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Background and Aim: More than half of the small-molecule kinase inhibitors (KIs) induced
liver injury clinically. Meanwhile, studies have shown a close relationship between
mitochondrial damage and drug-induced liver injury (DILI). We aimed to study KIs and the
binding between drugs and mitochondrial proteins to find factors related to DILI occurrence.

Methods: A total of 1,223 oral FDA-approved drugs were collected and analyzed, including
44 KIs. Fisher’s exact test was used to analyze DILI potential and risk of different factors. A
total of 187 human mitochondrial proteins were further collected, and high-throughput
molecular docking was performed between human mitochondrial proteins and drugs in the
data set. Themolecular dynamics simulationwas used to optimize and evaluate the dynamic
binding behavior of the selected mitochondrial protein/KI complexes.

Results: The possibility of KIs to produce DILI is much higher than that of other types (OR =
46.89, p = 9.28E-13). A fewDILI risk factors were identified, includingmolecular weight (MW)
between 400 and 600, the defined daily dose (DDD) ≥ 100mg/day, the octanol–water
partition coefficient (LogP) ≥ 3, and the degree of liver metabolism (LM) more than 50%.
Drugs that met this combination of rules were found to have a higher DILI risk than controls
(OR = 8.28, p = 4.82E-05) and were more likely to cause severe DILI (OR = 8.26, p = 5.06E-
04). The docking results showed that KIs had a significant higher affinity with human
mitochondrial proteins (p = 4.19E-11) than other drug types. Furthermore, the five proteins
with the lowest docking score were selected for molecular dynamics simulation, and the
smallest fluctuation of the backbone RMSD curve was found in the protein 5FS8/KI
complexes, which indicated the best stability of the protein 5FS8 bound to KIs.

Conclusions: KIs were found to have the highest odds ratio of causing DILI. MW was
significantly related to the production of DILI, and the average docking scores of KI drugs
were found to be significantly different from other classes. Further analysis identified the top
binding mitochondrial proteins for KIs, and specific binding sites were analyzed. The
optimization of molecular docking results by molecular dynamics simulation may
contribute to further studying the mechanism of DILI.
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INTRODUCTION

Drug-induced liver injury (DILI) refers to the unexpected
harm to the liver caused by commonly used drugs (Andrade
et al., 2019). DILI is the major cause of acute liver
failure, which impacts patient health and makes it
challenging for drug development (Björnsson, 2010), as
severe DILI may lead to drug withdrawal from the market
(Chan and Benet, 2017). Analyzing the risk factors of DILI
can help reduce the occurrence of this side effect and benefit
patient health.

It has been reported that the DILI occurrence was associated
with the drug types (Sunil Kumar et al., 2021). Anti-tumor
drugs, heparin, antibacterial drugs, and anti-tuberculosis drugs
are the most common drug categories that cause DILI in
clinical practice (Meier et al., 2005). In recent years,
Chinese herbal medicines and antibiotics have also been
reported with DILI association (Song et al., 2020). Among
the drugs approved by the Food and Drug Administration
(FDA), the proportion of anti-cancer drugs rose sharply from
2009 to 2017 (Batta et al., 2020), and small-molecule kinase
inhibitors (KIs) have become more popular (Bayazeid and
Rahman, 2021). From 2016 to 2018, 53% of new anti-cancer
drugs approved by the FDA were oral protein KIs (Ribeiro
et al., 2020). A total of 53 small-molecule KIs have been
approved by October 2019 (Shi et al., 2020). KIs mainly
target the tyrosine protein kinases to achieve therapeutic
functions (Sun et al., 2017), and more recent reports
discovered additional targets including serine/threonine
protein kinases and even lipokinases (Levitzki, 2013; Wu
et al., 2016). Despite their anti-cancer effectiveness, KIs may
cause DILI as a major safety problem (Shi et al., 2020).
According to existing reports, more than half of the FDA-
approved 53 KIs caused DILI in clinical observation (Jiang
et al., 2021). Analyzing the characteristics of KIs may help to
reveal the risk factors associated with DILI.

The occurrence of DILI is related to factors associated with
the etiology, the host, and the environment (Garcia-Cortes
et al., 2020). At present, it was the main method to predict
DILI by measuring the physiological indexes of patients. Li
et al. (2019) performed liver biopsy and common indicator
tests in 465 patients, including blood lipid measurement,
and the results suggested that dyslipidemia and female
gender significantly increased the risk of DILI. Zhang et al.
(2018) analyzed the toxic effects of 34 KIs on primary rat and
human hepatocytes and further performed the prediction
effect of KI-induced clinical hepatotoxicity, but the
accuracy might be low (65% with human hepatocytes and
59% with rat cells).

It is well-known that the properties of drugs are the important
factors for the increase of accuracy in DILI prediction. In earlier
studies, Lammert et al. (2008) found a correlation between defined
daily dose (DDD) ≥ 50mg/day and severe DILI (death or liver

transplantation). The octanol–water partition coefficient (LogP)
affects the absorption of drugs and was also considered to be
linked with DILI. Chen et al. (2013) explored the relationship
between DDD and LogP and then put forward “rule of two” with
a positive rate of 85%. However, their data set is relatively small,
accounting for only around 30% of all drugs approved by the FDA.
Weng et al. (2015) expanded the data set and concluded that the joint
prediction between DDD and LogP was no better than using DDD
alone, and it was proposed that the extensive liver metabolism
contributes to the prediction of DILI. Subsequently, Chen et al.
(2016) added the factor of activemetabolite production to the “rule of
two” rule, which improved the accuracy of prediction. Other drug
properties that affect DILI included the changes in mitochondrial
function (Han et al., 2013), inhibition of the bile salt export pump
(Aleo et al., 2014), and liver transporter inhibition (Morgan et al.,
2013). It can be seen that DDD, LogP, liver metabolism, and other
drug properties are significantly related to DILI and can be used for
the prediction ofDILI. In addition, studies have shown thatmolecular
weight (MW) and total polar surface area are related to drug adverse
reactions (Hughes et al., 2008). However, further exploration onMW
and the combination of multiple drug properties are still needed to
understand and identify the DILI association at a relatively larger
data set.

