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Background: The effect of a bolus dose of dexmedetomidine on intraoperative
neuromonitoring (IONM) parameters during spinal surgeries has been variably reported
and remains a debated topic.

Methods: A randomized, double-blinded, placebo-controlled study was performed to
assess the effect of dexmedetomidine (1 μg/kg in 10 min) followed by a constant infusion
rate on IONM during thoracic spinal decompression surgery (TSDS). A total of 165 patients
were enrolled and randomized into three groups. One group received propofol- and
remifentanil-based total intravenous anesthesia (TIVA) (T group), one group received TIVA
combined with dexmedetomidine at a constant infusion rate (0.5 μg kg−1 h−1) (D1 group),
and one group received TIVA combined with dexmedetomidine delivered in a loading dose
(1 μg kg−1 in 10min) followed by a constant infusion rate (0.5 μg kg−1 h−1) (D2 group). The
IONM data recorded before test drug administration was defined as the baseline value. We
aimed at comparing the parameters of IONM.

Results: In the D2 group, within-group analysis showed suppressive effects on IONM
parameters compared with baseline value after a bolus dose of dexmedetomidine.
Furthermore, the D2 group also showed inhibitory effects on IONM recordings
compared with both the D1 group and the T group, including a statistically significant
decrease in SSEP amplitude and MEP amplitude, and an increase in SSEP latency. No
significance was found in IONM parameters between the T group and the D1 group.

Conclusion: Dexmedetomidine delivered in a loading dose can significantly inhibit IONM
parameters in TSDS. Special attention should be paid to the timing of a bolus dose of
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dexmedetomidine under IONM. However, dexmedetomidine delivered at a constant
speed does not exert inhibitory effects on IONM data.

Keywords: dexmedetomidine, intraoperative neuromonitoring, thoracic spinal decompression surgery, motor
evoked potential (MEP), somatosensory evoked potential (SSEP)

1 INTRODUCTION

Thoracic spinal decompression surgery (TSDS) is not as
prevalent as cervical or lumbar spinal decompression
surgery (Eggspuehler et al., 2007). Due to the rarity of
thoracic spinal stenosis and the lack of adequate clinical
experience (Stokes et al., 2019), TSDS confers a high risk
for neurologic injury and even paralysis (Nuwer and
Schrader, 2019). IONM is commonly used during spine
surgery to provide real-time feedback of spinal neurological
function. Early detection of neurologic dysfunction, using
IONM, can alert the surgical team to initiate therapeutic
interventions to limit or prevent further injury (Nuwer
et al., 2012a; Melachuri et al., 2020). Previous studies
reported that inhaled anesthetics are known to attenuate
motor evoked potential (MEP) and somatosensory evoked
potential (SSEP) as demonstrated by lower amplitude and
increased latency on the waveforms (Zentner et al., 1976;
Haghighi et al., 1990; Zentner et al., 1992; Chin Ted Chong
et al., 2014). Furthermore, attenuated signals could
erroneously be interpreted as neurologic injury or diminish
the ability to appropriately monitor for neurologic injury
(Nuwer et al., 2012b; Nuwer and Schrader, 2019;
CoreyWalker and Park, 2020). Propofol has become one of
the primary medications used for total intravenous anesthesia
(TIVA) during spinal surgery with IONM (Macdonald et al.,
2013; CoreyWalker and Park, 2020). Furthermore,
remifentanil infusion offers the advantage of quicker
recovery from anesthesia, which can facilitate the wake-up
test (Imani et al., 2006), and has less variability in SSEP
morphology (Samra et al., 2001). Moreover, it was
demonstrated that propofol–remifentanil-based TIVA has
an advantage over inhalation–intravenous combined
anesthesia, because TIVA exerts less influence on synaptic
transmission and has minimal effects on the amplitude and
latency of IONM (Hermanns et al., 2007; CoreyWalker and
Park, 2020). Those effects lead to a lower rate of false-positive
waveform changes compared with inhaled anesthetics
(Macdonald et al., 2013; CoreyWalker and Park, 2020).
However, propofol had a dose-dependent inhibitory effect
on MEP amplitude (Nathan et al., 2003; CoreyWalker and
Park, 2020); the latest guideline recommended that propofol
infusion rate <100 mg kg−1min−1 is the best recommendation
under MEP monitoring (CoreyWalker and Park, 2020). So,
maintaining lower propofol infusion rates by adding other
types of intravenous anesthetics that do not adversely affect
IONM signals can be beneficial.

