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Computational modeling is an essential component of modern drug discovery. One of its
most important applications is to select promising drug candidates for pharmacologically
relevant target proteins. Because of continuing advances in structural biology, putative
binding sites for small organic molecules are being discovered in numerous proteins linked
to various diseases. These valuable data offer new opportunities to build efficient
computational models predicting binding molecules for target sites through the
application of data mining and machine learning. In particular, deep neural networks
are powerful techniques capable of learning from complex data in order to make informed
drug binding predictions. In this communication, we describe Pocket2Drug, a deep graph
neural network model to predict binding molecules for a given a ligand binding site. This
approach first learns the conditional probability distribution of small molecules from a large
dataset of pocket structures with supervised training, followed by the sampling of drug
candidates from the trained model. Comprehensive benchmarking simulations show that
using Pocket2Drug significantly improves the chances of finding molecules binding to
target pockets compared to traditional drug selection procedures. Specifically, known
binders are generated for as many as 80.5% of targets present in the testing set consisting
of dissimilar data from that used to train the deep graph neural network model. Overall,
Pocket2Drug is a promising computational approach to inform the discovery of novel
biopharmaceuticals.

Keywords: ligand binding sites, drug discovery and development, in silico drug design, deep learning, graph neural
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INTRODUCTION

Recent developments in genomics revealed novel disease-related molecular targets, many of which
are yet to be characterized with respect to the possibility of modulating their functions with
pharmaceutical agents. Another challenge in pharmacotherapy arises from resistance effects to
existing drugs complicating the treatment of particularly infectious diseases (Trebosc et al., 2019) and
cancer (Shou et al., 2004). Therefore, many drug development projects are focused on the discovery
of small molecule therapeutics with new mode of action (Gerry and Schreiber, 2018). Generating
novel small molecules is a difficult endeavor due to the high complexity of biological systems and the
enormous size of chemical space of organic compounds. Traditional experimental techniques can be
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used to identify drug-like molecules performing specific
biochemical tasks by binding to macromolecular targets with a
high specificity in order to modulate their cellular functions.
Nonetheless, even advanced high-throughput screening methods
have notable limitations due to the long time and high costs of
screening a large number of drug candidates.

To make the drug discovery process more efficient, modern
approaches incorporate miscellaneous computational
components. Virtual screening (VS) is perhaps the most
widely used strategy to help identify potentially bioactive
molecules from large collections of commercially available as
well as virtual compounds (Segler et al., 2018). Despite its utility,
this technology has certain drawbacks such as high false-positive
rates, the requirement of predefined ligand libraries for structure-
based VS, oversimplified scoring functions, and protein structure
frameworks absent in ligand-based VS (Wu et al., 2019). More
recently, machine learning (ML) methods addressing many of
these issues have become available for drug discovery. New ML
techniques include a quantitative structure-activity relationship
model to predict the target affinity, toxicity, and side effects
(Mouchlis et al., 2021) and an approach to model polypharmacy
side effects with graph convolutional networks (GCN) (Zitnik
et al., 2018).

Deep learning (DL) is a family of modern machine leaning
models utilizing deep neural networks (DNNs). DL models have
been demonstrated to be powerful feature extractors for ligand
binding site classifiers (Jiménez et al., 2017; Pu et al., 2019; Shi
et al., 2020) and metric learning models for binding sites in
proteins (Simonovsky and Meyers, 2020). Recurrent neural
networks (RNNs) are iterative DL models that generate
sequences through multiple iterations. In each iteration, the
RNN model generates an output of time t taking the output of
iteration t − 1 as the input. According to the probabilistic
language model (Graves, 2013), the probability of input token
xt+1 is modeled as P(xt+1|yt), which is the probability of xt+1
conditioned on the output token yt from the previous iteration.
This powerful methodology was applied to de novo drug
discovery, where RNNs were trained to model the probability
distribution of a drug dataset (Ertl et al., 2017; Segler et al., 2018;
Gupta et al., 2018; Yasonik, 2020). These methods treat a drug
dataset as a set of languages and employ an RNN to learn the
corresponding language models. After the training stage is
completed, the RNN learns the probability distribution
P(molecule) of the drug dataset, from which molecules can be
sampled. RNN-based approaches often represent molecules using
a simplified molecular-input line-entry system (SMILES)
(Weininger, 1988), where individual string characters represent
tokens of time steps. Although using RNNs to learn the
distributions of drug datasets offers new opportunities to find
drugs, these techniques still employ a random search of the
chemical space leading to long virtual screening times. From a
computational standpoint, when the aim is to identify promising
lead molecules against a target binding site, it is certainly
advantageous to have the search space significantly reduced.

