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Renal tubulo-interstitial fibrosis is characterized by the excessive accumulation of
extracellular matrix (ECM) in the tubular interstitium during chronic kidney disease. The
main source of ECM proteins are emerging and proliferating myofibroblasts. The sources
of myofibroblasts in the renal tubular interstitium have been studied during decades, in
which the epithelial contribution of the myofibroblast population through the epithelial-to-
mesenchymal (EMT) process was assumed to be the major mechanism. However, it is
now accepted that the EMT contribution is very limited and other mechanisms such as the
proliferation of local resident fibroblasts or the transdifferentiation of endothelial cells seem
to be more relevant. Activin receptor-like kinase 1 (ALK1) is a type I receptor which belongs
to the transforming growth factor beta (TGF-β) superfamily, with a key role in tissue fibrosis
and production of ECM by myofibroblast. Predominantly expressed in endothelial cells,
ALK1 also plays an important role in angiogenesis and vessel maturation, but the relation of
these processes with kidney fibrosis is not fully understood. We show that after 3 days of
unilateral ureteral obstruction (UUO), ALK1 heterozygousmice (Alk1+/−) display lower levels
of kidney fibrosis associated to a lower number of myofibroblasts. Moreover, Alk1+/− mice
have a lower degree of vascular rarefaction, showing improved peritubular
microvasculature after UUO. All these data suggest an important role of ALK1 in
regulating vascular rarefaction and emergence of myofibroblasts.
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INTRODUCTION

Tissue fibrosis is a common process to several chronic diseases of the liver, lungs, and kidneys,
characterized by loss of tissue parenchyma (hepatocytes, pneumocytes and tubular epithelial cells,
respectively), abundance of myofibroblasts, increased secretion of extracellular matrix proteins
(ECM) and capillary rarefaction (Zeisberg and Kalluri, 2013). Specifically, in chronic kidney disease
(CKD), a progressive and irreversible loss of renal function and renal tissue integrity, is associated
with tubulo-interstitial fibrosis resulting from excessive deposition of ECM proteins by
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myofibroblasts. Different sources of myofibroblasts contribute to
renal fibrosis (Grande and López-Novoa, 2009; Munoz-Felix and
Martinez-Salgado, 2021). During years, the epithelial-to-
mesenchymal transition (EMT) was considered the main
source (Sato et al., 2003; Zeisberg et al., 2003; Grande and
López-Novoa, 2009; Grande et al., 2010) (of myofibroblasts).
However, it was demonstrated that the epithelial contribution to
myofibroblast abundance was around 5%, and other mechanisms
such as the proliferation of local resident fibroblasts, the
endothelial-to-mesenchymal transition (EndMT) and other
mechanisms were involved (LeBleu et al., 2013; Grande et al.,
2015).

Loss of the renal microcirculation due to blood vessel dropout
is a major feature of chronic kidney disease (CKD) which also
correlates with the progression of renal injury and tissue
regeneration (Ishii et al., 2005). The loss of peritubular
capillaries (PTC) also correlates with hypoxia and the
development of fibrosis (Goligorsky, 2010; Gewin, 2019).
Multiple mechanisms contribute to microvascular rarefaction
such as “drive in reverse” or anti-angiogenic reprogramming
due to the induction of anti-angiogenic programs promoted by
angiostatin or endostatin (Goligorsky, 2010). In renal fibrosis,
PTC undergo rarefaction after kidney injury (Kida et al., 2014). In
an early phase, angiogenic factors are upregulated, endothelial
cells proliferate and pericytes migrate away from the capillary
area. Subsequently, a progression phase ensues with vascular
regression, endothelial cell disfunction and apoptosis (Kida
et al., 2014).

Activin receptor-like kinase 1 (ALK1) is a type I receptor from
the TGF-β1 superfamily with a documented role in regulating
ECM deposition and thus tissue fibrosis in the skin (Morris et al.,
2011), liver (Breitkopf-Heinlein et al., 2017; Desroches-Castan
et al., 2019a), heart (Morine et al., 2017a) and kidneys (Muñoz-
Félix et al., 2014a). We previously showed that the increased renal
fibrosis associated to ALK1 heterozygosity after 15 days of
unilateral ureteral obstruction (UUO) was due to the
promotion of ECM protein synthesis in myofibroblasts, the
major source of fibrotic matrix (Muñoz-Félix et al., 2014a).
ALK1 is also involved in the regulation of endothelial cell
activation (Lamouille et al., 2002; Jonker, 2014), which
impinges on vascular homeostatic processes. ALK1 seems to
have a dual role in angiogenesis. While some studies show a
pro-angiogenic role (Goumans et al., 2002; Lebrin et al., 2005),
some others have demonstrated that ALK1 inhibits the activation
phase of angiogenesis (Lamouille et al., 2002; Larrivée et al.,
2012), especially when activated by its high affinity ligand bone
morphogenetic protein 9 (BMP9), a quiescent factor promoting
the normalization of the vasculature (David et al., 2007a; David
et al., 2008; Ouarné et al., 2018; Viallard et al., 2020). Apart from
our previous studies, it has been recently shown the protective
role of ALK1 in diabetic nephropathy due to its effect in blood
vessel integrity maintenance (Lora Gil et al., 2020; Gil et al., 2021).
Yet, the contribution of alterations in vascular homeostasis to
tissue fibrosis is not completely understood.