The usage of dexmedetomidine in general anesthesia has both
opioid-sparing (Nan Lin et al., 2019) and propofol-sparing
(Ngwenyama et al., 2008) effects. So, dexmedetomidine has

been increasingly used as an adjuvant to general anesthesia
(Deiner et al., 2017; Silva-et al., 2019). However, effects of
dexmedetomidine on SSEP and MEP remain a topic of hot
debate (Endrit Bala et al., 2008; Tobias et al., 2008; Mahmoud
et al., 2010; Rozet et al., 2015; Holt et al., 2020). Some authors
demonstrated that dexmedetomidine does not influence IONM
parameters when delivered by a loading dose and then followed
by a constant infusion rate in adults (Lin et al., 2014; Rozet et al.,
2015) and adolescents (Tobias et al., 2008). However, some
authors demonstrated that dexmedetomidine administration
can exert inhibitory effects on IONM (Mohamed Mahmoud
et al., 2017; Holt et al., 2020). Moreover, dexmedetomidine
enhances inhibitory synaptic transmission through activation
of descending noradrenergic (NA) system (Yan Lu, 2007;
Yusuke Funai a and Anthony, 2014). Furthermore, NA
produces postsynaptic hyperpolarization (Grudt and Perl,
2002; Yan Lu, 2007). So, systemic administration of
dexmedetomidine can therefore theoretically inhibit IONM to
different degrees by enhancing inhibitory synaptic
neurotransmission in both sensory and motor neurons.

We hypothesized that dexmedetomidine delivered in a loading
dose (1 g kg−1 in 10 min) and then at a constant infusion rate
(0.5 μg kg−1 h−1) has inhibitory effects on IONM recording.
However, dexmedetomidine at a constant rate of infusion
(0.5 μg kg−1 h−1) would not significantly impact IONM data.
To test our hypothesis, we performed a randomized, double-
blinded, placebo-controlled trial in adult patients who underwent
TSDS in our hospital.

2 METHODS

2.1 Ethics
Ethical approval for this study was provided by the Ethical
Committee of Xi’an Honghui Hospital, Xi’an Jiaotong
University Health Science Center, Xi’an, China, on October 1,
2018 (reference number No. 201801032) prior to patient
enrolment and the start of the trial. The trial was registered at
ChineseClinicalTrialRegistry.cn (Number: ChiCTR1800018685,
October 3, 2018) prior to patient enrollment. Written informed
consent was obtained from all subjects participating in the trial.
This manuscript adheres to the applicable Consolidated
Standards of Reporting Trials (CONSORT) guidelines.

2.2 Patients
A total of 210 patients were assessed for eligibility in our hospital.
Inclusion criteria are as follows: (1) age between 18 and 60 years
and ASA status from I to III; and (2) magnetic resonance image
(MRI) studies showed thoracic spinal stenosis evidence (Tun Liu
et al., 2021). Exclusion criteria are as follows: (1) poor quality of
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waveforms baseline; (2) patients who were unable to provide
informed consent; (3) patients who were alcohol or drug abusers;
and (4) not meeting inclusion criteria. After our inclusion and
exclusion criteria were discussed, 165 patients identified as
enrolled in the trial, and 160 patients finally completed the
trial. Our study flowchart is shown in Figure 1. Anesthesia-
related assessments were completed by an independent
anesthesiologist in the post-anesthesia care unit (PACU);
orthopedic-related assessments were completed by an
independent orthopedic surgeon in the 6-month follow-ups.

2.3 Randomization and Blinding
Randomization was generated by SPSS v24.0 statistics software
(IBM; Armonk, NY). The randomization results were concealed
in sealed, prenumbered, opaque envelopes prepared by an
independent bio-statistician. Those envelopes were kept in a
box until required. From the start of muscle incision to
muscle closure in the operation room, consecutively recruited
patients were randomly assigned to receive an intravenous bolus
of dexmedetomidine 1 μg kg−1 infusion over 10 min, then
followed by continuous dexmedetomidine infusion at a rate of