In order to achieve this goal, we developed Pocket2Drug, a
new deep generative model with the encoder-decoder
architecture. Inspired by the framework of image captioning

models taking images as the input to generate corresponding
captions (Vinyals et al., 2015; Xu et al., 2015), the basic idea is to
provide RNN with the prior information on ligand binding
pockets to improve the chances of finding bioactive molecules.
A typical image captioning model consists of two parts, an
encoder/feature extractor and a decoder. A convolutional
neural network (CNN) is often used as the encoder extracting
fixed-size latent feature vectors from the input images containing
the prior information that can subsequently be decoded by an
RNN to generate image captions. Formally, image captioning
models learn the probability of sequences conditioned on prior
information, i.e., P(caption|image).

Pocket2Drug has a similar encoder-decoder architecture
consisting of an encoder to extract features and a decoder to
generate molecules. Nonetheless, Pocket2Drug differs from
typical image captioning models in that it employs a graph
representation of drug binding sites instead of images.
Consequently, a GNN is employed as the encoder to extract
the prior information from input pockets followed by an RNN
decoder to generate molecule strings, which are the equivalents of
image captions. In comprehensive benchmarking simulations
against ligand-bound, ligand-free, and low-homology datasets
of binding sites, we show that Pocket2Drug employing the
encoder-decoder DNN effectively predicts binding drugs for
input pocket structures.

MATERIALS AND METHODS

Datasets
Datasets used in this study were compiled from a non-
redundant library of 51,677 pockets with bound ligands
constructed for binding site prediction with eFindSite
(Brylinski and Feinstein, 2013). The redundancy in the
original library was already removed by excluding proteins
with the template modeling (TM)-score, measuring the
structure similarity (Zhang and Skolnick, 2004), of ≥0.4 and
the 3D Tanimoto coefficient (TC), measuring the ligand
similarity (Kawabata, 2011), of ≥0.7. We further filtered the
dataset based on the synthetic accessibility (SA) score (Ertl and
Schuffenhauer, 2009) removing low- and high-complexity
compounds whose SA scores are ≤1 and ≥6, respectively.
This procedure resulted in a high-quality dataset of 48,365
pockets binding small organic compounds, which were
randomly split into training (90%) and testing (10%) subsets.
The training subset of 43,529 pockets is referred to as the
Pocket2Drug-train dataset while the remaining 4,836
(testing) pockets are called the Pocket2Drug-holo dataset.

Next, 433 pockets having a protein sequence identity of ≤0.5
with pockets in the training subset were selected from the
Pocket2Drug-holo dataset creating the Pocket2Drug-lowhomol
dataset to evaluate the ability to generalize to unseen data. Finally,
the basic local alignment search tool (BLAST) (Altschul et al.,
1990) was used with a sequence identity threshold of 95% to
identify the apo structures of Pocket2Drug-holo proteins in the
Protein Data Bank (PDB) (Berman et al., 2002). Ligand-free
structures were then aligned on the corresponding holo-
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proteins with TM-align (Zhang and Skolnick, 2005) and those
producing significant alignments with a TM-score of ≥0.5 (Xu
and Zhang, 2010) were retained. This procedure resulted in
828 ligand-free pockets referred to as the Pocket2Drug-apo
dataset.

Graph Representation of Pockets
Binding pockets are represented as graphs, in which nodes are
non-hydrogen atoms and edges connect pairs of atoms spatially
located within 4.5 Å from one another (Shi et al., 2021). Node
features include the hydrophobicity (Mahn et al., 2009), the
charge, the binding probability (Jian et al., 2016), the solvent
accessible surface area (Ali et al., 2014), and the sequence entropy
(Liao et al., 2005), whereas the edge attribute is the bond
multiplicity for covalently bonded atoms and 0 for atoms
interacting non-covalently. Pockets are centered at the origin
with principal axes aligned to Cartesian axes. The coordinates of
individual atoms are also used as node features in order to provide
the additional 3D information on binding pockets. This graph
representation of ligand binding sites was used to accurately
classify pockets in protein structures with GraphSite (Shi et al.,
2021).

Encoder-Decoder Architecture
Pocket2Drug is implemented in PyTorch v1.7.1 (Paszke et al.,
2019) and employs a DNN with the encoder-decoder
architecture. The model learns the probability distribution of
molecules conditioned on ligand binding pockets,
P(molecue|pocket), which is then used to sample molecules
for a given pocket as the prior condition. The pipeline
implemented in Pocket2Drug is illustrated in Figure 1. For
the input binding site (Figure 1A), a graph representation is
generated by GraphSite (Shi et al., 2021) (Figure 1B) and the
resulting graph is processed by an encoder to generate a fixed-size
graph embedding (Figure 1C). As the encoder, we use a GNN
constructed by removing the fully connected layers of the
GraphSite classifier with parameters pretrained on binding site
classification tasks (Shi et al., 2021). Subsequently, an RNN
decoder takes the generated embedding vector as the input to
compute SMILES sequences representing binding drugs
(Figure 1D). Pocket2Drug is trained in an end-to-end fashion
meaning that the parameters of both encoder and decoder are
updated during backpropagation.