In this manuscript we aim to elucidate the role of ALK1 in
renal vascular rarefaction and integrity in a fibrotic scenario
produced by UUO.

MATERIALS AND METHODS

Mice
We used ALK1 heterozygous mice to evaluate the role of ALK1 in
the early changes of the ureteral obstruction. Alk1+/− mice were
generated as previously described (Oh et al., 2000). Adult Alk1+/−

mice were kept in the pathogen-free facilities for genetically
modified mice of the Animal Experimentation Service,
University of Salamanca. Genotype analysis was performed by
PCR with DNA isolated from mouse tail biopsies and using the
primers previously reported (Oh et al., 2000).

In vivo Experimental Model of
Tubulointerstitial Fibrosis
Unilateral ureteral obstruction (UUO) is an experimental model
of renal injury, which causes tubular cell injury, inflammation
and fibrosis. UUO has been used as a model for the events that
take place during chronic kidney disease (Ucero et al., 2014).

UUO was performed during 3 days, as we aim to evaluate the
early changes of this experimental approach. The unilateral
ureteral obstruction (UUO) was performed as previously
described (Rodríguez-Peña et al., 2002; Grande et al., 2009). In
brief, 8 weeks old male mice were anesthetized with Isoflurane
(Schering-Plough, Madrid, Spain). After laparatomy, we used
non-reabsorbable 5-0 silk to ligate the left ureter. To generate
sham operated mice (SO), we manipulated the left kidney ureter
without ligation.

In this study, 5 mice were included in each experimental
group. Animals were kept under controlled ambient conditions in
a temperature controlled-room with a 12 h light/dark cycle, and
were reared on standard chow (Panlab, Barcelona, Spain) and
water ad libitum. In all procedures, mice were treated in
accordance with the Recommendations of the Helsinki
Declaration on the Advice on Care and Use of Animals
referred to in: law 14\/2 007 (3 July) on Biomedical Research,
Conseil de l´Europe (published in Official Daily N. L358/1-358/6,
18-12-1986), Government Spanish (Royal Decree 223/1 988, (14
March) and Order of 13-10-1989, and Official Bulletin of the
State b. 256, pp. 31349-31362, 28-10-1990). The procedure was
approved for the Bioethics committee of the University of
Salamanca and Consejería de Agricultura y Pesca (Junta de
Castilla y León).

Renal Tissue Preparation
Obstructed (O) and contralateral kidneys (NO), as well as kidneys
of sham operated mice (SO), were removed 3 days after surgery
after perfusion with heparinized saline solution at 37°C in order to
eliminate red blood cells from the tissue and to avoid endogenous
peroxidase signals in immunohistochemistry procedures. Next,
kidneys were halved longitudinally in order to use one half for
protein extraction and analysis and the other half for stainings
and immunohistochemistry. Renal samples for protein extraction
were frozen in liquid nitrogen and stored at −80°C. Renal
samples for histological studies were fixed for 24 h in
formaldehyde, transferred to ethanol 70% and then
embedded in paraffin.
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Western Blot
Western blot was performed for protein levels analysis in mouse
kidney tissue. Tissue protein extracts were homogenized in lysis
buffer (150 mmol/L NaCl, 1% Igepal CA-630, 10 mmol/L MgCl2,
1 mmol/L EDTA, 10% glycerol, 1 mmol/L Na3VO4, 25 mmol/L
NaF, l mmol/L PMSF, 10 mg/ml aprotinin and 10 mg/ml
leupeptin) containing 25 mmol/L HEPES, pH 7.5 and
centrifuged at 14000 g during 20 min at 4°C. Supernatants
were recovered and the protein concentration was quantified
using Lowry Method (BioRad). Lysates (100 µg per lane) were
loaded onto polyacrylamide gels and the proteins were
transferred to PVDF membranes (Millipore, Billerica, MA,
United States) by electroblotting. Next, membranes were
blocked in bovine serum albumin (BSA) 3% and were
incubated overnight at 4°C with the following antibodies:
rabbit anti-collagen type I (dilution 1:1,000) and rabbit anti-
fibronectin (1:1,000) from Chemicon International (Temecula,
CA, United States); rabbit anti-ACVRL1 (ALK1) (1:1,000) from
Abgent (Derio, Spain); mouse anti-α-SMA (1:5,000) from Sigma-
Aldrich (Madrid, Spain); mouse anti-PCNA (1:1,000) from
Transduction Laboratories (Madrid, Spain); and mouse anti-
GAPDH (1:40000) from Ambion (Barcelona, Spain). After
overnight incubation with the primary antibodies, membranes
were incubated with the corresponding horseradish peroxidase-
conjugated secondary antibodies during 60 min (1:10000) and
were developed using ECL chemiluminescence reagent
(Amersham Biosciences, Barcelona, Spain). Developed signals
were recorded on X-ray films (Fujifilm Spain, Barcelona, Spain)
for densitometric analysis (Scion Image software, Frederick, MD,
United States). GAPDH (Ambion, Barcelona, Spain) was used as
loading control. GAPDH was incubated in the same membrane
that the protein of interest when it was possible.

