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Echinacoside (ECH) is a natural phenylethanoid glycoside (PhG) in Cistanche tubulosa. A
large number of studies have shown that ECH has very promising potential in the inhibition
of neurodegenerative disease progression. Experimental studies strongly suggest that
ECH exhibits a variety of beneficial effects associated with in neuronal function, including
protecting mitochondrial function, anti-oxidative stress, anti-inflammatory, anti-
endoplasmic reticulum stress (ERS), regulating autophagy and so on. The aim of this
paper is to provide an extensive and actual summarization of ECH and its neuroprotective
efficacy in prevention and treatment of neurodegenerative diseases, including Alzheimer’s
disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and so on,
based on published data from both in vivo and in vitro studies. There is a growing evidence
that ECH may serve as an efficacious and safe substance in the future to counteract
neurodegenerative disease.
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1 INTRODUCTION

With the increase in population aging, neurodegenerative diseases are the most prevalent and fastest
growing disorders of the elderly worldwide, which are endangering human health and cause a heavy
financial burden on society (Erkkinen et al., 2018). The number of the dementia elderly is expected to
increase to 130 million by 2050, and the annual socio-economic cost per patient is US$19,144.36, the
global cost is estimated to reach US$9.12 trillion by 2050 (Jia et al., 2018; Hansson, 2021).
Neurodegenerative diseases mainly include Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), vascular
dementia (VD), and so on (Gitler et al., 2017). Neuronal damage, mitochondrial dysfunction,
oxidative stress and neuroinflammation are their common pathogenesis feature. The
neurodegenerative diseases are mainly manifested as memory and cognitive impairment, and
abnormal movement in clinic (Enogieru et al., 2018). Up to now, the therapeutic strategy for
neurodegenerative diseases mainly focuses on improving symptoms. Therefore, it is urgent to
explore and develop novel drugs with therapeutic potential directed at the pathogenesis of
neurodegenerative disease.

Echinacoside (ECH, Figure 1) is a phenylethanoid glycoside (PhG), and was first extracted from the
rhizome of Echinacea angustifolia DC. It is not only one of the key effective components of Echinacea
(Jiang and Tu, 2009; Zhu et al., 2013; Li et al., 2018), but also abundant in other natural plants, such as
Scrophulariae Radix, Rehmanniae Radix,Cistanches Herba, etc. Among them, Cistanche tubulosa contains
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the highest content of ECH reaching about 30% (w/w) (Tian XY
et al., 2021). The molecular formula of ECH is C35H46O20

(Figure 1) and its chemical structure is composed of a sugar
group, a phenylpropenyl group, and a phenylethanol group (Wu
et al., 2020). Recently, ECH has shown a variety of important
pharmacological activities, such as anti-inflammatory,
protection of mitochondrial function, anti-oxidation, anti-
neurotoxicity, anti-endoplasmic reticulum stress (ERS), anti-
apoptosis, and neuroprotective effect (Wang et al., 2015; Chen
et al., 2018; Ma et al., 2019; Wei et al., 2019; Wu et al., 2020). In
addition, the metabolites of ECH C6-C3 and C6-C2 may have
certain neuroprotective activities, which can directly

supplement the neurotransmitter defects (Song et al., 2019).
This review presented current and innovative results concerning
the pharmacology and the efficacy of ECH in the treatment of
neurodegenerative diseases, focusing on its mechanism of action
in AD, PD, VD, and ALS, etc.

2 ALZHEIMER’S DISEASE

AD is an irreversible and progressive chronic central
neurodegenerative disease. It is the most common type of
dementia and is becoming a major challenge to global health
and social care (Alzheimer’s Association, 2020). Patients with AD
usually suffer from significant memory impairment, language
difficulties, decreased executive and visuospatial functions, and
other degrees of cognitive impairment, as well as personality and
behavior changes (Hansson, 2021). The pathogenesis mainly
includes oxidative stress, mitochondrial abnormalities,
neuroinflammation, abnormal accumulation of extracellular
Amyloid-β (Aβ) plaques, and so on (Lane et al., 2018;
Magalingam et al., 2018). AD involves multiple pathogeneses.
The current treatment strategy for a single pathway has been
proved to be insufficient. Recent evidences indicate that ECH has
very extensive neuropharmacological activities. It may be a
potential natural active ingredient with broad-spectrum and
multiple target effects in the treatment of AD.