Graph Neural Network Encoder
The GNN encoder extracts latent features from the input pocket
graphs. We use the embedding network implemented in the
GraphSite classifier as the feature extractor with the last fully
connected layer removed and the remaining parts of the classifier
employed as the feature extractor. The message passing function
utilizes weighted neighbor node features, in which weights are
generated by a two-layer, fully connected neural network taking
edge features as the input. Updated node features in k-th layer of
node x(k)

i , defined as

x(k)
i � hθ⎛⎝ concat

c∈Channels
⎛⎝(1 + εc) · x(k−1)

i + ∑
j∈N (i)

hωc(eij) · x(k−1)
j

⎞⎠⎞⎠
(1)

are first computed as a weighted sum of the first-order neighbors.
The features of x(k−1)

i are weighted by (1 + ϵc), where ϵc is a
trainable parameter. The weights of the first-order neighbors are
generated by a neural network hωc taking the edge feature, eij, as
the input. Then, multiple channels of the weighted sum of the node
features are concatenated and updated by another neural network
hθ . Finally, the output of each layer is connected by the jumping
knowledge (JK)-network (Xu et al., 2018). The JK-network enables
an automatic selection of the number of layers for individual nodes.
Finally, the initial node embeddings are processed by the Set2Set
graph read-out layer (Vinyals et al., 2016) to construct final, fixed-
size graph embeddings.

Recurrent Neural Network Decoder
As a decoder, we use the gated recurrent unit (GRU), which is a
variation of the vanilla RNN (Cho et al., 2014). The decoder
network models a conditional probability of the output sequence
based on the prior information on a ligand binding pocket:

P(molecule
∣∣∣∣pocket) � P(s0∣∣∣∣pocket)∏n

t�1
P(st∣∣∣∣pocket, s0,/, st−1)

(2)
where st is the token of a molecule string at iteration t, and n is the
length of the output string. Note that sn represents the “end of string”,
or eos, token.Figure 2 shows that theGRUnetworkworks differently
during training and inference stages. During training, the graph
embedding is taken by theGRUas the prior information tomodel the

FIGURE 1 | Flowchart of Pocket2Drug. The input ligand-binding pocket (A) is first represented as a graph (B) and then used by the encoder graph neural network
to generate a fixed-size graph embedding (C). The decoder recurrent neural network generates molecule strings (D) from the graph embedding.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8377153

Shi et al. Drug Design with Deep Learning

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


probability distribution of all tokens, where the probability of a token
s0 is P(s0). In the remaining iterations, input tokens st of the binding
drug string aremapped to vectors by the embedding layer and passed
to the GRU as the input. The GRU then predicts the next token by
generating another probability distribution P(st+1). The negative log
likelihood of the binding drug is used as the loss function:

L � −∑n
t�0
logP(st) (3)

Dashed arrows in Figure 2 represent the inference stage. Here,
the first iteration is the same as during training, i.e., the encoder
generates graph embeddings used as the input in the first
iteration. However, in the subsequent iterations, the RNN
model takes the token st, sampled from the distribution of the
previous step, to generate the distribution st+1. The inference
stops when the eos token is reached.

Tokenization Scheme
Molecules can be represented by strings encoded by different
tokenization schemes. Although SMILES is a widely used
molecular string system, it was not designed for ML applications.
Because of a strict syntax of SMILES, a significant portion of
molecules generated by machine learning models are invalid. In
addition, parentheses and ring indicators may be separated by long
distances in SMILES strings causing problems for RNNs that have
difficulty learning long-term dependencies (Öztürk et al., 2020). This
issue can be addressed by improving either the RNN model or the
tokenization scheme. For instance, RNN variants implementing
“shortcuts” were developed to model long-term dependencies
(Hochreiter and Schmidhuber, 1997). A long short-term memory
(LSTM) model can also be used instead of a vanilla RNN in de novo
drug design applications to learn the distribution of a drug dataset
(Ertl et al., 2017). Another workaround is to improve the

tokenization scheme to make the string representation of
molecules more suitable for ML applications. An example is
DeepSMILES developed to enhance DL-based models taking
SMILES as the input (O’Boyle and Dalke, 2018).