The mechanism of DILI is a complex process. Although the
specific mechanism is still unclear, more and more studies show
that mitochondria play a key role (Pessayre et al., 2012; Aleo et al.,
2014). Researchers found that drugs or their active metabolites
covalently bound to mitochondria, increased mitochondrial
oxidative stress (ROS and RNS), damaged the mitochondrial
DNA and protein, finally, resulted in mitochondrial dysfunction
and the following cell necrosis and/or apoptosis (Jaeschke et al.,
2012; Pessayre et al., 2012; Ye et al., 2018). Further studies showed
drugs that induced mitochondrial dysfunctions could be used to
predict DILI occurrence in humans (Porceddu et al., 2012; Aleo
et al., 2014). However, few studies on mitochondrial toxicity of
KIs were available. Recently, Zhang et al. (2017a) reported that
the DILI mechanism might be related to the mitochondrial
toxicity by measuring the effects of 34 FDA-approved KIs on
the mitochondrial functions of rat primary hepatocytes. Perhaps
due to the limitation of experimental conditions, it is difficult to
carry out a large-scale study on the associations between all FDA-
approved KIs and the mitochondrial toxicity using the traditional
methods of molecular biology, especially how to find KIs closely
bound to some important proteins in numerous mitochondrial
proteins. In silico research methods should be a better alternative.
In recent years, molecular docking has become a reliable tool for
high-throughput screening of drug candidates and prediction of
clinical adverse reactions, because of its low cost and simplicity.
Chen and Ung (2001) used a ligand–protein reverse docking
method to predict the adverse drug reactions (ADRs) and related
target proteins, and 83% of the predicted results were consistent
with the experimental results. Another similar study (LaBute
et al., 2014) predicted some drug-related adverse reactions by
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calculating docking scores about drugs bound to protein targets,
and the relative results were supported by PubMed literature.
Furthermore, Jaundoo et al. (2018) used three different programs
of docking to predict the hypothetical adverse reactions, and
indicated that several FDA-approved drugs for the treatment of
Gulf War Illness should be used with caution due to their high
binding potential with immune and hormonal targets.
Nevertheless, there are few studies using molecular docking to
predict the potential of KI-induced liver injury. Through high-
throughput docking of drugs with DILI related mitochondrial
proteins may be able to analyze the potential and key proteins of
DILI. Thus, the high-throughput docking between drugs and
mitochondrial proteins may be helpful for both the
understanding of KI-induced mitochondrial dysfunctions and
related mechanism of DILI.

In this study, we collected information on FDA-approved oral
drugs including small molecule KIs, and analyzed the DILI
potential and drug characteristics through statistical methods
and high-throughput molecular docking is achieved between
nearly 95% of drugs in our data set and mitochondrial
proteins. As a result, we found a multi-factor rule that may
effectively predict DILI and the binding affinity between KIs and
those mitochondrial proteins was significant. It may be helpful to
further test this rule during drug development and clinical
settings and explain the DILI mechanism of KIs.

MATERIALS AND METHODS

Data Collection and Processing
We collected FDA-approved oral drugs through three databases,
namely, PubChem (Kim et al., 2018), DrugBank (Wishart et al.,
2018), and the World Health Organization (WHO). The drug
structures and properties were collected from PubChem and
DrugBank, and the Anatomical Therapeutic Chemical (ATC)
codes and defined daily doses (DDD) (as of 1 September 2020)
were harvested from the WHO website. If a drug has several DDDs
reported corresponding to different body weights, we used the
average value as the final value. The lipophilicity of drugs was
calculated by the octanol–water partition coefficient (LogP)
through ALOGPS 2.1 (Chen et al., 2013; Weng et al., 2015).

KI Drug Information Collection
TheWHO updates the approved drug information every year. As
of the date when drug information was collected in this study
(i.e., 1 September 2020), 53 KI drugs were retrieved in the WHO.
One non-oral drug and 8 drugs for which liver side effect
information could not be obtained were removed (the specific
possible reasons for the lack of information were listed in
Supplementary Table S1), and finally 44 KI drug information
were obtained for analysis.

Endpoint Collection and Grouping
Referring to the label classification method of Chen et al. (2011) and
Liu et al. (2020), we collected seven DILI endpoints (fatality, liver
failure, liver transplantation, hepatitis, hepatomegaly, jaundice, and
abnormal biomarkers) and liver metabolism (LM) extent from

Micromedex Drugdex (Solutions, 2018) and DailyMed (https://
dailymed.nlm.nih.gov/dailymed/index.cfm) as the official
website of FDA providing the reliable information about
drug labels. Although there were vague descriptions in a few
drugs related to liver injury, it was verified by the following
database: Micromedex DrugPoints, LiverTox (Hoofnagle et al.,
2013), and Hepatox (Mao, 2014). The drugs were divided into
three data groups: severe DILI, less-severe DILI, and no DILI
according to the endpoints (Chen et al., 2011; Liu et al., 2020).
The severe DILI group included drugs that caused the fatality,
liver failure, and liver transplantation in accordance with Hy’s
law, issued by the FDA with a black box warning or withdrawn
from the market. The less-severe DILI group included drugs
that caused hepatitis, hepatomegaly, jaundice, and abnormal
biomarkers, which are moderate DILI and can be generally
improved by stopping the drug use. The no DILI group included
drugs with no description of DILI on the labels. We ended up
collecting 1,223 drugs (Supplementary Table S2), including
283 severe DILI drugs, 322 less-severe DILI drugs, and 618 no
DILI drugs.