2.1 The Production and Toxicity of
Amyloid-β
Excessive accumulation of Aβ oligomers and soluble
aggregates outside the central nerve cells of the brain is one

FIGURE 1 | Chemical structure of Echinacoside (ECH).

FIGURE 2 | Diagram with neuroprotective mechanisms of Echinacoside (ECH) in Alzheimer’s disease (AD). ECH can improve neurodegenerative diseases by
regulating target genes or target proteins on abnormal accumulation of Amyloid-β plaques, oxidative stress, apoptosis, and neurotoxicity signaling pathways.
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of the important causes of AD (Imbimbo and Watling, 2019).
Beta site amyloid precursor protein cleaving enzyme 1
(BACE1) is the key rate-limiting enzyme for amyloid
precursor protein (APP) processing to produce Aβ, which
can catalyze the initial cleavage of APP and produce Aβ.
Dai et al. confirm that ECH affects Protein kinase-like
endoplasmic reticulum kinase (PERK), inhibits the PERK/
eIF2α pathway to reduce ERS, and regulates F-actin
remodeling to reduce the excessive accumulation of Aβ and
the expression of BACE1 protein by using
immunohistochemistry, Aβ plaque load quantification, Aβ
ELISA, RNA isolation, quantitative PCR, Western blot
analysis, BACE1 activity assay and Transmission Electron
Microscopy in APPswe/PS1dE9 (2 × Tg-AD) mice (Dai
et al., 2020). In the hen egg-white lysozyme (HEWL) model
system, Zhang et al. used spectroscopic analyses, electron
microscopy, cell viability assay, and hemolysis assay to find
that ECH can inhibit the conversion of HEWL in a dose-
dependent manner, antagonize amyloidosis, destroy the
structure of fibrils, and convert amyloid fibrils into
amorphous aggregates (Zhang et al., 2015). In addition, in
Amyloid β peptide 1-42 (Aβ 1-42)-treated SH-SY5Y cells,
Shiao et al. found that ECH inhibited Aβ1-42
oligomerization, restored the cell viability that was reduced
by Aβ1-42, and reduced acetylcholinesterase activity, which in

turn reverses cortical cholinergic dysfunction caused by Aβ1-42
in Aβ1-42-infused rat (Shiao et al., 2017). Wu et al. used the AD
rats induced by injecting Aβ1-42 and found ECH can
ameliorate the cognitive deficits, decrease amyloid
deposition and reverse cholinergic and hippocampal
dopaminergic dysfunction caused by Aβ1-42 (Wu et al., 2014).

2.2 Oxidative Stress
The central nervous system requires high energy, so it is one of
the organs that is vulnerable to hypoxia (Wilson et al., 2009).
The presence of oxidative damage in neuronal lipids and
proteins is an important feature of AD. The binding of
redox-active metal ions to Aβ and mitochondrial
dysfunction can catalyze the production of reactive oxygen
species (ROS) (Cheignon et al., 2018). Studies have shown that
ECH has significant antioxidant and free radical scavenging
properties. Nuclear factor-erythroid 2-related factor 2 (Nrf2)
is one of the most important transcription factors in oxidative
stress. ECH significantly decreased the Kelch-like ECH-
associated protein-1 (Keap1) protein expression along with
the substantial nuclear accumulation of Nrf2 in hippocampus.
ECH further elevated the expression of heme oxygenase-1
(HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1) and
γ-glutamyl cysteine Synthetase (γ-GCS). Then, Nrf2 promotes
the transcription of key antioxidative enzymes, such as