Pocket2Drug employs SELF-referencing Embedding Strings
(SELFIES), another molecule tokenization scheme designed for
machine learning applications (Krenn et al., 2020). The SELFIES
method was selected because of several important properties. Not
only any molecule can be represented by a SELFIES string, but
also all virtual molecules generated by an ML model are valid.

FIGURE 2 | Architecture of the recurrent neural network decoder. The decoder employs multiple gated recurrent units (GRUs). During model training, the molecule
strings of binding drugs are used as the input. Dashed arrows represent the inference stage, in which the token sampled from P(st−1) is used as the input at iteration t.

FIGURE 3 | Relationship between the ligand size and the size of binding
pockets. The size of ligands and pockets is quantified by the number of non-
hydrogen atoms. Binding pockets are assigned to four size groups: <100,
100–160, 161–220, and >220 atoms. For each pocket group, quartiles
and the interquartile range are calculated for the size of label ligands (blue bars)
and those molecules generated by Pocket2Drug (green bars).
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Importantly, the information on rings and branches in SELFIES is
localized by storing the branch size and ring size together with
their identifiers. This tokenization scheme makes it easier for
RNNs to learn from the “past” information compared to, e.g.,
SMILES that require RNNs to infer ring/branch indicators based
on non-localized information.

EVALUATION AND RESULTS

Pocket2Drug was trained on the Pocket2Drug-train dataset and
validated against Pocket2Drug-holo, -apo, and -lowhomol
datasets. We first analyze the size of molecules generated for
the Pocket2Drug-holo dataset. Figure 3 shows that there is a
notable correlation between the size of pockets and the size of
binding molecules, referred to as label ligands, across
experimental complex structures (blue bars). Encouragingly,
the size of ligands constructed by Pocket2Drug is also
correlated with the pocket size, although these molecules tend
to be somewhat smaller than the corresponding label ligands
(green bars). This result can be attributed to the fact that
capturing longer dependencies in molecular strings is more
difficult for the RNN trained to minimize the sum of cross-
entropy loss function. In other words, the model makes fewer
mistakes by generating smaller molecules.

Next, the quality of molecules generated for the Pocket2Drug-
holo dataset is evaluated using two complementing protocols, one
based on the chemical similarity of binding molecules (Baldi and
Nasr, 2010) and another utilizing the structure alignments of
protein pockets (Yeturu and Chandra, 2011). Pocket2Drug is
compared to two baselines. The first method randomly selects
drug candidates from the ZINC database, a curated collection of
commercially available chemical compounds prepared
specifically for virtual screening (Irwin and Shoichet, 2005).
The second baseline method selects drug candidates from the
output of a vanilla RNN (Segler et al., 2018) representing a typical
DL-based approach for de novo drug design.

Evaluation by Ligand Chemical Similarity
The performance of Pocket2Drug, ZINC, and vanilla RNN are
evaluated with the TC between the generated molecules and label
ligands. For each pocket in the Pocket2Drug-holo dataset, TC
values are calculated for a specified number of molecules sampled
from the model output and the highest TC is selected as the final
score. Table 1 reports the percentage of Pocket2Drug-holo
pockets with the corresponding score greater than or equal to
a TC threshold ranging from 0.7 to 1.0. Encouragingly, using
Pocket2Drug significantly improves chances to find binding

molecules compared to ZINC and vanilla RNN. For a sample
size of 20,480 (10 batches of 2,048molecules each tomaximize the
GPU utilization), Pocket2Drug generates at least one molecule
which a TC of ≥0.7 to the label ligand for as many as 95.9%
pockets. Note that twomolecules sharing chemical similarity with
a TC of ≥0.7 tend to have a similar bioactivity (Kumar, 2011; Ben
Lo, 2016). For the majority of pockets (52.5%), Pocket2Drug
selects the label ligand itself (a TC of 1.0). This performance is
significantly higher than that of ZINC/vanilla RNN that selects
ligands with a TC of ≥0.7 for 58.9%/57.1% of pockets and label
ligands for merely 0.4%/0.1% of pockets. Increasing the sample
size to 81,920 slightly improves the performance because four
times more molecules are used to select that with the highest TC
value. A significantly improved performance of Pocket2Drug
over vanilla RNN can be attributed to the effective utilization
of the prior information on ligand binding pockets learned by the
ML model.

