT-based descriptors for the selected lead compounds and the drug.

S. no. Total
energy
(a.u.)

Energy of ΔE Dipole
moment
(debye)

η σ χ μ ω

εHOMO
(Kcal/
mol)

εLUMO
(Kcal/
mol)

1 −1,195.61 −0.20 −0.04 4.48 3.06 2.24 0.22 −3.20 3.20 2.29
2 −1,325.80 −0.21 −0.01 5.43 3.48 2.71 0.18 −3.08 3.08 1.75
3 −1,675.02 −0.29 −0.07 6.09 5.59 3.04 0.16 −4.83 4.83 3.84
4 −1824.84 −0.22 −0.08 3.84 8.02 1.92 0.26 −4.08 4.08 4.33
5 −1,695.05 −0.25 −0.07 4.97 5.14 2.48 0.20 −4.28 4.28 3.69
R −987.14 −0.22 −0.05 4.59 4.09 2.29 0.22 −3.64 3.64 2.88

T6649932 (1), ST088474 (2), T5923555 (3), T5923531 (4), T6763842 (5), ruxolitinib (R). ΔE, band energy gap (εLUMO-εHOMO); η, absolute hardness; σ, global softness; χ,
electronegativity; μ, chemical potential; ω, electrophilicity index.
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Induced Fit Docking
IFD was performed on the highly ranked hits using the crystal
structure of JAK1 (3EYG). It was observed that IFD also produces
good IFD score and XP score comparable to glide XP score. The
IFD score of JAK1 hits was greater than or equal to −590, and
their corresponding XP score was greater than −8.00 which
indicates the good binding ability of the hits. The observed
H-bond and hydrophobic interaction with the IFD results was
highly similar to glide results, indicating that these hits could bind
and produce similar H-bond and hydrophobic interaction inside
the binding site upon both receptor and ligand flexibility.

Cross Docking
Since an important objective of this work is to attain admissible
levels of intra-family selectivity, the cross-docking approach was
employed for the highly ranked hits. For cross docking, the crystal
structure of JAK1 (3EYG), JAK2 (3KRR), and JAK3 (3ZEP) was
used. Among 90 hits tested, the top five compounds (T6649932,
ST088474, T5923555, T5923531, and T6763842) that have the
highest docking score toward JAK1 (>-10.5) compared with JAK2
and JAK3 were selected and taken for further study.

Analysis of Selected Lead Compounds
The top five compounds that showed good potency and selectivity
were selected and analyzed. To identify the potency and
selectivity of the leads, a drug molecule named ruxolitinib was
included in the study. Molecular docking, MM-GBSA
calculations, IFD docking, and cross docking were performed
for the drug and compared with the selected leads. Subsequently,
the selected leads were taken for the molecular dynamics
simulation study using the GROMACS and DFT calculations
using Gaussian. The chemical structures of the selected lead
compounds are shown in Figures 3A–E.

Absorption, Distribution, Metabolism, and Excretion
Properties
ADME properties are the key determinants for the successful
development of new drugs. All the analyzed pharmacokinetic
parameters of these lead compounds were found to be within the
permissible range. The percentage of the human oral absorption
was found to be greater than 50%. The partition coefficient and
water solubility that are important for the assessment of
absorption and distribution of drugs within the body ranged
between −0.4 and 3.5 and −5.4 and −2.1, respectively.
Compounds T6649932, T5923555, and T5923531 possessing
good Caco-2 and MDCK permeability have good level of
intestinal absorption. The drug-likeliness properties of the
selected leads and ruxolitinib are given in Table 6.

Glide XP Docking Analysis
For the selected leads, the glide XP score was greater than
−10.015, whereas for ruxolitinib, it was −9.282. The highest
docking score was observed for T6763842 (−10.671). The
major contribution of vdW interactions was observed which
indicate that the vdW interaction favors the protein-ligand
complex. The glide XP score, glide energy, glide evdw, and
glide ecoul of the selected leads are given in Table 7. On

analyzing the interaction, it was observed that the lead
compounds showed conserved H-bond interactions with both
the selective residues of JAK1 (Leu959 and Glu957) similar to the
drug indicating its remarkable selectivity. Compounds such as
T6649932, T5923555, and T5923531 formed another H-bond
with Arg1007. Additionally, hydrophobic interactions were
formed with the ATP-binding site residues Leu881, Val889,
Ala906, Val938, Met956, Phe958, Pro960, and Leu1010.
Figures 4A–F show the docked pose of lead compounds and
drug inside JAK1 ATP-binding site.