FIGURE 3 | Diagram with neuroprotective mechanisms of Echinacoside (ECH) in Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and vascular
dementia (VD). ECH can improve neurodegenerative diseases by improving oxidative stress, neuroinflammation, apoptosis, autophagy, nourishment of nerves, and
mitochondrial dysfunction signaling pathways.
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superoxide dismutase (SOD) and phase II detoxifying genes
(such as NQO1), and regulates the Keap1-Nrf2-ARE pathway
to depress oxidative stress and mitochondrial dysfunction
(Zheng et al., 2019). In the Caenorhabditis elegans, ECH
suppressed oxidative stress via the DR pathway and the
insulin/IGF signaling (IIS) pathway, which triggers the
nuclear localization of DAF-16. Then DAF-16 regulates
target genes which participate in lifespan regulation and
stress resistance. ECH also increased its two downstream
targets, namely superoxide dismutase (sod-3) and small heat
shock protein 16.2 (hsp-16.2) which involved in oxidative
damage (Mukhopadhyay et al., 2006; Chen et al., 2018).
Furthermore, ECH could ameliorate the pathology of AD
through decreasing the formation of ROS and the
accumulation of intracellular free Ca2+, and improving the
mitochondrial membrane integrity (Kuang et al., 2009).

2.3 Neuroprotection
Glutamate is the main excitatory neurotransmitter. Excessive
release of glutamate and excessive excitement of N-methyl-D-
aspartate receptor (NMDAR) can cause depolarization of nerve
cell membranes and cause a large amount of Ca2+ influx, which is
an important cause of neuronal degeneration and death (Cobley
et al., 2018). According to the research results of Lu and others, in
the rat cerebral cortex, ECH can reduce voltage-dependent Ca2+

influx and inhibit protein kinase C activity (Lu et al., 2016). Shiao
et al. infuse Aβ1-42 into the brain cistern by an osmotic pump and
found that ECH can inhibit AChE activity, reverse cortical
cholinergic neuron dysfunction caused by Aβ deposition, and
improve cognitive dysfunction caused by Aβ1-42. Achieve
protection of nerves from toxic effects (Shiao et al., 2017).

2.4 Apoptosis
ECH can inhibit the release of cytochrome c (Cyt c) and the
activation of caspase-3 through the extracellular signal-regulated
kinase (ERK) pathway in vitro (Zhu et al., 2013). The members of
the Bcl-2 family-like Bax and Bcl-2 have participated in apoptosis
induced by the accumulation of ROS through the mitochondrial
apoptotic pathway (Deng et al., 2004; Soane et al., 2008). ECH
prevents a H2O2-induced increase of the Bax/Bcl-2 ratio to
depress apoptosis in rat pheochromocytoma cell line (PC12
cells) (Kuang et al., 2009).

3 PARKINSON’S DISEASE

PD is a chronic progressive neurodegenerative disease. Its clinical
symptoms mainly include resting tremor, bradykinesia, muscle
rigidity, and postural and gait disorders. The typical
neuropathological features of PD are the degeneration of
dopaminergic neurons located in the substantial nigra pars
compacta (SNpc) of the midbrain and the formation of Lewy
bodies, and α-synuclein and ubiquitin are the main components
of Lewy bodies (Dunnett and Björklund, 1999). Recent studies
have shown that the loss of dopaminergic terminals in the
striatum, rather than the loss of SNpc neurons, is crucial for
the occurrence of motor symptoms. With the aging of the global

population, the prevalence of PD is expected to double in the next
20 years (Simon et al., 2020).

3.1 Neuroinflammation
ECH inhibits the activation of microglia and astrocytes in 6-
hydroxydopamine (6-OHDA) subacute PD model mice and
promotes the nerves of dopamine (DA), 3,4-
dihydroxyphenylacetic acid (DOPAC), high vanillic acid
(HVA), norepinephrine (NE), and serotonin (5-HT) in the
striatum and extracellular fluid of the hippocampus. Secretion
of nutritional factors (Chen et al., 2007), and finally, the apoptosis
of DA neurons is reduced, and the pathological state of PD is
improved. It is also reported in the literature that ECH can
prevent the level of DA, DOPAC, and HVA in the right
striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) model mice from decreasing (Zhang et al., 2021a). At
the same time, inhibiting the reduction of striatal fibers, DA and
DA transporters can improve gait disorders. In vitro experiments
show that ECH can improve 6-OHDA-induced PC12 cell model
cell viability, significantly enhance redox activity and
mitochondrial membrane potential, reduce ROS production,
and inhibit mitochondrial-mediated apoptosis (Chen et al.,
2019). MPTP is converted into 1-methyl-4-phenylpyridinium
(MPP+) by monoamine oxidase B in glial cell species. MPP+