Next, the performance of Pocket2Drug is assessed against the
Pocket2Drug-apo dataset. The mean root-mean-square deviation
(RMSD) (Kabsch, 1976) of ligand-free structures against ligand-
bound conformations is 1.2 Å ± 0.9. This low RMSD is expected
because, with a few exceptions, the structures of apo- and holo-
proteins tend to be highly similar (Brylinski and Skolnick, 2008).
Table 2 reports hit rates for molecules generated by Pocket2Drug
using ligand-free and the corresponding ligand-bound pockets in
the Pocket2Drug-holo dataset. Encouragingly, the performance
of Pocket2Drug is independent on the ligand binding state of
target proteins, therefore, the model does not require input
proteins to be co-crystallized with ligands in order to
successfully generate binding molecules.

We also evaluate the ability of Pocket2Drug to generalize to
unseen data bymeasuring its performance against the Pocket2Drug-
lowhomol dataset. As reported in Table 3, label ligands (a TC of 1.0)
are generated by Pocket2Drug in 77.1%/80.5% of the cases when the
sample size is 20,480/81,920. This performance represents a notable
improvement over ZINC and vanilla RNN selecting a very few label
ligands. Pocket2Drug also achieves the highest performance for
other TC thresholds ranging from 0.7 to 0.9. These results show
that Pocket2Drug not only performs exceptionally well against
Pocket2Drug-holo and -apo datasets, but also against the
Pocket2Drug-lowhomol dataset comprising proteins with a low
sequence homology to the training subset demonstrating that it
generalizes well to unseen data.

Two representative examples of pockets in the Pocket2Drug-
lowhomol dataset are discussed in detail, a nucleotide binding site
in the human mitogen and stress activated protein kinase 1
(MSK1) and a sugar binding site in D-allose binding protein
(ALBP) from E. coli. MSK1 is involved in the regulation of

TABLE 1 | Hit rates for the Pocket2Drug-holo dataset.

Method Sample size of 20,480 Sample size of 81,920

TC ≥ 0.7 (%) TC ≥ 0.8 (%) TC ≥ 0.9 (%) TC =1.0 (%) TC ≥ 0.7 (%) TC ≥ 0.8 (%) TC ≥ 0.9 (%) TC =1.0 (%)

Pocket2Drug 95.9 79.9 64.8 52.5 98.4 86.8 69.7 56.4
ZINC 58.9 23.8 3.3 0.4 73.6 40.5 8.4 1.2
Vanilla RNN 57.1 19.7 1.6 0.1 70.9 35.3 4.7 0.3
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mitogen activated kinases and it is required by the tumor-
promoter-induced neoplastic cell transformation (Malakhova
et al., 2010). The complex structure of MSK1 and the
phospho-amino-phosphonic acid-adenylate ester (AMP-PNP)
(Malakhova et al., 2010) was chosen as the target. AMP-PNP
is a competitive ATPase inhibitor blocking the ATP-dependent
oxidative phosphorylation (Lardy et al., 1975). Figure 4A shows
the distribution of TC similarities between the label ligand, AMP-
PNP, and molecules generated by Pocket2Drug and two baseline
methods. Although most virtual molecules have relatively low TC
similarities to AMP-PNP, more molecules with high TC vales are
sampled from the Pocket2Drug model compared to ZINC and
vanilla RNN. According to the Fisher-Pitman permutation test
(Neuhäuser and Manly, 2004), the difference between

Pocket2Drug and vanilla RNN is statistically significant with a
p-value close to 0 and that between Pocket2Drug and ZINC is
insignificant with a p-value of 0.1.

To better understand the biological relevance of molecules
generated by Pocket2Drug, five representative compounds with
TC similarities against AMP-PNP ranging from 1.0 to 0.8 are
presented in Figure 5. Figure 5A shows AMP-PNP, which is a
nonhydrolyzable ATP analogue forming hydrogen bonds with
MSK1 pocket residues through several moieties, NH2 in adenine,
3′OH in pentose sugar, OH in ß-phosphate, NH linking ß- and γ-
phosphates and OH in γ-phosphate in the complex crystal
structure (Malakhova et al., 2010). Interestingly, several
molecules generated by Pocket2Drug have common
substructures with either substitutions in the adenine moiety
(Figures 5E,F) and the terminal phosphate group (Figure 5B) or
sharing the PNP subunit (Figures 5C,D). These virtual molecules
contain groups forming important hydrogen bonds with MSK1
pocket residues. To further evaluate the possibility of binding, all
molecules were docked into the AMP-PNP pocket of MSK1 with
fkcombu (Kawabata and Nakamura, 2014). The docking scores of
the generated molecules are 12.5, 18.1, 21.8, 17.6, and 13.0
(Figures 5B–F, respectively). These results indicate that
molecules generated by Pocket2Drug dock favorably to the
target pocket with the compound shown in Figures 5B,G
having the best docking score due to the substitution in ß-
phosphate group.