FIGURE 1 | CONSORT flow diagram of patients’ inclusion. MEP, motor evoked potential. SSEP, somatosensory evoked potential. T group: propofol- and
remifentanil-based total intravenous anesthesia (TIVA) group; D1 group: TIVA combined with dexmedetomidine at a constant infusion rate; D2 group: TIVA combined with
dexmedetomidine delivered by a loading dose and then by a constant infusion rate.
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0.5 μg kg−1 h−1 (the D2 group), or a volume matched bolus of
0.9% saline over 10 min, then followed by continuous
dexmedetomidine infusion at a rate of 0.5 μg kg−1 h−1 (the D1

group), or a volume matched bolus and continuous infusion of
0.9% saline (the T group) in a 1:1:1 ratio, according to the random
number allocation. An independent anesthesiologist was in
charge of preparing and allocating the testing drugs to the
corresponding anesthesiologists. An independent team of
neurophysiologists was in charge of recording IONM data. So,
the anesthesiologists, surgeons, neurophysiologists, and patients
were blinded to treatment groups.

2.4 Anesthesia Protocol
Anesthesia induction was consistent with our previous protocol
(Tun Liu et al., 2021). Anesthesia was induced by propofol
1.5–2.0 mg kg−1 and sufentanil 0.4–0.6 μg kg−1, midazolam
0.01 mg kg−1, and cisatracurium 0.10–0.15 mg kg−1. From
tracheal intubation until surgical exposure, cisatracurium
1.5–2.5 mg kg−1 min−1 was maintained. A real-time train-of-
four (TOF) ratio was recorded before eliciting MEP signals to
rule out undesirable suppressive effects brought by muscle
relaxants on IONM.

Anesthesia was maintained by the Diprifusor propofol
infusion system, with a target-controlled infusion (TCI) of
propofol 2.0–4.0 μg ml−1 and 0.15–0.30 μg kg−1 min−1. In the
D1 group, dexmedetomidine was infused at 0.5 μg kg−1h−1 at a
constant infusion rate from muscle incision to muscle closure. In
the D2 group, dexmedetomidine was delivered by a loading dose
(1.0 μg kg−1 over 10 min) and then followed by a constant
infusion rate (0.5 μg kg−1 h−1). The depth of anesthesia was
adjusted by varying the propofol or remifentanil doses based
on bispectral monitor (BIS, Aspect Medical Systems Inc,
United States ), and MAP was maintained between 70 and
80 mmHg and augmented by ephedrine as needed.

2.5 Acquisition of SSEP and MEP Signals
We recordedMEP to abductor hallucis (AH)muscles in the lower
extremities and the first dorsal interosseous muscles in the upper
extremities (control). Because previous studies demonstrated that
AH muscles had the highest rate, even if the patients with
preoperative severe motor deficit (Kobayashi et al., 1976a;
Kobayashi et al., 1976b). The stimulation electrodes were
inserted subcutaneously over motor cortex regions C3–C4
according to the 10/20 EEG international system. Recording
electrodes are placed into the AH muscles and the first dorsal
interosseous muscles. MEPs were elicited by subcutaneous needle
electrodes by stimulating at a constant voltage ((220–360 V) and
five to eight train pulses, with a duration of 300 μs. The signal
analysis time was 100 m. The bandpass filter was between 10 and
1,500 Hz (Zhuang et al., 1976). The stimulations were delivered
by a commercially available IONM stimulator (Cascade, Cadwell
Laboratories Inc., United States) with responses recorded on the
same device used for obtaining SSEP. The amplitudes of MEP
were measured by recording baseline-to-first negative peak
voltages.

We recorded SSEP to the median nerve for the upper
extremity (control) and the posterior tibial nerve for the lower

extremity. SSEPs were recorded using adhesive gel Ag-AgCl
electrodes placed at Cz and Fpz positions for active and
reference according to the 10/20 EEG international system.
We performed median nerve stimulation bilaterally at the
wrist, and performed posterior tibial nerve stimulation
bilaterally at the head of the fibula or the medial malleolus of
the ankle. The parameters of recording SSEP were as follows: the
median nerve was stimulated at 15 mA, and the posterior tibial
nerves were stimulated at 25 mA. The bandpass filter was between
30 and 300 Hz, and the waveforms were displayed in a 100-m
window. The single pulse was set between 5.1 and 5.7 Hz. We
measured the amplitude of P38-N45 and the latency of P38. To
minimize signal interference, 300 to 400 stimulation repetition is
averaged to obtain each SSEP sweep (Wang et al., 2017).