Histochemistry and Immunohistochemistry
3 µm sections were cut from paraffin-embedded samples and
stained with haematoxylin-eosin, picrosirius, and Masson’s
trichrome. Sirius red staining was evaluated by a quantitative
scoring system, Fiji (https://imagej.net/software/fiji/), released as
open source under the GNU General Public License in 12
randomly selected fields (200X) per experimental group.

Immunohistochemistry was performed on buffered formalin-
fixed, paraffin-embedded tissues as previously described
(Rodríguez-Peña et al., 2002; Grande et al., 2010) Briefly, 3 µm
sections were deparaffinized in xylene and rehydrated in graded
ethanols (100, 80, 70 and 50%) before antigen retrieval with
sodium citrate buffer pH = 6.0, Then, primary antibodies were
incubated overninght. Primary antibodies were: mouse anti-alpha
smooth muscle actin (α-SMA, dilution 1:100, from Sigma-Aldrich),
CD31 (Abcam) and rabbit anti-S100A4 (1:100 from Chemicon
International, Temecula, CA, United States), mouse anti-VEGF (1:
100 from Santa Cruz Biotechnology. After that staining continued
with the peroxidase-antiperoxidase method. Tissue sections were
incubated with the corresponding horseradish peroxidase-
conjugated secondary antibodies during 60min (1:250). After three
washes in phosphate-buffered saline (PBS: 0.81% NaCl, 2.6mM
H2KPO4, 4.1mM HNa2PO4), sections were sequentially incubated
with theNovolink PolymerDetection System (Novocastra, Newcastle,

United Kingdom) using 3,3′-diaminobenzidine (Biogenez, San
Ramón CA, United States) as chromogen. Sections were
counterstained with haematoxylin and were dehydrated and cover
slipped. Endogenous peroxidase was blocked by incubation in 3%
hydrogen peroxide. For an adequate optimization of the method,
negative controls were prepared without primary antibodies. VEGF
staining was evaluated using Fiji as mentioned above in 10–15
randomly selected fields (400X) per experimental group.

Immunofluorescence Staining
Paraffin-embedded tissues were cut in 3 µm sections. Heat-induced
antigen retrieval was performed in sodium citrate buffer pH 6.00 in a
microwave owen, and washed with PBS. Sections were incubated
with endomucin (Santa Cruz Biotechnology) in combination or not
with anti-α-SMA (Sigma Aldrich) overnight at 4°. Following three
washes in PBS, sections were incubated with anti-rat 488 Alexa and
anti-mouse 546 (Molecular Probes, Barcelona, Spain), diluted 1:200
for 60 min at room temperature, washed in PBS, and stained with
2 µM Hoechst 33258 (Molecular Probes, Barcelona, Spain). Slides
were rinsed in PBS and mounted in Prolong anti-fade (Invitrogen,
Barcelona, Spain). Confocal images were photographed using a Zeiss
Axiovert 200M microscope and a Zeiss LSM 510 confocal module.
All images were obtained with identical parameters for intensity,
pinhole aperture, etc. Image manipulation of immunofluorescence
analysis was performed using the same settings in all the samples and
pictures shown in this manuscript, and following the image
manipulation guidelines from the journal.