The improvement of Pocket2Drug over baseline methods is
even more perceptible for ALBP where the distribution of TC
similarities to the label ligand is shifted toward much higher
values for molecules sampled from the Pocket2Drug model
(Figure 4B). Differences between Pocket2Drug and both
baseline methods are statistically significant with p-values close
to 0. ALBP is a member of the ATP-binding cassette (ABC)
transporter family facilitating the import and export of various
molecules across the cell membrane (Fath and Kolter, 1993).
ALBP binds ß-D-allose, shown in Figure 6A, with a Kd of 0.33 μM
(Chaudhuri et al., 1999). In the crystal complex structure, ß-
D-allose forms multiple interactions with the pocket residues of

TABLE 2 |Hit rates for the Pocket2Drug-apo dataset. For each ligand-free structure, the corresponding ligand-bound pocket is selected from the Pocket2Drug-holo dataset
for the apples-to-apples comparison.

Binding state Sample size of 20,480 Sample size of 81,920

TC ≥ 0.7 (%) TC ≥ 0.8 (%) TC ≥ 0.9 (%) TC =1.0 (%) TC ≥ 0.7 (%) TC ≥ 0.8 (%) TC ≥ 0.9 (%) TC =1.0 (%)

Ligand-free 95.3 72.7 53.3 37.4 98.2 82.2 57.2 40.5
Ligand-bound 95.3 72.2 52.3 37.0 98.2 81.6 58.1 41.2

TABLE 3 | Hit rates for the Pocket2Drug-lowhomol dataset.

Method Sample size of 20,480 Sample size of 81,920

TC ≥ 0.7 (%) TC ≥ 0.8 (%) TC ≥ 0.9 (%) TC =1.0 (%) TC ≥ 0.7 (%) TC ≥ 0.8 (%) TC ≥ 0.9 (%) TC =1.0 (%)

Pocket2Drug 98.2 95.2 87.5 77.1 98.9 96.8 90.0 80.5
ZINC 49.2 18.4 2.7 0.2 66.7 36.3 10.4 2.3
Vanilla RNN 50.8 16.1 0.9 0.0 62.8 28.8 5.7 0.9

FIGURE 4 | Chemical similarity of molecules generated by Pocket2Drug
to label ligands. Label ligands are molecules bound to target pockets in
experimental complex structures, (A) AMP-PNP binding to MSK1 and (B) ß-
D-allose binding to ALBP. Chemical similarity is measured with the
Tanimoto coefficient (TC).
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FIGURE 5 | Examples of molecules generated by Pocket2Drug for a binding site in MSK1. (A) The label ligand, AMP-PNP. (B–F) Molecules constructed by
Pocket2Drug with maximum common substructures to the label ligand highlighted in cyan. (G) Molecule shown in B (ice blue) docked to the binding site in MSK1
(orange).

FIGURE 6 | Examples of molecules generated by Pocket2Drug for a binding site in ALBP. (A) The label ligand, ß-D-allose. (B–F) Molecules constructed by
Pocket2Drug with maximum common substructures to the label ligand highlighted in cyan. (G) Molecule shown in E (ice blue) docked to the binding site in ALBP
(orange).
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ALBP through the ring oxygen and five hydroxyl moieties
(Chaudhuri et al., 1999). Selected compounds generated by
Pocket2Drug are presented in Figures 6B–F. In addition to a
substituted cyclohexane (Figure 6B), several substituted allose
molecules (Figures 6C–F) sharing a high chemical similarity with
the label ligand, ß-D-allose (Figure 6A), were constructed. Most
of these molecules dock well to ALBP pocket with docking scores
of 4.1, 3.7, 20.9, 3.5, and 9.8 for compounds shown in Figures

6B–F, respectively. Interestingly, a substituted cyclohexane in the
molecule shown in Figure 6B adopts the chair conformation
similarly to ß-D-allose bound to ALBP in the experimental
complex structure. A compound shown in Figures 6E,G has
the best docking score, whereas that shown in Figure 6D has less
favorable docking score than those ligands having a comparable
size to ß-D-allose because of the large substitution at 5′ position
that does not fit in the binding pocket of ALBP. Docking results
suggest that molecules generated by Pocket2Drug are capable of
forming favorable interactions with the target pocket.