In order to further verify the reliability of collected DILI
information in this study, one database reported by Teschke and
Danan (2020) was used to compare with our data. A total of 81,856
DILI cases in the database were assessed using the Roussel Uclaf
Causality AssessmentMethod (RUCAM) as the scale for quantitative
evaluation of the causal relationship between drugs and liver injury,
and these cases were involved in 220 drugs. By comparison, 154
(70%) of 220 drugs were found hepatotoxic (100%) in our data
(details were shown in Supplementary Table S7), and the rest were
excluded, mainly due to two reasons, one was not approved by FDA,
and the other was a not oral drug.

Molecular Docking
Human Mitochondrial Protein Collection and
Processing
The crystal structures of human mitochondrial proteins were
harvested using the RCSB PDB database (Berman et al., 2000).
Proteins with different PDB entries may have different binding
sites, so we keep the protein structure under each entry. All the
proteins were visualized and processed using BIOVIA Discovery
Studio 2019 to remove all the water molecules. For proteins with
multiple subunits, if the active site was between the subunits, the
whole protein was retained; otherwise, only one of the subunits was
retained. For proteins with ligands embedded, the two parts were
spared and stored separately. We utilized AutoDock Tools (ADT)
1.5.6 (Morris et al., 2009) to add hydrogen atoms to proteins, and
then converted them into the pdbqt format.

Cytochrome P450 Protein Collection and Processing
The crystal structures of cytochrome P450 proteins were harvested
using the RCSB PDB database (Berman et al., 2000). We collected 7
important CYP450 family enzymes structures (CYP3A4, CYP3A5,
CYP2C9, CYP2E1, CYP2C19, CYP1A2, and CYP2D6 mainly
involved in the metabolism of drugs) according to the previous
reports (Yu et al., 2014; Teschke and Danan, 2021a). The
pretreatment method was the same as the mitochondrial protein
mentioned before.
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Drug Molecule Processing
Drugs with 3D sdf files were downloaded from PubChem and
converted into the pdbqt format.

Docking Parameter Setting
The originally embedded ligands of proteins were used as references
to set the center of Grid Boxes through ADT. For proteins without
ligands, AutoLigand and the structural reports of the proteins were
used to identify the binding pocket (Morris et al., 2009). All the
docking pockets were set to have spacing = 1 Å. The grid box was set
to a size equivalent or larger than the largest molecule within the
molecules we collected to ensure a sufficient size for docking.

Docking and Result Processing
AutoDock Vina was used for molecular docking (Trott and Olson,
2010), and the best docking scorewas selected for each ligand–protein
pair. After removing the missing values, a total of 1,159 drugs
(Supplementary Table S3) and 187 proteins (Supplementary
Table S4) were left for analysis. In order to improve the

comparability of the docking results, we normalized the docking
result matrix using the following formula (Yang et al., 2009).

Zij � Xij − XJ

SDXj

,

XJ � ∑Nj

i�1Xij

Nj
,

SDXJ �

�������������∑Nj

i�1(Xij − XJ)2

Nj − 1

√√
.

Molecular Dynamics Simulation
The whole molecular dynamics simulation was carried out using
GROMACS packages (http://www.gromacs.org/). Proteins and drug
smallmolecules were constructed using charmm36 force field version
2019 (http://mackerell.umaryland.edu/charmm_ff.shtml). The
missing atoms of amino acid residues were completed using
software SPDBV (https://spdbv.unil.ch/), and the coordinate files

FIGURE 1 | Statistics of 44 kinase inhibitors (KIs) on DILI. (A) Numbers of different DILI endpoints reported in KIs. For the 44 KIs collected in our data, 16 of them
may cause death, and 12may lead to liver failure. (B) Pie chart of the 44 KIs by three DILI severeness categories, “severe DILI,” “less-severe DILI,” and “no DILI.” A total of
43 of the 44 KIs (97.7%) were reported with DILI, while 26 (59.09%) may lead to severe DILI.
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and topology files of proteins were generated using GROMACS.
Adding hydrogen atoms to small molecules, and then CGENFF
server was used (https://cgenff.umaryland.edu/) to obtain small
molecule coordinate files and topology files. After the coordinate
files and topological files of proteins and small molecules were
combined, a dodecahedral unit cell 1 nm larger than the complex
was defined and water molecules were added. The energy of the
solvation system was minimized, and the topological files and
coordinate files of the whole solvent system were generated. In
order to ensure that the net charge was 0, Na + or Cl- need to be
added to the box. Before the final simulation, the energy of the whole
system needed to be minimized. The two energy minimization
processes were limited to 50,000 steps, and when the maximum
force was less than 10 kJ/mol, the minimization stopped. Then the
temperature and pressure were balanced in 100 ps, and the system
temperature was controlled at 300 K. Finally, themolecular dynamics
simulation of 10 ns was carried out, and the temperature of the
system was controlled at 300 K. The root mean square deviation

(RMSD) for evaluating the binding stability of protein/drug complex
was calculated per frame (10 ps) for analysis.