produces neurotoxicity by generating ROS in DA neuron
mitochondria (Ahmed et al., 2017). MPP+ is now widely used
to induce damage in SH-SY5Y cell line to mimic the pathogenesis
of PD. After ECH administration, it has been shown to attenuate
DA neuron damages. Zhang et al. used proteomics to detect pro-
inflammatory cytokines and found that seven cytokines including
c5/c5a, interleukin-1beta (IL-1β), tumor necrosis factor-alpha
(TNF-α), interleukin-2 (IL-2), and interleukin-4 (IL-4) were
down-regulated by down-regulating p38 mitogen Pro-activated
protein kinase (p38MAPK) and nuclear factor-kappa B (NF-κB)
p52 (Zhang J et al., 2017; Liang et al., 2019) or regulate the
activation of ROS/ATF3/CHOP pathway participate in the
inhibition of inflammation in dopaminergic neurons in the
midbrain the occurrence of the reaction, thereby inhibiting the
occurrence of apoptosis, has a neuroprotective effect (Zhao et al.,
2016). The excessive activation of microglia is closely related to
neurotoxicity and participates in the main pathological
development of PD. The inflammatory response mediated by
activated microglia is the main component of the pathological
process of PD. In the ECH group of MPTP model mice, the
specific marker Iba-1 of microglia in the midbrain decreased, and
ECH treatment inhibited the small activation of glial cells which
improves inflammation in the brain (Ho, 2019). There are also
reports in the literature that ECH improves the neuropathological
state of PD mice through neuroprotective cell survival and
inhibiting activated microglia-mediated NLRP3/CASP-1/IL-1β
inflammation signals (Gao et al., 2020). In summary, ECH can
depress the neuroinflammation that involved in the pathological
progress of PD by multiple ways.

3.2 Apoptosis
Bcl-2 is the coding product of the Bcl-2 proto-oncogene and is an
apoptosis-inhibiting protein. It promotes cell survival by
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inhibiting the permeability of the outer mitochondrial
membrane, regulates the release of mitochondrial apoptotic
factors, participates in the regulation of apoptosis, and
promotes cells’ survive (Liu et al., 2019). In MPTP subacute
PD model mice, ECH inhibits the release of mitochondrial Cyt c
and caspase-8 and the lysis of caspase-3 by reducing the ratio of
Bax/Bcl-2 in dopamine neurons in the substantia nigra and plays
a role of inhibiting apoptosis.

3.3 Autophagy
In the pathological process of PD, the disorder of autophagy
regulation will eventually lead to the accumulation of
misfolded proteins and the damage of organelles. The
autophagy-lysosome pathway can not only degrade proteins
that cannot be degraded by the ubiquitin-proteasome pathway,
but also degrade α-synuclein (Webb et al., 2003). Autophagy is
the main pathway for the degradation of intracellular
aggregates, and mechanistic target of rapamycin (mTOR)
kinase is the key regulatory site for autophagy (Glick et al.,
2010). By regulating the autophagy-lysosome pathway and
increasing the degradation of autophagy and α-synuclein,
the addition of ECH has significant advantages in
improving the clinical efficacy and clinical symptoms of PD.
Zhang et al. used MPTP to create a subacute PD mouse model.
ECH can significantly improve the neurobehavior of PD mice
by upregulating the survival signal p-AKT/AKT The
expression of mTOR inhibits the expression of mTOR,
thereby promoting the clearance of α-synuclein and the
degradation of the autophagy substrate P62, exerting a
neuroprotective effect (Zhang et al., 2021b). Sirtuins are
nicotinamide adenine dinucleotide (NAD+)-dependent
deacetylases that play an important role in neuronal
development and aging, which also have neuroprotective
effects in PD models in vivo and in vitro (Donmez and
Outeiro, 2013). It has been proved that sirtuin 1 (SIRT1)
promotes the transcription of HSP70 (heat shock protein)
and other molecular chaperones by deacetylating heat shock
factor 1, and is an effective regulator of autophagy.
Experiments have shown that ECH binds to SIRT1, and the
binding product activates forkhead box subgroup O1 (FoxO1)
to cause autophagy gene transcription. And translation,
promote the autophagic degradation of α-synuclein, which
can reverse the damage of dopaminergic neurons (Chen et al.,
2019).