MEP peak-to-peak amplitudes, as well as amplitudes and
latencies of SSEP obtained before administration of our testing
drugs (dexmedetomidine or saline), were defined as baseline
values. After administration of the testing drug, time course of
the relative amplitude and relative latency of the evoked
potentials in each group were calculated as follows: relative
value (%) = absolute value/baseline value×100% (Furutani
et al., 2019). Because absolute amplitudes of MEP differ
greatly in patients, comparison of absolute amplitudes
among different groups was very difficult (Furutani et al.,
2019).

We adopted IONM warning criteria as our study drug
discontinuation criteria, including the following: (1) a change
in SSEP was defined as a decrease of greater than 50% in
amplitude and/or 10% increase in latency of the baseline
cortical wave, or as reported per each case; and (2) a change
in MEP was defined as a decrease of more than 80% in amplitude
of the baseline value, or as reported per case (Nuwer et al., 2012c;
Nuwer and Schrader, 2019).

2.6 Time Points Set for Measuring IONM
Parameters
MEP parameters were measured at seven time points: T1: Before
dexmedetomidine or placebo infusion (at the same time as the
start of muscle incision), we defined it as “baseline value”; T2:
10 min after dexmedetomidine or placebo infusion; T3: 20 min
after dexmedetomidine or placebo infusion; T4: At the start of
spine decompression; T5: 10 min after decompression; T6: 20 min
after decompression; and T7: Muscle closure. SSEP parameters
were measured at nine time points: T1: Before the start of
dexmedetomidine or placebo infusion (at the same time as the
start of muscle incision), we defined it as “baseline value”; T2:
5 min after dexmedetomidine infusion; T3: 10 min after infusion;
T4: 15 min after infusion; T5: 20 min after infusion and then every
10 min until decompression; T6: At the start of spine
decompression; T7: 5 min after spine decompression; T8:
10 min after spine decompression and then every 10 min until
muscle closure; and T9: Surgery over.

2.7 Endpoints
The primary endpoint of the study was designed to evaluate the
effects of dexmedetomidine by different approaches of
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administration on the amplitude and the latency of both SSEP
and MEP in patients during TSDS.

Our secondary endpoints were aimed at evaluating the effects
of dexmedetomidine on the intraoperative anesthetic
requirement (consumption of propofol and remifentanil),
hemodynamic stability (MAP and HR), anesthesia recovery
time (time interval from cessation of anesthesia to following
verbal commands and tracheal extubation) (Ku et al., 2002) in the
operation room ,and postoperative pain scores assessed by VAS
score in the PACU.

2.8 Sample Size Calculation and Statistical
Analysis
Sample size calculation was performed by PASS 15 software
(NCSS LLC, United States). Based on our pre-trial data (n =
24) on SSEP amplitude after 15 min of the test drug
(dexmedetomidine or saline) infusion, SSEP amplitudes in the
T, the D1, and the D2 groups were 1.83 ± 1.13 μV, 1.78 ± 1.61 μV,
and 1.56 ± 1.90 μV, respectively. We chose the T and the D1

groups to calculate their sample size. Forty patients per group was
the smallest sample size required to demonstrate a difference
between the T group and the D1 group with an effect size of 0.8, a
statistical power of 80%, an allocation ratio of the two groups of 1:
1, and a two-sided α level of 0.05. Considering possible
intraoperative waveform changes during the surgery, we
planned to recruit at least 50 patients into each group.

All data were analyzed using SPSS24.0 statistics software
(SPSS24.0, Chicago, IL, United States ). All measurement and
enumeration data are presented as the mean± standard deviations
(X± S D). The amplitude and latency of both MEP and SSEP were
analyzed using the Mann–Whitney U test. Demographic data,
hemodynamic parameters, anesthesia recovery time, and
intraoperative anesthetic requirement were analyzed using the
independent t-test among different groups. Within-group
analysis was used. Qualitative or categorical variables were
compared using the chi-square test or the Fisher test as
appropriate. All reported p values less than 0.05 were
considered to indicate statistical significance.

3 RESULTS

Between October 2018 and December 2020, a total of 210 patients
were assessed for eligibility, and 160 patients finally completed
the trial. Figure 1 shows the flow diagram of the enrollment.