Statistical Analysis
To identify the association between DILI and drug properties, we
calculated the odds ratios (OR) and p-values using Fisher’s exact test.
ANOVAwas used for the analysis and comparison of docking results.
The Kruskal–Wallis test was used to analyze the relationship between
DILI and mitochondrial protein binding.

RESULTS

DILI Analysis
Drug Categories and DILI
The Anatomical Therapeutic Chemical (ATC) codes are a system
of codes developed by the World Health Organization (WHO)
that were assigned to drugs according to their indications or

FIGURE 2 | Property distributions of 44 kinase inhibitors (KIs). (A) Distributions of defined daily dose (DDD) and molecular weight (MW) values along with liver
metabolism (LM) markups. (B) Distributions of DDD and octanol–water partition coefficient (LogP) values along with LMmarkups. It was observed that the majority of KIs
met the criteria of LogP ≥ 3, DDD ≥ 100mg, and 400 ≤MW < 600. Additionally, themajority of KIs (29 out of 44) have a known degree of liver metabolism (LM) greater than
50%, while only one KI has a known degree of liver metabolism (LM) less than 50%. #A few outliers with large deviations were removed.
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mechanisms of action. We analyzed the associations between
drug categories defined by the first to fourth levels of ATC codes
and the seven DILI endpoints for all 1,223 FDA-approved oral
drugs. Odds ratios (OR) and significance of each association
through Fisher’s exact test were calculated. Supplementary
Figure S1 showed the odds ratios between different levels of
ATC codes and DILI for only the relationships that have
statistical significance. From this figure, the highest odds ratios
toward DILI were found in antineoplastic and
immunomodulating agents (ATC code: L, OR = 9.45, 95%
CI = 5.00–17.87, p = 6.35E-18), antineoplastic agents (ATC
code: L01, OR = 17.41, 95% CI = 6.29–48.16, p = 1.80E-15),
other antineoplastic agents (ATC code: L01X, OR = 17.94, 95%

CI = 5.56–57.89, p = 1.67E-12), and kinase inhibitors (KIs) (ATC
code: L01XE, OR = 46.89, 95% CI = 6.44–341.63, p = 9.28E-13)
for the first to fourth levels of ATC codes, respectively. Detail
information of Supplementary Figure S1 was shown in
Supplementary Table S5. It is worth mentioning that KIs are
shown to have high DILI potential in this analysis.

Drug Categories and Severe DILI
Severe DILI included outcomes of death, liver failure, and liver
transplantation, which may lead to a black box warning or even
withdrawal of the drug. We analyzed the relationship between
different levels of ATC codes and severe DILI and showed the
results in Supplementary Figure S2. It is observed that while the

TABLE 1 | Associations between different risk criteria and drug-induced liver injury (DILI).

Criteria DILI OR (95% CI) PPV% (%)

Y N

LogP ≥ 3 Y 229 210 1.32* (1.04–1.67) 52.16
N 335 405

DDD ≥ 100 Y 339 289 1.70*** (1.35–2.14) 53.98
N 225 326

LM ≥ 50% Y 324 247 2.01*** (1.59–2.54) 56.74
N 240 368

LogP ≥ 3 and DDD ≥ 100 Y 130 72 2.26*** (1.65–3.09) 64.36
N 434 543

LogP ≥ 3 and LM ≥ 50% Y 148 114 1.56** (1.19–2.06) 56.49
N 416 501

DDD ≥ 100 and LM ≥ 50% Y 186 92 2.80*** (2.11–3.71) 66.91
N 378 523

LogP ≥ 3 and DDD ≥ 100 and LM ≥ 50% Y 84 34 2.99*** (1.97–4.53) 71.19
N 480 581

400 ≤ MW < 600 and LogP ≥ 3 and DDD ≥ 100 and LM ≥ 50% Y 22 3 8.28*** (2.46–27.82) 88.00
N 542 612

Data were collected from Micromedex Drugdex, Micromedex DrugPoints, DrugBank, DailyMed, LiverTox, Hepatox, and PubChem databases. p value was calculated by Fisher’s exact
test. Y, positive; N, negative; OR, odds ratio; CI, confidence interval; LogP, octanol–water partition coefficient; DDD, defined daily dose; LM, liver metabolism; MW,molecular weight; PPV,
positive predictive value. PPV (%) = (true positives)/(total of positives). # only shows the rules that have significant associations with DILI. ***p < 0.001; **p < 0.01; *p < 0.05.

TABLE 2 | Associations between different risk criteria and severe DILI.

Criteria Severe DILI OR (95% CI) PPV% (%)

Y N

DDD ≥ 100 Y 166 289 2.06*** (1.52–2.78) 36.48
N 91 326

LM ≥ 50% Y 155 247 2.26*** (1.68–3.05) 38.56
N 102 368

LogP ≥ 3 and DDD ≥ 100 Y 65 72 2.55*** (1.76–3.71) 47.45
N 192 543

LogP ≥ 3 and LM ≥ 50% Y 71 114 1.68** (1.19–2.36) 38.38
N 186 501

DDD ≥ 100 and LM ≥ 50% Y 93 92 3.22*** (2.3–4.52) 50.27
N 164 523

LogP ≥ 3 and DDD ≥ 100 and LM ≥ 50% Y 42 34 3.34*** (2.07–5.39) 55.26
N 215 581

400 ≤ MW < 600 and LogP ≥ 3 and DDD ≥ 100 and LM ≥ 50% Y 10 3 8.26*** (2.25–30.26) 76.92
N 247 612