Evaluation by Pocket Structure Alignments
In addition to the assessment by ligand chemical similarity
described above, the performance of Pocket2Drug is also
evaluated with pocket structure alignments. This approach
is based on an assumption that a molecule generated for the
target pocket is a hit if a similar molecule binds to a site that is
structurally similar to the target pocket (Govindaraj and
Brylinski, 2018; Gaieb et al., 2019). A flowchart of the
evaluation procedure is shown in Figure 7. For a target
pocket in the testing set (Figure 7A), molecules generated
by Pocket2Drug are ranked according to their frequencies and
100 of the most frequent molecules are selected. For each drug
candidate (Figure 7B), chemically similar ligands with a TC of
≥0.7 are identified in the PubChem BioAssay dataset
comprising 73,021 active interactions involving 919 unique
proteins and 17,367 unique compounds (Wang et al., 2012).
Next, the experimental complex structures of these ligands
bound to similar proteins with a sequence identity of ≥70% to
PubChem BioAssay targets are retrieved from the PDB. The
extracted binding sites (Figure 7C) are finally structurally
aligned to the initial target pocket with PocketAlign, an
accurate method to superpose ligand binding sites in a
sequence order-independent manner (Yeturu and Chandra,
2011). Essentially, this procedure validates molecules
generated for target pockets by finding similar interactions
that have already been determined experimentally through
binding assays and protein crystallography.

Similar to the evaluation protocol by ligand chemical
similarity, Pocket2Drug is compared to ZINC and vanilla
RNN. For each target pocket, 100 molecules from the ZINC
database and 100 molecules generated by vanilla RNN are
selected so that their molecular weight distributions match
those calculated for compounds selected by Pocket2Drug. In
terms of statistics, the number of pocket pairs used as input
for structure alignments is 17,620 for Pocket2Drug, 6,307 for
ZINC, and 6,694 for vanilla RNN. The number of valid
pocket alignments constructed by PocketAlign (Yeturu and
Chandra, 2011) are 16,987 (Pocket2Drug), 741 (ZINC), and
4,902 (vanilla RNN). A valid pocket alignment has the RMSD
of ≤2 Å; higher RMSD values indicate that two pockets are
structurally dissimilar. According to this criterion, as many as
96.4% of validation pairs of pockets identified using output
molecules generated by Pocket2Drug produce valid structure
alignments, while these percentages are notably lower for
ZINC (11.7%) and vanilla RNN (73.2%). The distribution of
the RMSD scores of pocket alignments for all tested methods is

FIGURE 7 | Flowchart of the evaluation by pocket structure alignments.
For a target pocket (A), a molecule is generated by Pocket2Drug (B). This
compound is then scanned through the PubChem BioAssay for similar
molecules for which experimental complex structures are available in the
Protein Data Bank. The extracted binding site (C) corresponding to the know
interaction in PubChemBioAssay is structurally aligned to the target pocket by
PocketAlign. A high-quality alignment (D) indicates that the generated
molecule is likely to bind to the target pocket.
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presented in Figure 8. Not only using molecules selected by
Pocket2Drug results in the highest percentage of valid structure
alignments, but also RMSD values for these superpositions are
generally much lower compared to ZINC and vanilla RNN. The
mean RMSD scores for pocket2Drug, ZINC, and vanilla RNN are
1.1 Å, 1.6 Å, and 1.6 Å, respectively.

Structure alignment results demonstrate that for a large number of
molecules generated by Pocket2Drug for target pockets, there are
experimentally determined interactions between chemically similar
ligands binding to structurally similar pockets. Two representative
cases are selected to exemplify the evaluation by pocket structure
alignments. The first target pocket is a nucleotide binding site in

MSK1 used in the previous section to illustrate the results of the
evaluation by ligand chemical similarity. Amongmolecules generated
by Pocket2Drug, a compound ranked 12 with the frequency of 21
(Figure 9A) is chemically similar to midostaurin (PubChem-CID:
9829523, Figure 9B), a protein kinase C (PKC) inhibitor (Eder et al.,
2004) used to treat systemic mastocytosis, acute myeloid leukemia,
and mast cell leukemia (National Cancer Institute Dictionary, 2021).
According to the bioassay data (PubChem-BAID: 208295368),
midostaurin inhibits PKC-α isoform with the half-maximal
inhibitory concentration (IC50) of 22 nM (Millward et al., 2006).
Midostaurin has been co-crystalized with the human dual specificity
tyrosine-phosphorylation-regulated kinase 1A (DYRK1A, 25%
sequence identity with PKC-α) with the equilibrium dissociation
constant (Kd) of 100 nM (PDB-ID: 4nct) (Alexeeva et al., 2015).
Figure 9C shows the structure alignment constructed by PocketAlign
between AMP-PNP binding pocket in MSK1 and midostaurin
binding pocket in DYRK1A. Despite a low global sequence
identity between these proteins of only 26%, their binding pockets
are structurally highly similar with the RMSD of 0.90 Å. The
compound generated by Pocket2Drug docks to the AMP-PNP
binding pocket in MSK1 with a score of 58.5 (Figure 9D).