3.1 Comparison of the General Data of the
Study Population
Compared with the T group, patients in the D1 group (591.9 ±
102.5 vs. 787.8 ± 68.3, p < 0.05) and the D2 group (539.4 ± 70.1 vs.
787.8 ± 68.3, p < 0.05) showed much less propofol consumption.
Furthermore, patients in the D1 group (2,512.5 ± 280.4 vs.
2,981.9 ± 465.8, p < 0.05) and the D2 group (2,315.5 ± 338.5
vs. 2,981.9 ± 465.8, p < 0.05) also showed much less remifentanil
consumption. Moreover, patients in the D2 group showed more

ephedrine consumption than those in the D1 group (20.1 ± 8.6 vs.
11.1 ± 8.1, p < 0.05) and the T group (20.1 ± 8.6 vs. 9.6 ± 7.0, p <
0.05). Furthermore, the D2 group showed a longer anesthesia
recovery time, compared with the D1 group (15.7 ± 4.1 vs. 12.6 ±
2.8, p < 0.05) and the T group (15.7 ± 4.1 vs. 14.9 ± 3.7, p < 0.05).
Although the differences have statistical significance, they are in
the order of 2 or 3 min, which is not clinically relevant. No
significance was found among the different groups in terms of
age, sex, weight, height, symptom duration, operation time,
bleeding volume, surgical location, MAP, or heart rate (HR)
before the start of anesthesia induction, and VAS score after
general anesthesia recovery in the PACU. As depicted in Table 1.
Furthermore, bleeding volume in our study was 569.15 ±
217.30 ml. In particular, massive blood loss in a short time
(>500 ml in less than 30 min) during the decompression
procedure was observed in 31 patients.

3.2 Comparison of SSEP and MEP
Parameters
3.2 1 Comparison of the IONM Baseline Values Among
Different Groups
No significance was found in both amplitude and latency before
the start of dexmedetomidine or placebo infusion among
different groups. SSEP amplitude baseline values in the T, the
D1, and the D2 groups were 1.87 ± 1.05 μV, 1.91 ± 1.11 μV, and
1.86 ± 1.08 μV, respectively. SSEP latency baseline value in the T,
the D1, and the D2 groups were 42.81 ± 3.94 m, 43.12 ± 3.36 m,
and 42.98 ± 3.40 m, respectively.

3.2.2 Comparison of Time Course of the Relative
Amplitude and Relative Latency of the Evoked
Potentials
In the D2 group, within-group analysis showed suppressive effects
on IONM parameters compared with baseline value after
dexmedetomidine (1 μg kg−1 in 10 min) infusion, including a
significant decrease in SSEP amplitude (lasted for 25 min) and
MEP amplitude (lasted for at least 10 min), and an increase in
SSEP latency (lasted for 10 min). Compared with the D1 group
and the T group, the D2 group also showed inhibitory effects on
IONM recordings, including a significantly lower SSEP amplitude
(lasted for 15 min) andMEP amplitude (lasted for at least 10 min)
and a significantly prolonged SSEP latency (lasted for 10 min). No
significance was found in IONM data between the T group and
the D1 group, as depicted in Figure 2. Furthermore, in the D2

group, within-group analysis showed that a bolus of
dexmedetomidine (1 μg kg−1 in 10 min) could increase SSEP
latency by 5.50% ± 3.51%, and decreased MEP amplitude and
SSEP amplitude by 27.13% ± 12.30% and 24.75% ± 15.04%,
respectively, compared with the baseline value.

3.3 Comparison of MAP and HR Parameters
No significance was found in MAP and HR before the start of
dexmedetomidine or placebo infusion among different groups
(Table 1). In the D2 group, within-group analysis showed a
significant decrease in MAP and HR compared with baseline
after dexmedetomidine (1 μg kg−1 in 10 min) infusion and lasted
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for 15 min. Furthermore, a significant decrease in the MAP and
HRwas found between the T group and the D2 group after a bolus
dose of dexmedetomidine. As is depicted in Figure 3. This
indicates an unstable cardiovascular system after
dexmedetomidine was delivered by a bolus dose. In contrast,
after the testing drug was delivered only at a constant infusion
rate in the D1 group, no significant difference in MAP or HR at
various time points was found, and both parameters were
maintained within the clinically normal range.