Data were collected from Micromedex Drugdex® , Micromedex DrugPoints, DrugBank, DailyMed, LiverTox, Hepatox, and PubChem databases. p value was calculated by Fisher’s exact
test. Y, positive; N, negative; OR, odds ratio; CI, confidence interval; LogP, octanol–water partition coefficient; DDD, defined daily dose; LM, liver metabolism; MW,molecular weight; PPV,
positive predictive value. PPV (%) = (true positives)/(total of positives). # only shows the rules that have significant associations with severe DILI. ***p < 0.001; **p < 0.01; *p < 0.05.
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rankings and values of ATC codes with OR > 1 are slightly
different from Supplementary Figure S1, the top ones in all the
levels are consistent. The highest odds ratios toward severe DILI
were found in antineoplastic and immunomodulating agents
(ATC code: L, OR = 12.38, 95% CI = 6.35–24.14, p = 4.70E-
18), antineoplastic agents (ATC code: L01, OR = 21.60, 95% CI =
7.59–61.39, p = 1.30E-14), other antineoplastic agents (ATC code:
L01X, OR = 22.44, 95% CI = 6.76–74.46, p = 5.61E-12), and KIs
(ATC code: L01XE, OR = 62.21, 95% CI = 8.40–460.94, p = 7.57E-
13) for the first to fourth levels of ATC codes, respectively. The
odds ratio of KIs increased from 46.89 for DILI to 62.21 for severe
DILI, indicating their high potential to cause severe DILI in
comparison with other types of drugs. Detail information of
Supplementary Figure S2 was shown in Supplementary
Table S6.

Analysis of Kinase Inhibitors
KI Statistics on DILI
As of 1 September 2020, there were 53 KI drugs retrieved from the
WHO. Excluding 1 non-oral drug and 8 drugs for which the
information on liver side effects cannot be obtained (the specific
possible reasons for the unavailability of information were shown in
Supplementary Table S1), there were 44 available KI drug
information. The statistics of different DILI endpoints caused by
kinase inhibitors (KIs) were shown in Figure 1. For the 44 KIs, 16 of
themmay cause death and 12may lead to liver failure (Figure 1A). In
addition, 43 of the 44 KIs (97.7%) were reported with DILI, while 26
(59.09%) may lead to severe DILI (Figure 1B), which indicated a
close link between KIs and serious DILI.

Analysis of KI Properties
The drug properties of KIs, including LogP, defined daily dose
(DDD), liver metabolism (LM), and molecular weight (MW),

were analyzed individually or in combination with DILI
occurrence (Figure 2). It was observed that the majority of
KIs met the criteria of LogP ≥ 3, DDD ≥ 100mg, and 400 ≤
MW < 600. Additionally, the majority of KIs (29 out of 44) have a
known degree of liver metabolism (LM) greater than 50%, while
only one KI has a known degree of liver metabolism (LM) less
than 50%.

Rules Associated With DILI
We combined KIs along with the remaining 1,179 drugs to
explore the factors that may be highly associated with DILI.
The different combinations of MW, LogP, DDD, and LM were
tested and the results were shown in Table 1. Of all the rules, the
association reached the highest when using the rule of “400 ≤
MW < 600 and LogP ≥ 3 and DDD ≥ 100 and LM ≥ 50%” (OR =
8.28, 95% CI = 2.46–27.82, p = 4.82E-05, predictive positive rate
[PPV] = 88.00%).

Similarly, we analyzed the associations between the rules and
severe DILI (Table 2). The same rule “400 ≤ MW < 600 and
LogP ≥ 3 and DDD ≥ 100 and LM ≥ 50%” still had the highest
association (OR = 8.26, 95% CI = 2.25–30.26, p = 5.06E-04,
predictive positive rate [PPV] = 76.92%). This rule is highly
predictive against DILI and the severe subset of it.

Molecular Docking Analysis
Relationship Between DILI Occurrence and
Mitochondrial Proteins Binding
In order to determine the direct relationship between DILI and
mitochondria proteins binding, we divided the 1,159 drugs into
the four groups including “no DILI,” “severe DILI,” “less severe
DILI,” and “all DILI,” and analyzed the binding affinity of these
groups with 187 mitochondrial proteins. As shown in Figure 3,
the docking scores of “less severe DILI,” “severe DILI,” and “all

FIGURE 3 |Comparison of results of 187 mitochondrial proteins binding between DILI groups and no DILI group. The docking scores of “less severe DILI,” “severe
DILI,” and “all DILI” were significantly lower than those of the “no DILI” group (Kruskal–Wallis test). ***p < 0.001.
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DILI” were significantly lower than those of the “no DILI” group,
indicating that drugs with DILI had the better affinity to bind
mitochondrial proteins (Kruskal–Wallis test). Also, it is worth
noting that the affinity of the “severe DILI” group to bind
mitochondrial proteins was also higher than that of the “less
severe DILI” group.

Comparison of the Docking Results Across Drug
Categories
1) Docking with human mitochondrial proteins.