3.4 Nourishment of Nerves
The neurotrophic factor is a protein for the growth and
survival of neurons, including nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), and glial cell-
derived neurotrophic factor (GDNF). It can promote the
growth and development of nerves and axons. The
increased incidence of neuronal apoptosis and the
decreased protective effect of neurotrophic factors caused
by various pathological factors are the basis of
dopaminergic neuron degeneration (Barker et al., 2020).
GDNF has the strongest neurotrophic factor that protects
and promotes the repairment of dopaminergic neurons. ECH

improved the viability of MPP+-treated cell in vivo, and
increased the expression of tyrosine hydroxylase (TH),
GDNF, GDNF family receptor α (GFRα1) and Ret in cells
of substantia nigra (SN) of MPTP-induced PD mouse model
(Xu et al., 2016).

3.5 Endoplasmic Reticulum Stress
Seipin/BSCL2 has been identified as the pathogenic gene for
Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) and
induces the most severe form of lipodystrophy, characterized
by an almost complete absence of adipose tissue and associated
metabolic disorders. Seipin is a global membrane protein of the
endoplasmic reticulum (ER) that plays a key role in
adipogenesis, lipid droplet homogenization, and cellular
triglyceride lipolysis (Wang et al., 2018). Seipin
accumulation strongly impaired adipocyte isotropy and
leads to lipodystrophy, showing potential neural
involvement. Chronic ERS leads to the accumulation of α-
synuclein, and unfolded proteins in ER further leads to
neuronal death (Licker et al., 2014). ECH attenuates the
accumulation of Seipin (BSCL2) in 6-OHDA-induced rat
models by promoting its ubiquitination and degradation,
thereby reducing the activation of ERS related pathways
(Zhang Y et al., 2017).

3.6 Mitochondrial Dysfunction
Mitochondria are key organelles for adenosine 5′-
triphosphate (ATP) production through oxidative
phosphorylation (OXPHOS), which is necessary for normal
cellular functions. OXPHOS generates electron donor NADH
and flavin adenine dinucleotide (FADH2) through electron
transport chain (ETC) transmission to produce ATP
(Filograna et al., 2021). The spare respiratory capacity
(SRC) that mitochondria reserve under normal
physiological conditions is critical for cell survival under
stress when energy needs increase or oxygen depletion
occurs. Complex I is the main entry point of ETC and is
the site that mainly produces lesions or injuries. MMP induces
the mouse model of PD by inhibiting complex I, suggesting
that complex I may be the core of PD pathogenesis (Iverson,
2013), and it is another entry point for ETC and is used to
reduce equivalents. There is evidence that complex II is a key
regulator of neuroprotection, and complex II is a major source
of SRC. In the human neuroblastoma SH-SY5Y cell line, ECH
selectively attenuated cell damage and reversed complex I by
increasing the activity of complex II to ameliorate the
mitochondrial respiratory disorder and bioenergy shortage
(Ma et al., 2019). ECH could also increase the mitochondrial
membrane potential, and restore the mitochondrial energy
supply in 6-OHDA-treated PC12 cells.

4 OTHER NEURODEGENERATIVE DISEASE

Compared with the study of the mechanism that ECH is used to
treat AD and PD, the mechanism of ECH’s potential therapeutic
effect on ALS, VD, and other diseases research is still very few.
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TABLE 1 | Neuroprotective effects of Echinacoside against neurodegenerative diseases.