4 DISCUSSION

Our study aimed at exploring effects of dexmedetomidine by
different approaches of administration on the amplitude and the
latency of both SSEP and MEP in patients during TSDS. The T
group received TIVA, the D1 group received TIVA combined
with a constant infusion rate of dexmedetomidine, and the D2

group received TIVA combined with dexmedetomidine delivered
in a loading dose and then at a constant infusion rate. Within-
group analysis showed that dexmedetomidine in the D2 group
exerted inhibitory effects on amplitude of both SSEP andMEP, as
well as latency of SSEP. Compared with both the T group and the
D1 group, patients in the D2 group also showed a significant
decrease in amplitude of the waveforms and an increase in SSEP
latency. Here, we demonstrated that dexmedetomidine delivered

in a loading dose and then at a constant infusion rate had
inhibitory effects on IONM recording in TSDS. However,
dexmedetomidine delivered only at a constant infusion rate
did not influence IONM parameters.

4.1 Time Points Set for Measuring IONM
Parameters
Rozet et al. (2015) demonstrated that dexmedetomidine delivery
by a bolus dose (0.6 μg kg−1 infused in 10 min) and followed by
0.6 μg kg−1 h−1 did not affect SSEP and MEP in adult patients
during spine surgery. However, Rozet recorded both amplitude
and latency twice within the first 30 min after dexmedetomidine
administration and then recorded IONM parameters every
30 min until 240 min after dexmedetomidine administration.
Statistically significant change in IONM parameters would
likely be missed and ignored, because based on our results,
compared with the T group and the D1 group, the significant
inhibitory effects of dexmedetomidine delivered in a bolus dose
on SSEP amplitude, SSEP latency, and MEP amplitude lasted for
15 min, 10 min, and at least 10 min, respectively. If the interval of
IONM recording is more than 15 min within the first 30 min after
dexmedetomidine (1 μg kg−1), it would likely miss the statistically
significant change in amplitude and latency of evoked potentials.

Furutani et al. obtained MEP waveforms at 2, 4, 6, 8, and
10 min after a bolus dose of the testing drug (Furutani et al.,

TABLE 1 | The general data of the three groups.

T group (n = 53) D1 group (n = 54) D2 group (n = 53)

Demographic data
Age (years) 42.3 ± 16.2 43.4 ± 15.3 42.9 ± 15.7
Sex (M/F) 30/23 29/25 31/23
Height (cm) 168.7 ± 6.2 168.1 ± 5.6 169.2 ± 6.4
Weight (kg) 60.2 ± 12.8 61.2 ± 11.3 61.9 ± 10.7
Symptom duration (months) 4.7 ± 5.3 5.0 ± 4.6 4.9 ± 4.1

Perioperative data
Operation time (min) 212.3 ± 105.1 209.0 ± 99.7 204.6 ± 101.2
Bleeding volume (ml) 563.2 ± 213.1 571.2 ± 200.2 559.2 ± 220.4
MAP before anesthesia induction (mmHg) 74.3 ± 5.5 74.8 ± 6.7 73.9 ± 6.3
HR before anesthesia induction (bpm) 75.2 ± 5.1 75.7 ± 6.3 75.4 ± 6.8

Surgical location
T1-8 (n = ) 7 6 6
T9-12 (n = ) 46 48 47
VAS score in PACU 4.6 ± 1.4 4.9 ± 0.8 4.8 ± 1.1
Anaesthesia recovery time (min) 14.9 ± 3.7 12.6 ± 2.8a 15.7 ± 4.1c

Propofol consumption (mg) 787.8 ± 68.3 591.9 ± 102.5a 539.4 ± 70.1b,c

Remifentanil consumption (ug) 2,981.9 ± 465.8 2,512.5 ± 280.4a 2,315.5 ± 338.3b,c

Ephedrine consumption (mg) 9.6 ± 7.0 11.1 ± 8.1 20.1 ± 8.6b,c

IONM baseline value
SSEP amplitude (μV) 1.87 ± 1.05 1.91 ± 1.11 1.86 ± 1.08
SSEP latency (ms) 42.81 ± 3.94 43.12 ± 3.36 42.98 ± 3.40