1,159 drug molecules with available SDF structures were used to
dock with 187 human mitochondrial proteins through AutoDock
Vina, generating a 1,159 × 187 matrix with the result value
normalized to a range between −4 and 4. For each drug, the
average value of the docking scores with all the proteins was used
as the result score. The result scores were grouped by their ATC code
categories and compared against the rest usingANOVA.As shown in
Figure 4, drugs with ATC codes L01, L01X, and L01XE were
significantly different from other groups (p = 6.74E-03, 2.25E-08,
and 4.19E-11, respectively). It was observed that the result scores of
KIs (ATC code: L01XE) were significantly better (lower in scores)
than other types, which indicates that KIs may bind tomitochondrial
proteins and cause DILI.

2) Docking with Cytochrome P450 proteins.

A total of 1,159 drug molecules were used to dock with 7 CYP
proteins through AutoDock Vina, generating a 1,159 × 7 matrix
with the result value normalized to a range between -4 and 4. For
each drug, the average value of the docking scores with all
proteins was used as the result score. The result scores were
grouped by their ATC code categories and compared against the
rest using ANOVA. As shown in Figure 5, drugs with ATC code
L01XE were significantly different from other groups (p = 1.07E-
09). It was observed that the result scores of KIs (ATC code:
L01XE) were significantly lower than other types, which indicates
that KIs may have better affinity to bind to CYP enzymes.

Score Analysis Between Mitochondrial
Proteins and KIs
Since KIs have a higher chance to induce DILI compared to other
drugs, it is important to identify which mitochondrial proteins
may be associated with this. The top five proteins with the lowest
docking scores of KIs and functions of these proteins were shown
in Table 3. It can be seen that the protein with the lowest score is
3B96 (PDB ID), followed by 5FS8, 4FDH, 5G5J, and 6G2M,
which may be of great help to the in-depth study of the
mechanism of KI drugs DILI and the prevention of DILI. It
should be noted the results were obtained by the average docking
results of each protein with 44 KIs, and then the top five proteins
with the lowest scores were selected after sorting. The comparison
calculation process was carried out after normalization.

FIGURE 4 | Distributions of normalized average docking scores of drugs
categorized by different levels of ATC codes. The y-axis indicates the
normalized average docking scores. The x-axis represents different ATC code
categories. (A–C) represent ATC code levels from second to fourth.
Drugs with ATC codes L01, L01X, and L01XE were all significantly different
against other groups (p = 6.74E-03, 2.25E-08, and 4.19E-11, respectively)
(ANOVA). It indicated that the result scores of KIs (ATC code: L01XE) were
significantly better (lower in scores) than those of other types, which indicates
that KIs may bind to mitochondrial proteins and cause DILI. #The results were
sorted by significance from high to low, and only the first 12 were shown.
***p < 0.001; **p < 0.01; *p < 0.05.
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Relationship Between Five Key Proteins and
DILI Occurrence
To illustrate whether drugs with DILI can bind more strongly to
the five proteins than drugs without DILI, we further analyzed the
docking results of drugs excluding KIs with these five proteins
(Figure 6). Compared with the “no DILI” group, the binding
scores of the “All DILI” group were significantly lower, and
indicated the affinity was better. Moreover, we further found
that the affinity of the “severe DILI” group was higher than that of
the “less severe DILI” group (Kruskal–Wallis test).

Docked Conformations of Five Key Proteins
and KIs
In order to further explore the binding sites on these five key
proteins, we analyzed the docked conformations of five key

proteins and KIs. The overall binding region was shown in
Supplementary Figure S3. According to the formation of
interaction bonds (mainly hydrogen bonds), some amino acids
(marked in red) were considered as key interaction sites, such as
protein 3B96: Thr177, Ser211, and Gly423; 4FDH: Pro442,
Val378, and Gly379 ; 5FS8: Ala397, Gly399, and Phe284; 5G5J:
Thr224, Phe108, and Pro107; 6G2M: Phe75, Arg177, and Thr181.
Some drugs are likely to bind to the five key proteins by these
sites, which could result in mitochondrial toxicity.

Molecular Dynamics Simulation of Five Key Proteins
and KIs
In order to further optimize and verify the reliability of the molecular
docking results, we sorted the docking energy of all KIs and five key
proteins, and selected the top five KIs with the lowest scoring for
molecular dynamics simulation. The dynamic binding behavior of
the protein/drug complex during 10 ns of simulation was studied by

FIGURE 5 | Distributions of normalized average docking scores between different drug class and 7 CYP family enzymes (CYP3A4, CYP3A5, CYP2C9, CYP2E1,
CYP2C19, CYP1A2, and CYP2D6). The y-axis indicates the normalized average docking scores. The x-axis represents different ATC code categories. Drugs with ATC
code L01XE were all significantly different against other groups (p = 1.07E-09) (ANOVA). It indicated that the result scores of KIs (ATC code: L01XE) were significantly
better (lower in scores) than those of other types, which indicates that KIs may bind to CYP family enzymes and metabolized thus increased potential for DILI. #The
results were sorted by significance from high to low, and only the first 12 were shown. ***p < 0.001; **p < 0.01; *p < 0.05.

TABLE 3 | Functions of the protein with the lowest binding score for kinase inhibitor (KI) drugs.