Disease Model Mechanism Target protein Result References

AD APPswe/PS1dE9 (2 ×
Tg-AD) mice

inhibit the abnormal
accumulation of Aβ
plaques

PERK/eIF2α reduce ERS and regulate F-actin remodeling
to reduce the excessive accumulation of Aβ
and the expression of BACE1

Dai et al. (2020)

Aβ1-42-injected AD rats inhibit the abnormal
accumulation of Aβ
plaques

AChE ameliorate the cognitive deficits, decrease Aβ
deposition and reverse cholinergic and
hippocampal dopaminergic dysfunction
caused by Aβ1-42

Wu et al. (2014)

Aβ1-42-treated SH-SY5Y
cells

inhibit the abnormal
accumulation of Aβ
plaques

AChE inhibit Aβ1-42 oligomerization, restore the cell
viability

Shiao et al. (2017)

Caenorhabditis elegans inhibit the abnormal
accumulation of Aβ
plaques

— improve the survival of CL4176 worms in
response to proteotoxic-stress induced by
Aβ protein aggregation

Chen et al. (2018)

HEWL model system inhibit the abnormal
accumulation of Aβ
plaques

— antagonize amyloidosis, destroy the fibril
structure, and convert amyloid fibrils into
non-Shape aggregates, and inhibits the
conversion of HEWL in a dose-dependent
manner

Zhang et al. (2015)

Acute hypobaric
hypoxia C57 mice

anti-oxidative stress HO-1, NQO1, γ-GCS,
Nrf2

reduce HH-induced memory decline,
increase the expression of nuclear factor E2
p45- related factor 2, heme oxygenase-1,
NAD(P)H: quinone oxidoreductase 1, and γ-
GCS synthetase in mRNA and protein levels

Zheng et al. (2019)

Caenorhabditis elegans anti-oxidative stress DAF-16 trigger the nuclear localization of DAF-16.
DAF-16 regulates target genes to participate
in lifespan regulation and stress resistance

Mukhopadhyay et al. (2006)

Caenorhabditis elegans anti-oxidative stress sod-3, hsp-16.2 extend the mean lifespan of worms and
increase their survival under oxidative stress

Chen et al. (2018)

Rats neuroprotective effects glutamate reduce the 4-aminopyridine-evoked (4-AV)
increase in cytoplasmic free Ca2+

concentration, decrease 4-AV-induced
phosphorylation of protein kinase C

Lu et al. (2016)

SH-SY5Y cells inhibits apoptosis TrkA/TrkB inhibit the release of Cyt c and the activation
of caspase-3 through the ERK pathway to
achieve neuroprotection

Zhu et al. (2013)

PC12 cells Bax, Bcl-2 prevent a H2O2-induced increase of the Bax/
Bcl-2 ratio, the formation of ROS, and
accumulation of intracellular free Ca2+

([Ca2+] i)

Kuang et al. (2009)

PD 6-OHDA subacute PD
model mice

inhibits neuroinflammation DA, DOPAC, HVA, NE,
and 5-HT

the apoptosis of DA neurons is reduced, and
the pathological state of PD is improved

Chen et al. (2007)

MPTP model mice inhibits neuroinflammation DA, DOPAC, and HVA prevent the level of DA, DOPAC, and HVA in
the right striatum of MPTP model mice from
decreasing

Zhang et al. (2021a)

6-OHDA-induced PC12
cell model cell

inhibits neuroinflammation DA improve 6-OHDA-induced PC12 cell model
cell viability, enhance redox activity and
mitochondrial membrane potential, reduce
ROS production, and inhibit mitochondrial-
mediated apoptosis

Chen et al. (2019)

SH-SY5Y cells inhibits neuroinflammation c5/c5a, IL-1β, IL-4, TNF-
α, IL-2, p52, p38MAPK,
NF-κB

attenuate DA neuron damage, regulate the
activation of ROS/ATF3/CHOP pathway
participate in the inhibition of inflammation in
dopaminergic neurons, inhibits the
occurrence of apoptosis and neuroprotective
effect