VAS: visual analogue scale; PACU: post anesthesia care unit. IONM: intraoperative neuromonitoring; SSEP: somatosensory evoked potential; MEP: motor evoked potential; T group:
propofol- and remifentanil-based total intravenous anesthesia group; D1 group: TIVA, combined with dexmedetomidine at a constant infusion rate; D2 group: TIVA, combined with
dexmedetomidine delivered by loading dose and then by a constant infusion rate. Data were expressed as mean ± standard deviations (X±SD) for VAS, score, time of anesthesia recovery,
propofol consumption, remifentanil consumption, and ephedrine consumption. The amplitude and latency of both MEP and SSEP were analyzed using the Mann–Whitney U test.
Demographic data, hemodynamic parameters, anesthesia recovery time, and intraoperative anesthetic requirement were analyzed using the independent t-test among different groups.
Qualitative or categorical variables were compared using the chi-square test or the Fisher test as appropriate.
ap＜0.05, D1 group compared with the T group.
bp＜0.05, D2 group compared with the T group.
cp＜0.05, D2 group compared with the D1 group.
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2019). However, we limited the frequency of MEP recording.
First, MEP recording has more possibilities of adverse events
(Yoshida et al., 1976a). Second, according to the latest guidance
(Nuwer et al., 2012a) and our previous study (Tun Liu et al.,
2021), it was recommended that every high-risk procedure
(Yoshida et al., 1976b) (posterior decompression in OPLL
patients and correction in deformity patients) after 10–20 min
(Tun Liu et al., 2021), which is a critical time point, needs to put
special emphasis on the change of IONM. Therefore, we recorded
IONM parameters before and after high-risk procedures or
according to specific needs during surgery to judge whether
patients have spinal injuries.

4.2 Effects of Dexmedetomidine on Both
Amplitude and Latency
Yusuke Funai and Anthony (2014) demonstrated that
dexmedetomidine infusion enhances inhibitory synaptic

transmission in the superficial dorsal horn (SDH) by
activating the descending noradrenergic (NA) system.
Then, NA can produce postsynaptic hyperpolarization
(Grudt and Perl, 2002; Yan Lu, 2007). So, systemic
administration of dexmedetomidine can therefore
theoretically inhibit IONM parameters to different degrees
by enhancing inhibitory synaptic neurotransmission in both
motor and sensory neurons, especially when
dexmedetomidine was delivered by a bolus dose (1 μg kg−1

in 10 min), because larger doses of dexmedetomidine can lead
to obvious inhibitory synaptic neurotransmission in neurons,
thus resulting in attenuated amplitude and latency of the
evoked potentials (Mohamed Mahmoud et al., 2010; Chen
et al., 2015). Hence, IONM parameters would be more likely
to be inhibited after dexmedetomidine 1 μg kg−1 in 10 min. On
the contrary, IONM waveforms would be less likely to be
affected when smaller doses of dexmedetomidine were
administered (at a constant infusion rate, 0.5 μg kg−1 h−1)

FIGURE 2 | Time course of SSEP and MEP amplitude variability, as well as SSEP latency variability in the three groups. △Compared with baseline value (after
muscle incision, but before dexmedetomidine or placebo infusion) at corresponding time points, p＜0.05; compared with the D1 group at corresponding time points, p＜
0.05; * compared with the T group at corresponding time points, p＜0.05. DEX: dexmedetomidine; the T group: propofol- and remifentanil-based total intravenous
anesthesia group; the D1 group: TIVA combined with dexmedetomidine at a constant infusion rate; the D2 group: TIVA combined with dexmedetomidine delivered
by a loading dose and then by a constant infusion rate.
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(Endrit Bala et al., 2008; Chen et al., 2015; Li et al., 2016; Liu
et al., 2021).

Mahmoud et al. (2010) and Mohamed Mahmoud et al. (2017)
reported that dexmedetomidine delivered by loading dose and
then a constant infusion rate added to TIVA can decrease MEP
amplitude in patients aged between 10 and 25 years. We excluded
patients aged under 18 years old and abandon inhalation
anesthetics in our study, for two reasons: (1)
dexmedetomidine is not recommended for adolescents
according to the FDA (SudIvya Sharma, 2013); and (2)
accuracy of IONM could be adversely affected by the
immature neural pathways of adolescents, and the differences
between adolescents and adults in neuron structure and
organization can increase the bias to the conclusion26.
Although we exclude adolescent patients, we also reached a
similar conclusion: dexmedetomidine (1 μg kg−1 in 10–20 min)
does exert statistically inhibitory effects on IONM parameters. In
our study, dexmedetomidine (1 μg kg−1 in 10 min) can inhibit
IONM parameters within warning criteria (Nuwer and Schrader,
2019; Tun Liu et al., 2021). The suppressive effects on MEP and
SSEP lasted for more than 10 min, and no more than 25 min,
respectively. Therefore, we recommended that anesthesiologists
should consider the time point of a bolus dose of
dexmedetomidine administration during spine surgery.