Protein
PDB ID

Docking
score

mean ± SD

Name Function

3B96 −1.65 ± 0.53 Very-long-chain acyl-CoA dehydrogenase
(VLCAD)

A homodimer related to mitochondrial membrane (McAndrew et al., 2008)

5FS8 −1.59 ± 0.55 Oxidoreductase encoded by the AIFM1
gene

The apoptosis-inducing factor in the mitochondrion, which plays a key role in the energy
metabolism process and is important for cell death (Sevrioukova, 2016)

4FDH −1.53 ± 0.54 Aldosterone synthase The only enzyme in humans producing aldosterone and plays an important role in
regulating the balance of electrolyte and the pressure of blood (Strushkevich et al., 2013)

5G5J −1.52 ± 0.39 Human CYP3A4 Related with eicosapentaenoic acids (EETs) that promote electron transport chain/
respiration (Guo et al., 2017)

6G2M −1.50 ± 0.48 Human mitochondrial 5′ (3′)-
deoxyribonucleotidase

It can regulate the nucleotides and nucleosides pool in cell (Pachl et al., 2018)
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calculating the backbone root mean square deviation (RMSD), and
total 25 pairs of complexes were simulated. As shown in Figure 7,
among the fivemitochondrial proteins, the smallest fluctuation of the
backboneRMSDcurvewas found in the protein 5FS8/KIs complexes,
which indicated the best stability of the protein 5FS8 bound to KIs.
The average RMSD values of the complexes when protein 5FS8
interacted with brigatinib, nilotinib, dasatinib, palbociclib, and
entrectinib were 0.229, 0.233, 0.239, 0.244, and 0.245 nm,
respectively, and the results reflected that the combination of
brigatinib was the most stable. It provided the reference
significance for the further study of DILI mechanism of KIs.

According to previous studies, RMSD values < 0.3 nm
indicated that the complex was a successful fit in the
simulation process (Jorgensen et al., 2015; Bavi et al., 2020;
Guterres and Im, 2020; Mishra and Rathore, 2021;
Vishvakarma et al., 2022). Our results have shown that the
RMSD values of other four proteins (4FDH, 5FS8, 5G5J, and
6G2M) interacting with KIs were chiefly between 0.15 and
0.25 nm, suggesting the majority of complexes were relatively
stable except for the protein 3b96 interacting with imatinib which
had a relatively larger mean RMSD of 0.35 nm. This may be
related to the molecular size and structure of the drug (Wang
et al., 2021). So, our results showed that the dynamic binding
behavior of the selected most complexes (24/25) was stable, and
also indicated that the conformations of our docking results in the
previous step were reliable.

DISCUSSION

DILI is the main cause of acute liver failure (Sunil Kumar et al.,
2021), and it is very important to predict and prevent DILI. We
collected the information of drug properties and DILI endpoints

of FDA-approved drugs and studied the risk factors toward DILI
and the associations between KIs and DILI.

It has been reported that KIs have high DILI potential, and
more than half of them cause DILI in clinic (Jiang et al., 2021). In
our study, we found that KIs had the highest risk of DILI (OR =
46.89) among all drug categories. In addition, it should be noted
that drugs with an OR < 1 do not mean that they had a protective
effect on the liver, but they had a very small probability of causing
liver toxicity than the control group. For these types of drugs, it
may be possible in the future to find ways to reduce DILI by
studying their mechanism, but this is only a preliminary idea, and
further research and verification are needed.

For the reason of high DILI risk of KIs, we analyzed the
common characteristics of KIs and found a rule that can
contribute to a more efficient prediction of DILI in the
validation by non-KI drugs. We first considered the reported
DDD, LogP, and liver metabolism (Chen et al., 2013; Weng et al.,
2015), and provided support for these drug properties can help to
predict DILI. In addition, we also considered that WM played an
important role in DILI prediction. On the other side, relative to
the previous study (Lammert et al., 2008; Chen et al., 2013; Weng
et al., 2015; Chen et al., 2016), this study was based on a larger
data set. As a result (Table 1), when the drugs met “400 ≤MW <
600 and LogP ≥ 3 and DDD ≥ 100 and LM ≥ 50%”, the risk of
DILI was much higher than using any one of “logP ≥ 3’, “DDD ≥
100” and “LM ≥ 50%” alone, or using them in combination with
each other, especially 3.66 times as much as using “LogP ≥ 3 and
DDD ≥ 100” (namely “rule of two”), and the OR value was also
3.78 times higher than that reported by Weng et al. (2015) based
on the study of 975 oral drugs approved by the FDA. Also, the
predictive positive rate increased from 85% reported by Chen
et al. (2013) based on the study of 164 oral drugs approved by
FDA to 88%. We also provided the effective prediction of severe
DILI, and the OR value increased from 2.05 reported by Weng
et al. (2015) to 8.26. In this rule, the factor MW played a vital role,
and this was further evidence of previous reports in which MW
was one of the determinants of the positive rate of DILI prediction
(Yucha et al., 2017). This may help to predict DILI in advance and
reduce the cost of early drug development.

On the other hand, the important role of MW in DILI
prediction may be related to mitochondrial toxicity. In the
study of Yu et al. (Zhang et al., 2017b), MW was one of the
four key molecular descriptors used in the prediction model of
drug-induced mitochondrial toxicity. Also, the direct relationship
between mitochondrial toxicity and DILI occurrence has been
gradually recognized (Meyers et al., 1988). Moreover, the recent
study of Hemmerich et al. (2020) stated that chemicals with
molecular weight between 250–600 may have significant effects
on in vitro mitochondrial functions based on a large data set
analysis of 5,761 compounds. In this study, we further found that
the drugs of MW between 400 and 600, a smaller range, were
closely related to the occurrence of DILI. Also, it was worth
noting that our study may be more reliable in predicting human
DILI, as it was based on the data of clinical trials and FDA adverse
event reporting system.