The second example is the human angiopoietin-1 receptor
(Tie-2), an enzyme involved in vessel remodeling, branching,
stability, and maturation (Yu, 2005). Using the binding site of
Tie-2 as the input, Pocket2Drug generated a molecule shown
in Figure 10A at rank 9 with a frequency of 5. This compound
is chemically similar to doramapimod (PubChem-CID:
156422, Figure 10B), an inhibitor of ephrin type-A
receptor 2 (EphA2) with a TC of 0.73. According to the
bioassay data (PubChem-BAID: 40394839), doramapimod
binds to EphA2 with a Kd of 0.37 nM and has been tested
for its anti-proliferative activity in the SF-268 cell line. It
inhibits the viability of EphA2 growth dependent
glioblastoma cells with a half-maximal effective
concentration (EC50) of 5 μM (Heinzlmeir et al., 2017).
Despite a low global sequence identity of 37%, the
structure alignment of binding sites in Tie-2 (PDB-ID:

FIGURE 8 | Assessment of the quality of pocket alignments constructed
with PocketAlign. Alignment quality is evaluated by the root-mean-square
deviation (RMSD) calculated over non-hydrogen atoms of binding residues.
Target pockets are aligned to binding sites identified in the Protein Data
Bank for molecules generated by Pocket2Drug (green) and two baselines,
ZINC (red) and vanilla RNN (gray).

FIGURE 9 | Example of the evaluation by pocket alignment for a binding site in MSK1. (A) A molecule generated by Pocket2Drug at rank 12. (B) A similar
compound, midostaurin, with the maximum common substructure to Pocket2Drug molecule highlighted in cyan. (C) A structure alignment between the target binding
site in MSK1 (orange) and midostaurin binding pocket in DYRK1A (purple). (D) The molecule generated by Pocket2Drug (ice blue) docked to the target site in MSK1
(orange) with fkcombu.
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2oo8) and EphA2 (PDB-ID: 5nkd) yields an RMSD of 0.95 Å
(Figure 10C). Docking simulations with fkcombu confirmed
that the molecule generated by Pocket2Drug fits well into the
binding site of Tie-2 with a score of 24.3 (Figure 10D).

DISCUSSION

In this communication, we describe Pocket2Drug, a novel deep
learning model employing an encoder-decoder architecture to
predict binding molecules for a ligand binding site. Pocket2Drug
was trained in an end-to-end supervised manner against a large
collection of ligand-pocket pairs. The analysis of molecules
generated by Pocket2Drug using two evaluation protocols
based on ligand chemical similarity and pocket structure
alignments revealed that this algorithm significantly improves
the chances of finding binding ligands compared to traditional
techniques. Pocket2Drug not only yields a high accuracy against
ligand-free structures, but it also generalizes well to unseen data,
viz. those pockets extracted from proteins that are different from
training instances. These findings are particularly important in
drug discovery against novel protein structures, where it can help
significantly reduce the search space of drug candidates. In
contrast to traditional virtual screening typically employing a
library of 200,000 to over 1,000,000 molecules (Hughes et al.,
2011), Pocket2Drug generates molecules that have high chances
to bind to target pockets within a smaller sample of 81,920
compounds. Therefore, it can potentially decrease the number
of molecules to be subjected to structure-based virtual screening
from millions to tens of thousands.

Pocket2Drug can be improved by incorporating reinforcement
learning imposing additional restraints on the synthetic accessibility,
solubility, and toxicity of generated molecules, depending on a
specific application. Additional improvements can also be
achieved by applying a framework similar to the conditional
recurrent neural network (cRNN), utilizing the RNN with the

prior information (Xu et al., 2021), to the heterogeneous input
data. In contrast to cRNN, in which the pre-computed
information is used as the prior condition for RNN, Pocket2Drug
is an end-to-end DNN, therefore the encoder is updated during
training. Another difference is the data representation; cRNN uses a
voxel representation as the prior information, whereas Pocket2Drug
employs a computationally more efficient graph representation.
Nonetheless, the heterogeneous pocket data can be combined by
concatenating embedding vectors generated by different feature
extractors in order to provide the prior information on ligand
binding sites.

An attention mechanism was shown to significantly improve
the performance of image captioning because it helps the model
capture more semantically meaningful parts of images (Xu et al.,
2015).We expect that the samemethodology can be implemented
in Pocket2Drug since pocket residues contribute differently to the
formation of molecular interactions with binding ligands. These
are examples of future research directions that will be explored to
further improve the performance of Pocket2Drug in the discovery
of novel biopharmaceuticals.
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