Zhao et al. (2016), Zhang J
et al. (2017), Liang et al.
(2019)

MPTP model mice inhibits neuroinflammation Iba-1 inhibit the small activation of glial cells
improve inflammation in the brain

Ho, (2019)

PD mice inhibits neuroinflammation NLRP3/CASP-1/IL-1β improve the neuropathological state of PD
mice through neuroprotective cell survival
and inhibit activated microglia-mediated
NLRP3/CASP-1/IL-1β pathway

Gao et al. (2020)

MPTP subacute PD
model mice

inhibits apoptosis Bcl-2 inhibit the release of mitochondrial Cyt c and
caspase-8 and the lysis of caspase-3 by

Liu et al. (2019)

(Continued on following page)
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ALS is a type of motor neuron disease characterized by the
degeneration of more than motor neurons and lower motor
neurons. Yang Tian’s research team found that 10 μM ECH
promoted the expression of glutamate transporter 1 (GLT1) in
astrocytes, and found that ECH can significantly improve
neuron survival and synapse loss treated with superoxide
dismutase 1 (SOD1) astrocyte conditioned medium. Western
blot and MTS were used. As well as immunohistochemistry and
confocal imaging, this clarifies to a certain extent that ECH has
a potential therapeutic effect on ALS (Tian Y et al., 2021).
However, the molecular mechanism of 10 μM ECH promoting
GLT1 expression needs more exploration. VD is a disease of
severe cognitive impairment often caused by cerebrovascular

diseases such as hemorrhagic or ischemic stroke. In previous
studies, ECH has been found to have a certain promoting effect
on the restoration of ACh and choline levels in the
hippocampus and striatum of VD model rats, and it can also
significantly increase the activity of AChE. The recovery of the
cholinergic nervous system of VD rats has a promoting effect,
but the specific molecular mechanism remains to be further
discovered (Liu et al., 2013). And Xu Liu et al. also showed that
ECH can up-regulate the expression of GDNF in the
hippocampus by regulating the level of mitochondrial
oxidation, thereby reducing the ischemic damage of VD rat
neurons and improving learning and memory function (Liu
et al., 2017).

TABLE 1 | (Continued) Neuroprotective effects of Echinacoside against neurodegenerative diseases.

Disease Model Mechanism Target protein Result References

reducing the ratio of Bax/Bcl-2 in dopamine
neurons in the substantia nigra

SH-SY5Y cells inhibits apoptosis c5/c5a, IL-1β, IL-4, TNF-
α, IL-2, p52, p38MAPK,
NF-κB

inhibits the occurrence of apoptosis, and
neuroprotective effect

Zhao et al. (2016)

MPTP subacute PD
model mice

regulates autophagy p-AKT/AKT, P62 improve the neurobehavior of PD mice by
upregulating the survival signal p-AKT/AKT,
promoting the clearance of α-synuclein and
the degradation of the autophagy substrate
P62, exerting a neuroprotective effect

Zhang et al. (2021b)

PD models regulates autophagy SIRT1, HSP70 activate FoxO1 to cause autophagy gene
transcription, promote the autophagic
degradation of α-synuclein, which can
reverse the damage of dopaminergic
neurons

Donmez and Outeiro
(2013); Chen et al. (2019)

MPTP model mice regulates autophagy GDNF GFRα1 and TH in their brains, improve the
pathological state of PD

Xu et al. (2016)

6-OHDA-induced rat
models

nourishment of nerves BSCL2 reduce the activation of ERS related
pathways

Zhang Y et al. (2017)

MPTP model mice improves mitochondrial
dysfunction

mitochondria complex reduce equivalents Iverson (2013)

SH-SY5Y cell line improves mitochondrial
dysfunction

mitochondria complex attenuate cell damage and reverse complex Ⅰ
by increasing the activity of complex Ⅱ to
inhibit the induction of mitochondrial
respiratory disorder and bioenergy
weakness

Ma et al. (2019)

6-OHDA-induced PC12
cells

improves mitochondrial
dysfunction

— The mitochondrial membrane potential was
increased in 6-OHDA-induced PC12 cells
and the state of mitochondrial energy
disorder was improved