Blood Vessel Density Analysis
Abundance of peritubular capillaries was assessed by counting the
number of CD31 or endomucin-positive microvessels in peritubular
areas in the kidney cortex across 5 different fields per kidney.
Glomerular capillaries were not considered for the analysis.

Vascular Rarefaction and
Endothelial-Myofibroblast Transition
Analysis
Apart from the blood vessel density analysis, vascular rarefaction
was assessed by the individual quantitation of endomucin+
endothelial cells across 5 different fields per kidney (SO and O
kidneys form Alk1+/+ and Alk1+/− mice). Myofibroblast
emergence was also assessed by the individual number of α-
SMA+ cells excluding vascular smooth muscle cells. Hoechst
counterstaining helped us to identify individual cells.
Endothelial-myofibroblast transition was assessed by counting
the double endomucin+ and α-smooth muscle actin α-SMA+
cells versus total endomucin + cells across 5 fields per kidney.

Statistical Analysis
Data are expressed as mean ± standard error of the mean (SEM).
The Kolmogorov-Smirnov test was used to assess the normality of
the data distribution. Comparison of means was performed by two
way analysis of variance (ANOVA) with Tukey’s HSC post hoc
test. Data was analyzed using Graph Pad Prism software 9.0. A “p”
value lower than 0.05 was considered statistically significant.
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RESULTS

Renal Injury and Kidney Fibrosis After
3 days UUO in Alk1+/+ and Alk1+/− Mice
O kidneys from bothAlk1+/+ and Alk1+/−mice show the histological
events that take place after the UUO: Tubular cell injury, tubular
dilation, inflammation; as shown with the Haematoxylin-eosin
staining (Figure 1A) and tubule-interstitial fibrosis, as shown
with the Masson’s trichrome staining (Figure 1B). While we
observed no differences in kidney injury between both genotypes,
we detected lower tubule-interstitial fibrosis in Alk1+/− mice.

Alk1+/−Mice Show Decreased
Tubulo-Interstitial Fibrosis After 3 days of
Unilateral Ureteral Obstruction (UUO)
One of the most representative features of obstructive nephropathy
is the accumulation of ECM proteins in the tubular interstitium,
such as collagens (collagen I or collagen III), fibronectin or laminin.
After our analysis of the picrosirius red staining, we observed
increased levels of collagens in O kidneys form Alk1+/+ mice but
not in O kidneys from Alk1+/− mice (Figure 2).

There is also an increase in the expression of ECM proteins
(collagen I, fibronectin) in O kidneys from Alk1+/+ but not in O
kidneys from Alk1+/− mice evaluated by western blot (Figure 3).

Reduced Renal Myofibroblast Emergence
and Proliferation in Alk1+/− Mice
Renal myofibroblasts emerge and proliferate in the first steps of
obstructive nephropathy. After 3 days of UUO we observe an
increase in the presence of myofibroblasts in the tubular
initerstitium of Alk1+/+ mice, evaluated by immunostaining of
the myofibroblast markers α-smooth muscle actin (α-SMA)
(Figure 4A) and FSP1/S100A4 (Figure 4C) and by α-SMA

FIGURE 1 | UUO modifies the renal ultrastructure after 3 days in Alk1+/+

and Alk1+/− mice. (A) Haematoxylin-eosin staining in SO, NO and O kidneys
from Alk1+/+ and Alk1+/− mice show the typical features of the early stages of
UUO such as tubular dilatation (asterisk), interstitial cell proliferation
(arrow) or immune cell infiltration (arrowhead), being these features similar in O
kidneys from Alk1+/+ and Alk1+/−mice. (B)Masson’s trichrome staining in SO,
NO and O kidneys from Alk1+/+ and Alk1+/− mice showing lower ECM
deposition (asterisk) in O kidneys from Alk1+/−. Scale bar = 200 microns in
both panels.

FIGURE 2 | Alk1+/− mice show lower kidney fibrosis after 3 days UUO.
Sirius red staining in SO, NO and O kidneys from Alk1+/+ and Alk1+/−mice (N =
5) (upper panel). Analysis of tubule-interstitial fibrosis area in SO, NO and O
kidneys from Alk1+/+ and Alk1+/− mice, assessed by Fiji (ImageJ)
software. **p < 0.01; ***p < 0.001 (Two-way ANOVA); N.S = Not statistically
significant. Scale bar = 250 microns.
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western blot analysis (Figure 4B) in O kidneys fromAlk1+/+mice.
However, we barely observe those increases in O kidneys from
Alk1+/− mice. (Figures 4A–C). As α-SMA is not only a specific
maker for myofibroblasts, because it is highly expressed in
vascular smooth muscle cells (VSMCs) we quantified the α-
SMA+ individual cells by immunofluorescence with Hoechst
counterstaining excluding VSMCs, and we show that O
kidneys from Alk1+/+ mice show a higher number of α-SMA+
myofibroblasts than O kidneys from Alk1+/− mice (Figure 5). In
O kidneys fromAlk1+/−mice the presence of α-SMA positive cells
is reduced and correlates with the lower ECM deposition
observed in these animals. Moreover, the increase in cell
proliferation is lower in O kidneys from Alk1+/− mice, assessed
by proliferating cell nuclear antigen (PCNA) expression
(Figure 4D). Taken all these together, we can suggest that
ALK1 heterozygosity leads to a lower kidney fibrosis due to a
reduced abundance and proliferation of myofibroblasts.