MM-GBSA Analysis
The binding free energy of the selected lead compounds ranges
from −41.698 to −46.430 suggesting good binding affinity with
JAK1.Many lead compounds have shown comparable free energy
of binding with ruxolitinib. This provides the insight that these
lead compounds have exhibited good specificity. Furthermore,
the contribution of ΔG_Bind_vdW and ΔG_Bind Lipo
components to the binding free energy was compared. The
high binding free energy was majorly contributed by ΔG_Bind
vdW than ΔG_Bind Lipo component. The predicted binding free
energy of the selected leads and drug is tabulated in Table 8.

Induced Fit Docking Analysis
The accuracy of glide scoring function in identifying the leads was
checked using the IFD method. The IFD score was greater than
−594, and their corresponding docking score was greater than
−8.5. The IFD scores of four lead compounds were higher
compared to ruxolitinib (−595.395), whereas the docking
scores of four lead compounds were little lower compared
with ruxolitinib (−9.725). The highest IFD score and XP score
were observed for T6763842 and T5923531. The Electro and
Lipophilic Evdw scores of the lead compounds and drugs showed
higher lipophilicity compared with electrostatic interactions
which implies the important role of lipophilicity in inhibitory
activity. The glide XP score, IFD score, lipophilic evdw, electro,
and H-bond interaction of the selected leads are given in Table 9.
The representation of docked lead compounds and drug present
inside the ATP-binding site of JAK1 after induced fit docking is
shown in Supplementary Figure S3. The IFD results also
confirmed that the selected lead compounds have occupied the
ATP-binding site of JAK1 irrespective of receptor flexibility.

Cross-Docking Analysis
The cross-docking results of selected leads indicate that their
docking score was greater than −10.00 with JAK1, whereas with
respect to other JAKs, their docking score ranges from −5.2 to
−8.9. For ruxolitinib, docking scores were −9.178 with JAK1,
−9.091 with JAK2, and −10.209 with JAK3. Therefore, the
selected lead compounds have shown good selectivity in terms
of docking score compared with ruxolitinib. The important
components to determine the selectivity of the lead
compounds were the electrostatic and hydrophilic components
of the docking score. The drug and lead compounds showed
higher lipophilicity compared with electrostatic interactions
which implies that lipophilicity plays an important role in
dictating the selectivity of these molecules. The cross-docking
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results of the drug and selected leads are given in Table 10. The
cross-docking results of ruxolitinib showed higher binding
affinity with JAK3 compared with JAK1 and JAK2 indicating
its lesser selectivity, whereas the selected lead compounds showed
greater affinity and selectivity toward JAK1 compared with other
JAK subtypes. Hence, the cross-docking results indicate the
selected lead compounds are more selective than the drug.

Molecular Dynamics Simulation
RMSD Plot Analysis
RMSD relative to the respective initial conformations was
monitored and analyzed to examine the stability and
equilibration of all systems. The RMSD value for both the lead
compounds and drug was calculated for the 100ns time scale using
the apo form of JAK1 (3EYG) as reference. In Figure 5, it was
observed that the RMSD values of both the drug and lead
complexes were stable throughout the simulation. Furthermore,
RMSD values for all protein backbone atoms attained convergence
after 1 ns and maintained a plateau of 0.01 nm after the initial
convergence. This suggests that all system simulations reached
equilibrium and stabilization during the simulation. RMSD of both
drug and lead complexes was found to be in the range of
0.02–0.03 nm indicating the similar stability. The observed
smaller RMSD fluctuations for all compounds confirmed that
the obtained binding conformations of these lead compounds
and drug were highly reasonable.

RMSF Plot Analysis
RMSF of backbone atoms were monitored to identify the strong
binding interactions and exemplify the pliability of these lead
complexes in the ATP-binding site of JAK1. The RMSF plot
shown in Figure 6 indicates very minimal fluctuations were
observed during the simulation except the terminal and loop
regions of the protein. Most of the fluctuations were between
0.016 and 0.035 nm indicating the stability of the simulated
system. Very minimal fluctuations were observed in the
residues Pro912, His918, Glu946, Asn950, and Gly951 for all
lead compounds and ruxolitinib. The JAK1 ATP-binding site
residues that are crucial for binding and fixing the inhibitors have
displayed insignificant fluctuations during the course of
simulation. However, the most important and selective amino
acid residues Leu959 and Glu957 that are important for inhibitor
binding attained a quite stable behavior.

Rg Plot Analysis
The level of compactness in the structure of protein due to the
presence or absence of ligands was calculated using radius of
gyration (Rg) plot (Lobanov et al., 2008). It can be observed that
all lead complexes and the drug showed consistently lower Rg values
and exhibited a relatively similar nature of compactness in Figure 7.
Thus, a relatively consistent Rg value indicates that a stably folded
structure was observed throughout the MD simulation.