Ma et al. (2019)

ALS neurons in SOD1
astrocyte conditioned
medium

neuroprotective effects GLT1 improve neuron survival and synapse loss
treated with SOD1 astrocyte conditioned
medium

Tian Y et al. (2021)

VD VD model rats neuroprotective effects AChE promote effect on the restoration of ACh and
choline levels in the hippocampus and
striatum of VD model rats, increase the
activity of AChE

Liu et al. (2013)

VD model rats neuroprotective effects GDNF up-regulate the expression of GDNF in the
hippocampus by regulating the level of
mitochondrial oxidation, thereby reducing
the ischemic damage

Liu et al. (2017)
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5 CONCLUSION AND FUTURE
DIRECTIONS

Neurodegenerative diseases have caused a tremendous burden to
patient’s family and society worldwide. Up to now, therapeutic drugs
remain very scarce. Natural active ingredients may be one of the
promising drug discovery strategies for AD treatment. As a natural
PhG, ECH has been confirmed to be have multiple neuroprotective
effects such as anti-oxidative stress, anti-apoptosis, anti-
neuroinflammation, inhibit the accumulation of toxic protein and
regulate autophagy and ERS (Figure 2,3). All of this implied that
ECH possess broad-spectrum and multiple target
neuropharmacological effects, suggesting ECH may be a potential
candidate compounds to develop therapeutic drug for treating
neurodegenerative diseases with multi-target collaborative
intervention. Here, we enumerate the neuroprotective effects of
ECH against neurodegenerative diseases based on current reports
and results (Table 1).
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GLOSSARY

5-HT serotonin

6-OHDA 6-hydroxydopamine

AD Alzheimer’s disease

ALS amyotrophic lateral sclerosis

APP amyloid precursor protein

ARE antioxidant response element

ATP adenosine 5′-triphosphate

Aβ Amyloid-β

BACE1 Beta site amyloid precursor protein cleaving enzyme 1

BDNF brain-derived neurotrophic factor

BSCL2 Berardinelli-Seip congenital lipodystrophy type 2

Cyt c cytochrome c

DA dopamine

DOPAC 3,4-dihydroxyphenylacetic acid

ECH Echinacoside

eIF2α eukaryotic initiation factor-2α

ER endoplasmic reticulum

ERK extracellular signal-regulated kinase

ERS endoplasmic reticulum stress

ETC electron transport chain

FADH2 flavin adenine dinucleotide

FoxO1 forkhead box subgroup O1

GDNF glial cell-derived neurotrophic factor

GFRα1 GDNF family receptor α

GLT1 glutamate transporter 1

HD Huntington’s disease

HEWL hen egg-white lysozyme

HO-1 heme oxygenase-1

HVA high vanillic acid

IIS insulin/IGF signaling

IL-1β Interleukin-1 beta

IL-2 Interleukin-2

IL-4 Interleukin-4

Keap1 Kelch-like ECH-associated protein-1

MPP+
1-methyl-4-phenylpyridinium

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MS multiple sclerosis

mTOR mechanistic target of rapamycin

NAD+
nicotinamide adenine dinucleotide

NE norepinephrine

NF-κB nuclear factor-kappa B

NGF nerve growth factor

NMDAR N-methyl-D-aspartate receptor

NQO1 NAD(P)H quinone oxidoreductase 1

Nrf2 Nuclear factor-erythroid 2-related factor 2

OXPHOS oxidative phosphorylation

p38MAPK p38 mitogen Pro-activated protein kinase

PD Parkinson’s disease

PERK Protein kinase-like endoplasmic reticulum kinase

PhG phenylethanoid glycoside

ROS reactive oxygen species

SIRT1 sirtuin 1

SN substantia nigra

SNpc substantial nigra pars compacta

SOD1 superoxide dismutase 1

SRC spare respiratory capacity

TH tyrosine hydroxylase

TNF-α tumor necrosis factor-alpha

VD vascular dementia

γ-GCS γ-glutamyl cysteine Synthetase
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