ALK1 Deficiency Ameliorates the
Microvascular Damage Early Produced
by UUO
As mentioned before, microvascular rarefaction is a feature of
tubule-interstitial fibrosis and it contributes to the progression of
hypoxia and tissue fibrosis. In the early stages of UUO, there is a
vessel regression phase in which endothelial cells undergo
apoptosis and pericyte adhesion is disrupted (Kida et al.,
2014). Several studies show that ALK1 is involved in vessel
maturation and quiescence (Akla et al., 2018; Viallard et al.,
2020).

We observe a decrease in blood vessel density in O
kidneys from Alk1+/+ mice, assessed by immunostaining
of the endothelial markers CD31 (Figure 6A) and
endomucin (Figure 6B), similar to that previously
described in other studies performed in the UUO model
(Kida et al., 2014). However, blood vessel density was
maintained in Alk1+/− mice after UUO, suggesting that
ALK1 heterozygosity protects from vascular rarefaction in
the UUO early stages.

Impaired Emergence of Myofibroblasts
From Endothelial Cell Origin in Alk1+/− Mice
As stated before, myofibroblasts in the obstructed kidney
emerge from different origins such as proliferating local
resident fibroblasts, bone marrow derived cells or vascular
cells. Vascular endothelial cells and pericytes can
transdifferentiate into myofibroblasts. To dissect the
myofibroblast cells that arise from endothelial cells we have
double-immunostained kidney sections with an endothelial
marker (endomucin) and a myofibroblast marker (α-SMA).
Thus, cells with double positive staining for endomucin and α-
SMA are endothelial cells being transdifferentiated into
myofibroblasts. We observed that these double stained cells
are more abundant in O kidneys from Alk1+/+ mice than in O
kidneys from Alk1+/− mice (Figure 7). This finding indicates
that the lower abundance of myofibroblasts observed in ALK1
heterozygous mice is due to a lower transdifferentiation from
endothelial cells and this correlates with the PTC stability after
3 days UUO in Alk1+/− mice.

FIGURE 3 | Obstructed kidneys from Alk1+/− mice show reduced ECM protein levels after 3 days UUO. Western blot analysis of collagen I and fibronectin protein
expression in SO, NO and O kidneys from Alk1+/+ and Alk1+/−mice, and quantification of the corresponding densitometry. Bars represent the ratio between the proteins
and GAPDH, used as loading control. *p < 0.05; **p < 0.01; ***p < 0.001; N.S = Not statistically significant (Two-way ANOVA). One statistical outlier was removed from
the analysis of fibronectin in a SO mice from Alk1+/+ mice.
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FIGURE 4 | Reduced myofibroblast abundance and proliferation in obstructed kidneys from Alk1+/−mice after 3 days UUO. (A) α-SMA immunostaining in SO, NO
and O kidneys from Alk1+/+ and Alk1+/− mice. (B) Western blot analysis of α-SMA protein expression in SO, NO and O kidneys from Alk1+/+ and Alk1+/− mice and
quantification of the corresponding densitometry analysis (N = 5). Bars represent the ratio between α-SMA and GAPDH, used as loading control. (C) FSP1/S100A4
immunostaining in SO, NO and O kidneys from Alk1+/+ and Alk1+/− mice. (D) Western blot analysis of PCNA protein expression in SO, NO and O kidneys from
Alk1+/+ and Alk1+/− mice and quantification of the corresponding densitometry analysis. Bars represent the ratio between PCNA and GAPDH, used as loading control.
*p < 0.05; **p < 0.01; ***p < 0.001; N.S = Not statistically significant (Two-way ANOVA). The loading control for PCNA is the same as that used in Figure 3, as both
Collagen I and PCNA were incubated in the same membrane. Arrows in (A) identify VSMCs. Arrowheads in (A) and (B) identify tubulo-interstitial myofibroblasts. Scale
bar = 100 microns in A, 150 microns in (C).