It also suggests that the study of the binding between different
kinds of drugs and mitochondria may explain the DILI potential

FIGURE 6 |Comparison of results of fivemitochondrial proteins (PDB ID:
3B96, 5FS8, 4FDH, 5G5J, and 6G2M) binding between DILI groups and no
DILI group (KIs were not included). The docking scores of “less severe DILI,”
“severe DILI,” and “all DILI” were significantly lower than those of “no
DILI” group (Kruskal–Wallis test). ***p < 0.001.
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FIGURE 7 | Backbone RMSD of molecular dynamics simulation of proteins and drug molecules. The codes in the title brackets were the PDB ID corresponding to
the proteins in the complexes.
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and explore the key proteins bound with drugs. In our docking
results, KIs had significantly higher binding affinities with
mitochondrial proteins, and it suggested that KIs can be high
potential of DILI, mainly due to KIs resulting in the
mitochondrial toxicity (Zhang et al., 2017a; Jiang et al., 2021).
On the other side, the statistic results also showed that drugs with
DILI (especial severe DILI) were bound tomitochondrial proteins
with higher affinity, on the whole, which suggested that a major
reason for DILI occurrence was attributed to drug-induced
mitochondrial dysfunctions.

Next, we found five key proteins with the highest binding
affinity to KIs, namely, 3B96 (very-long-chain acyl-CoA
dehydrogenase), 4FDH (aldosterone synthase), 6G2M
(human mitochondrial 5′ (3′)-deoxyribonucleotidase), 5FS8
(oxidoreductase), and 5G5J (human CYP3A4). Also, the
results of molecular dynamics simulation further verified
the reliability of the docked conformations and interaction
sites between KIs and the five key proteins, especially protein
5FS8 was the most stable when bound to KIs. It might provide a
good chance to study the DILI mechanism related to KIs in
future.

On the other hand, these proteins may play an important
role in mitochondrial damage caused by compounds. Such as
3B96 is a homodimer related to the mitochondrial membrane
and 4FDH can regulate electrolyte balance, and the out-of-
balance of mitochondrial membrane potential is one of
the mechanisms of DILI (Jaeschke et al., 2012; Oyebode
et al., 2019); 5G5J is related to the regulation of electron
transport chain, and the inhibition of 5G5J activity
induces mitochondrial toxicity and thus leads to DILI
(Chance and Hollunger, 1963; Hemmerich et al., 2020);
6G2M can regulate the levels of dTMP and dump to
prevent excessive mutagenic dUTP from hindering the
synthesis of mitochondrial DNA, and 5FS8 is an apoptosis-
inducing factor. According to the previous study (Jaeschke
et al., 2012), apoptosis-inducing factors cause DNA damage
in the nucleus and then trigger cell death. These key proteins
may be helpful for further understanding the mechanism of
drug-induced mitochondrial toxicity and cause liver injury,
but further basic experimentation is needed to address
the issue.

It is worth noting that the DILI occurrence was related to
high-intensity liver metabolism, and studies have shown that
drugs related to liver injury were mainly metabolized by
CYP450 (Tarantino et al., 2009; Teschke and Danan,
2021a). Our results of high-throughput docking between
1,159 drugs and 7 CYP450 enzymes also showed KIs (ATC
code: L01XE) significantly tend to bind to main CYP enzymes
against other drug types, suggesting that KIs had a higher
affinity to CYP enzymes and had a higher potential to increase
the DILI risk.

In this study, we expanded the data set and proposed a new
rule for effectively predicting DILI. The most important was
the factor of MW, which has been neglected, was incorporated
into the rules of DILI prediction, and it was found that the
combination of multiple conditions can effectively
predict DILI.

But, our work also has certain limitations. First, the
classification of relevant labels in the collection of drug data
was artificial, and accidental errors are inevitable. Also, they are
limited to oral medicines, and no reference can be provided for
other forms of medicines such as injections. Second, RUCAM is
a reliable evaluation method for DILI cases (Teschke and
Danan, 2021b). In our study, 154 of 605 positive data were
verified by RUCAM, based on the literature reported by Teschke
and Danan (2020). However, it is not clear yet that there is any
true causal relationship between liver injury and few drugs
among the remaining drugs that have not been verified by
RUCAM, especially less severe DILI drugs. Additionally, it is
undeniable that the label information of few drugs is
insufficient, such as the label information of some drugs
shows no case report of liver toxicity due to short using
period and smaller number of patients. Third, the
mechanism of DILI occurrence is a very complex process
involving many factors. Our study suggests that DILI is at
least partly explained by a drug resulting in mitochondrial
dysfunctions, but more research related to the mechanism is
needed to address this issue. Finally, DILI has not been found in
the relevant literature or reports of some drugs, especially newly
approved drugs, but it may still cause DILI over time. In the
future work, we will collect as much data as possible, increasing
the sample size and feature amount, building a machine learning
model to predict DILI, and conduct experimental verification of
related conclusions through animal experiments.

CONCLUSION

The drug properties andDILI endpoints of 1,223 FDA-approved oral
drugs were collected, and different risk factors of DILI were analyzed.
The risk of DILI is 8.28-fold higher for drugs that met rule “400 ≤
MW < 600 and LogP ≥ 3 and DDD ≥ 100 and LM ≥ 50%”. KIs were
found to have the highest odds ratio of causing DILI among all ATC
codes. The molecular docking results of 1,159 drugs and 187
mitochondrial proteins were studied, and the average docking
scores of KI drugs were found to be significantly different from
other classes. Further analysis identified the top binding
mitochondrial proteins for KIs, and the sites interacting with KIs
were obtained by docking conformations, and the stability of the
complexes was verified by molecular dynamics simulation, which
may contribute to studying the mechanism of DILI.
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