4.3 Effects of Dexmedetomidine on
Cardiovascular Stability
MAP could influence human autoregulation by maintaining
stable cerebral blood flow (CBF) and spinal cord blood flow
(SCBF) (Crystal et al., 2014; Meng et al., 2019). Furthermore,
previous studies revealed that hypotension intraoperatively can
increase the likelihood of neurologic deficits by reducing spinal
cord perfusion pressure (Joshua Yang et al., 2018; CoreyWalker
and Park, 2020). Schwan et al. (2020) reported that evoked

potential waveforms can be lost after recurrent bradycardia
during spinal surgery. So, bradycardia and hypotension should
be avoided strictly during spinal surgeries, according to the latest
guidance (Vitale et al., 2014; CoreyWalker and Park, 2020). A
loading dose of dexmedetomidine (1 μg/kg in 10 min) has
inhibitory effects on both MAP and HR, and lasted for
15 min. Anesthesiologists and neurophysiologists should be
aware of this effect.

Lieberman et al. demonstrated that the serum concentration of
propofol may increase dramatically during hemorrhage in a
swine model (JeremyLieberman, 2013; Lieberman et al., 2018a;
Lieberman et al., 2018b). Furthermore, hemorrhage is associated
with a decrease in MEP amplitude (Lieberman et al., 2018b).
Furthermore, elevated levels of propofol infusion can occasionally
lead to hyperlactacidemia (Parke et al., 1992; Marinella, 1996).
Therefore, to avoid excessive propofol consumption, using an
adjuvant in general anesthesia that does not have an adverse
influence on IONM and cardiovascular stability can be beneficial.
We demonstrated that dexmedetomidine administrated at a
constant infusion rate does not influence IONM or
cardiovascular stability and has propofol-sparing effects.

4.4 Limitations
Our study has some limitations. Firstly, a decrease in MAP and
HR after dexmedetomidine (1 μg kg−1) could be identified by the
attending anesthesiologists and might confound our blinding.
However, it is less likely to affect our results, because the IONM
parameters were recorded by an independent and blinded
neurophysiologist. Secondly, we do not have MEP waveforms
20 min after dexmedetomidine (1 μg kg−1) until decompression,
because we limited the frequency of MEP recording. So, the
inhibitory effects of dexmedetomidine (1 μg kg−1 in 10 min) on
MEP amplitude might last for more than 10 min. However, there
is no significant difference in MEP amplitude among different
groups at the start of spine decompression, indicating adequate

FIGURE 3 | Time course of intraoperative mean arterial pressure (MAP) (as depicted in 3A) and heart rate (HR) (as depicted in 3B) in the three groups. △ Compared
with baseline value (after muscle incision, but before dexmedetomidine or placebo infusion) at corresponding time points, p＜0.05; * compared with the T group at
corresponding time points, p＜0.05. DEX: dexmedetomidine; the T group: propofol- and remifentanil-based total intravenous anesthesia group; the D1 group: TIVA
combined with dexmedetomidine at a constant infusion rate; the D2 group: TIVA combined with dexmedetomidine delivered by a loading dose and then by a
constant infusion rate.
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time to eliminate the adverse effects of dexmedetomidine onMEP
amplitude. So, the inhibitory effects of dexmedetomidine
(1 μg kg−1) were less likely to affect our MEP waveforms
before and after high-risk procedures.

5 CONCLUSION

A bolus dose of dexmedetomidine with a constant infusion rate can
significantly increase the latency of SSEP and reduce the amplitude
of both SSEP and MEP in TSDS. Special attention should be paid to
the timing of dexmedetomidine (1 μg kg−1 in 10 min)
administration under IONM. However, dexmedetomidine can be
delivered at a constant rate (0.5 μg kg−1 h−1) because it does not exert
an inhibitory effect on IONM parameters.
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