FIGURE 5 | Analysis of α-SMA + myofibroblasts. Identification of α-SMA+ myofibroblasts by immunofluorescence of α-SMA with Hoechst counterstaining in SO
and O kidneys from Alk1+/+ and Alk1+/− mice. Squares identify zoomed areas *p < 0.05; ***p < 0.001; N.S = Not statistically significant. (Two-way ANOVA). Cropped
areas identify α-SMA+ VSMCs from small vessels. Arrowheads identify α-SMA+ tubulo-interstitial myofibroblasts. Scale bar = 150 microns.
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Alk1+/− Mice Are Protected From Vessel
Regression After 3 days UUO

ALK1 was described by David et al. (2008) as a molecule which
induces quiescence and inhibits endothelial cell proliferation and
migration (Lamouille et al., 2002; David et al., 2008).
Angiogenesis is a process linked with the development of
tubule-interstitial fibrosis after UUO. We found an increase of
ALK1 expression in O kidneys from both Alk1+/+ mice which

may indicate the beginning of the regression phase of
angiogenesis after obstruction. As expected, we do not observe
increased levels of ALK1 receptor in Alk1+/− mice after UUO,
suggesting a pro-angiogenic effect in these animals (Figure 8A).
To elucidate the differences in the angiogenic process during
vascular rarefaction after UUO, we have analyzed the levels of one
of the most important angiogenic factors, vascular endothelial
growth factor (VEGF). We detected no differences in VEGF
expression after UUO in Alk1+/+ mice but we observed a

FIGURE 6 | Impaired peritubular capillaries rarefaction in Alk1+/− mice. (A) CD31 immunostaining in SO and O kidneys from Alk1+/+ and Alk1+/− mice and blood
vessel density analysis, represented as CD31 + vessels per field. (B) Endomucin immunofluorescence staining in SO and O kidneys from Alk1+/+ and Alk1+/− mice and
blood vessel density quantification from endomucin staining, represented as microvessels per field (upper graph) and endomucin+ cells per field (lower graph) in SO and
O kidneys from Alk1+/+ and Alk1+/− mice. *p < 0.05; ***p < 0.001; N.S. Not statistically significant (Two-way ANOVA). Squares in (A) indicate the zoomed areas.
Scale bar = 200 microns in both panels. Blood vessels from the glomeruli in (B) (highlighted as cropped áreas) were not counted.
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higher expression in O kidneys from Alk1+/− mice (Figure 8B).
Taken all these together, we suggest that the lower ALK1 levels
and increased levels of VEGF in O kidneys from Alk1+/− mice
may correlate with a delay of the regression phase of angiogenesis
that prevents endothelial-pericyte detachment, contributing to
microvascular preservation and impaired endothelial to
myofibroblast transdifferentiation.

DISCUSSION

Renal myofibroblasts are the main source of ECMproteins during
tubule-interstitial fibrosis (LeBleu and Kalluri, 2011).
Myofibroblasts are activated fibroblasts with high contractile
capacity, and with a high capacity to synthesize ECM proteins
such as collagens, fibronectin or laminin (Munoz-Felix and

Martinez-Salgado, 2021). These cells emerge during the first
steps of the fibrotic process from different origins. Numerous
studies attributed their origin to the epithelial-to-mesenchymal
transition (EMT) program (Grande and López-Novoa, 2009).
However, although the EMT process has been validated in renal
cells in vitro (Docherty et al., 2006a), the contribution of the
epithelial components to myofibroblast abundance is very
limited, as it has been demonstrated in vivo (Picard et al.,
2008; Grande et al., 2015). The most important origins and
mechanisms of myofibroblast emergence are proliferating local
resident fibroblasts and the transdifferentiation from endothelial
cells or and pericytes (LeBleu et al., 2013).

In this study we observe a lower kidney fibrosis after 3 days
UUO which correlates with a lower myofibroblast abundance in
Alk1+/− mice. Moreover, we show a lower microvascular
rarefaction in these mice. Vascular rarefaction is involved in