Solvent Accessible Surface Area Plot Analysis
The solvent accessible surface area (SASA) calculation of the
protein–ligand complexes was used for predicting the extent of the
conformational changes that occurred during the interaction. The

SASA plot shown in Figure 8 indicates that no significant changes in
the protein structure were caused by these lead compounds and drug
during simulation. Hence, the protein–ligand complexes are relatively
stable throughout the simulation.

Protein–Ligand Interaction Analysis
The most significant part in MD simulations is the analysis of
protein–ligand interactions because it illustrates the changes in
the binding mode of the ligands during simulations. Figure 9
shows the number of H-bond formations over the trajectory for
lead compounds and the drug. The H-bonds were the principal
binding forces between protein and ligand. The drug ruxolitinib
has produced 2–4 H-bonds, whereas lead compounds have
produced 0–2 H-bonds throughout the simulation. T5923555,
T5923531, and T6763842 have produced 1–3 H-bonds, whereas
ST088474 produced one H-bond with JAK1 all through the
simulation. Ruxolitinib, T6763842, and T5923555 had retained
two H-bonds, and T5923531 had retained one H-bond, whereas
T6649932 does not have an H-bond at the end of the simulation.
A strong hydrogen bond network was formed mainly by the
residues Glu957 and Leu959. T5923555 and T5923531 retained
hydrogen bonds with Leu959 and Glu957 at the end of simulation.
Moreover, the ATP-binding site residues were almost
hydrophobic, which can form strong nonpolar interactions with
lead compounds. The detailed protein–ligand interaction residues
before and after molecular dynamics simulation (Saddala and Adi
2018) were studied and are given in Table 11. T5923555 and
T5923531 were found to be more stable and reliable before and
after simulation, and their important interaction (Glu957 and
Leu959) remains unchanged throughout the simulation.

The binding mode of the drug and lead compounds after
simulation is represented in Figures 10A–F. It was inferred that
the initial docked conformation and the final conformation of the
lead compounds and drug lie in the same binding pocket
(Supplementary Figure S4). Hence, the conformation of the
lead compounds was stable inside the binding pocket which, in
turn, validates the reliability of the docking results. Furthermore,
these absolute results suggest that the identified lead compounds
are highly selective and potent and they can be taken for in vitro
and in vivo studies.

MM-PBSA Calculation
The average binding energy of all the simulated complexes was
calculated using the g_mmpbsa tool. The van der Waals energy,
electrostatic energy, polar solvation energy, solvent-accessible
surface area (SASA) energy, and binding energy were
calculated and are tabulated in Table 12. T5923555 and
T5923531 have shown good binding energy and van der
Waals energy compared with other compounds.

Density Functional Theory Calculation
Molecular descriptors based on the electron density of the
molecules were studied using Gaussian. Based on HOMO
energy (EHOMO) and LUMO energy (ELUMO), descriptors such
as ΔE, η, σ, μ, χ, and ω were calculated. The smaller energy gap
(ΔE) for all lead compounds suggests that they can easily transit
from HOMO to LUMO, which is important for the molecular
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reactivity. Since the decrease in electronegativity (χ) value is
proportional to the increase in inhibitive efficiency (Zhan
et al., 2003), these leads would have higher inhibitory activity
because of their lower electronegativity value. The statistical
values of the calculated molecular descriptors are tabulated in
Table 13. The smaller energy gap, lower electronegativity, and
higher dipole moment that are vital for the inhibitory effect of a
molecule were observed which validates the better inhibitory
activity for the selected lead compounds.

CONCLUSION

Pharmacophore modeling, virtual screening, and molecular
docking are the rational methods for the identification of novel
leads with diverse chemical scaffold. Therefore, ligand-based
pharmacophore modeling combined with virtual screening and
docking was applied in this study to discover novel, potent, and
selective virtual hits for JAK1 enzyme. Initially, the ligand-based
pharmacophore models were generated and validated using the
potency and selectivity validation methods. Eight pharmacophore
models were selected and taken for pharmacophore-based virtual
screening against six databases. The hits obtained from screening
were filtered through ADME prediction and molecular docking.
The binding free-energy calculation and induced fit docking
methods were employed to validate the docking results.
Subsequently, cross docking was carried out to identify the lead
compounds that are more selective toward JAK1. Finally, the top
five lead compounds were selected and taken for molecular
dynamics and the DFT study. Among the five compounds,
T5923555 and T5923531 were found to be the best leads and
can be further validated using in vitro and in vivo methods.
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