FIGURE 7 | Endothelial-to-myofibroblast transdifferentiation after UUO in Alk1+/+ and Alk1+/−mice. Double immunofluorescence of endomucin (endothelial marker)
and α-SMA (myofibroblast marker) in SO and O kidneys from Alk1+/+ and Alk1+/−mice and quantification of double endomucin and α-SMA positive cells. Cropped areas
with small dashed line are glomeruli, not considered for the analysis. Cropped areas with large dashed lines are small vessels, also not considered for the analysis. ***p <
0.001; N.S. Not statistically significant (Two-way ANOVA). Arrows identify double endomucin+—α-SMA+ cells. Scale bar = 200 microns.
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myofibroblast emergence by different mechanisms. In the early
phases of UUO, endothelial cells undergo an apoptotic program
which lead to the detachment of endothelial cells from pericytes
(Kida et al., 2014). Endothelial cells can transdifferentiate into
myofibroblasts via the endothelial to mesenchymal transition
program (Zeisberg et al., 2008). On the other hand, pericytes can
migrate from the basement membrane and transdifferentiate into
myofibroblasts (Kida et al., 2014). Our data suggest that the
maintenance of the microvascular architecture observed in
Alk1+/− may be related with the lower emergence of
myofibroblasts observed in these mice and the lower ECM
deposition as a possible consequence of the reduced number
of myofibroblasts (Figure 9).

The process by which PTC undergo rarefaction comprises two
different stages: Initially, there is an angiogenic phase where
angiogenic factors such as VEGF are upregulated and
inflammatory cell infiltration happens. Later, the vascular
regression phase occurs when a decrease of angiogenic factors
and an increase of anti-angiogenic factors takes place in the
obstructed kidney (Kida et al., 2014). Endothelial cells and
pericytes are detached in the regression phase and can be
transdifferentiated to myofibroblasts. Our data suggest that
ALK1 is regulating this phenomenon. We observed lower
vascular rarefaction in Alk1+/− mice after 3 days of UUO.
ALK1 regulates negatively the activation phase of angiogenesis
(Ayuso-Inigo et al., 2021) and it is expected that lower levels of
ALK1 in Alk1+/− mice lead to a maintained angiogenic phase or

an impaired vessel regression phase, which also correlates with
the higher VEGF levels observed in O kidneys from Alk1+/−mice.
Our observations are in concordance with those of Sharpfenecker
et al. (2011), who demonstrated in a kidney fibrosis model after
irradiation that Alk1+/− mice show lower vascular injury after
20 weeks of irradiation, and this correlated with higher levels of
VEGF and VEGFR2 at that time point (Scharpfenecker et al.,
2011).

Years ago, we demonstrated a role of ALK1 in counteracting
TGF-β1-induced kidney fibrosis at 15 days UUO (Muñoz-Félix
et al., 2014a). In that context, both Alk1+/− and Alk1+/+ mice
showed same myofibroblast abundance but Alk1+/−

myofibroblasts produced higher amounts of ECM proteins
(Muñoz-Félix et al., 2014b; Oujo et al., 2014). In this
manuscript we demonstrate that after 3 days UUO ALK1
heterozygosity is associated with a lower myofibroblast
emergence, due to a higher microvessel stability, and this
lower number of myofibroblasts results in a decrease in
tubulo-interstitial fibrosis. We suggest that in the early stages
of UUO, ALK1 function is mainly related with its effect on
endothelial cells. The different effects of ALK1 receptor in
kidney fibrosis at different time points following UUO can be
explained by the different cellular players in these different stages
of fibrosis progression. We suggest that in the early stages of the
ureteral obstruction ALK1 is regulating the myofibroblast
emergence from endothelial cells while after 15 days UUO the
fibrotic program is completely established and myofibroblast

FIGURE 8 | ALK1 and VEGF protein expression after UUO. (A)Western blot analysis of ALK1 protein in SO, NO and O kidneys from Alk1+/+ and Alk1+/− mice (N =
5), and quantification of the corresponding densitometry analysis. Bars represent the ratio between the proteins and GAPDH, used as loading control. (B) VEGF
immunohistochemistry representative pictures and quantification of VEGF levels (using Fiji software) in SO, NO and O kidneys from Alk1+/+ and Alk1+/− mice. *p < 0.05;
**p < 0.01 N.S. Non statistically significant (Two-way ANOVA). Scale bar = 150 microns.
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TABLE 1 | ALK1, BMP9 and Endoglin effects in tissue fibrosis.

ALK1 BMP9 Endoglin

Profibrotic effect Antifibrotic effect Profibrotic effect Antifibrotic effect Profibrotic effect Antifibrotic effect

Ref. Experimental
model

Ref. Experimental
model

Ref. Experimental
model

Ref. Experimental
model

Ref. Experimental
model

Ref. Experimental
model

Scharpfenecker
et al. (2011)

Kidney fibrosis by
irradiation in Alk1+/−

mice

Muñoz-Félix
et al. (2014a)

Unilateral Ureteral
Obstruction (UUO)
during 15 days in
Alk1+/− mice

Muñoz-Félix et al.
(2016a)

Cultured mouse
embryo fibroblasts

Morine et al. (2018) Transverse aortic
constriction (TAC)
in Bmp9-KO mice.

Scharpfenecker
et al. (2012)

Kidney fibrosis by
irradiation in Eng+/−

mice

Muñoz-Félix et al.
(2016b)

UUO in S-Eng+mice
(mice
overexpressing
human Short
endoglin).

Morine et al.
(2017b)

Deletion of ALK1
with conditional
knockout mice

Morine et al.
(2017a)

Transverse aortic
constriction (TAC)
in Alk1+/− mice

Li et al. (2018) CCl4 induced liver
fibrosis Bile duct
ligation (BDL)
induced liver fibrosis

Desroches-Castan
et al. (2019a)

Bmp9-KO mice Scharpfenecker
et al. (2009)

Kidney fibrosis by
irradiation in Eng+/−

mice

Pericacho et al.
(2013)

Cutured dermal
fibroblasts from
Eng+/− mice

Wiercinska et al.
(2006)

Cultured hepatic
stellate cells

Muñoz-Félix
et al. (2014b)

Cultured mouse
embryo fibroblasts
form Alk1+/− mice

Breitkopf-Heinlein
et al. (2017)

CCL4 and LPS
induced liver
fibrosis. BMP9
inactivated with
adenoviruses

Desroches-Castan
et al. (2019b)

Bmp9-KO mice Scharpfenecker
et al. (2013)

Kidney fibrosis by
irradiation in Eng+/−

mice

Velasco et al. (2008) Cultured L6E9 rat
myoblasts
overexpressing
L-Endoglin

Breitkopf-Heinlein
et al. (2017)

CCL4 and LPS
induced liver
fibrosis. BMP9
inactivated with
adenoviruses

Finnson et al.
(2008)

Cultured human
chondrocytes

Jiang et al. (2021) Bleomycin-
induced
pulmonary fibrosis

Docherty et al.
(2006b)

Kidney fibrosis
induced by
Ischaemia-
reperfusion injury in
Eng+/− mice

Finnson et al. (2010) Cultured human
chondrocytes

This current
manuscript

UUO during 3 days
in Alk1+/− mice

Chen et al. (2017) BMP9 treatment in
neonatal rats

Kapur et al.
(2012)

TAC in Eng+/− mice Alzahrani et al. (2018) Skin fibrosis
induced by
bleomycin

Oujo et al. (2014) UUO in L-Eng+ mice
(mice
overexpressing
human Large
endoglin).

Obreo et al. (2004) Cultured L6E9
myoblasts

Gerrits et al.
(2020)

cultured human
renal myofibroblasts

Diez-Marques et al.
(2002)

Cultured human
mesangial cells

Owen et al.
(2020)

Patients with
cirrhosis

Rodríguez-Barbero
et al. (2006)

Cultured L6E9
myoblasts

Morris et al.
(2011)

Cultured
scleroderma (SSc)
fibroblasts

Meurer et al.
(2011)

Cultured Hepatic
stellate cells
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number is elevated and ALK1 regulates negatively ECM protein
synthesis by myofibroblasts through an inhibition of TGF-β1/
Smad2/3 pathway (Muñoz-Félix et al., 2014b).

Although our previous studies demonstrate a role of ALK1 in
regulating ECM production by ECM producing cells like
fibroblasts, the biological role of ALK1 has been traditionally
considered more relevant in the regulation of endothelial cell
balance during development, cardiovascular diseases and tumor
angiogenesis (Ayuso-Inigo et al., 2021). To understand ALK1
function in tissue fibrosis is very important to consider two
molecular players that regulate ALK1 activity: Its high affinity
ligand BMP9 (David et al., 2007b) and the coreceptor endoglin
(Lebrin et al., 2004; López-Novoa and Bernabeu, 2010). Both
molecules have been studied in depth as regulators of vascular
homeostasis and tissue fibrosis (Table 1).

However, the link of the ALK1-mediated endothelial effects and
tissue fibrosis has not been studied in depth so far. Nevertheless,
new functions have been recently described in different tissues such
as liver and kidney. In the liver, ALK1 is involved in capillary
fenestration and prevents the development of liver fibrosis
(Desroches-Castan et al., 2019a). In this study, the authors
show that mice lacking BMP9, a high affinity receptor for
ALK1, show enlarged sinusoidal vessels and a reduced number
of fenestrae. This suggests an interesting role of the BMP9-ALK1
axis in liver fibrosis protection. In renal tissue, a role for ALK1 in
vascular cells has been described in diabetic nephropathy. ALK1
levels decrease in diabetic mice, being ALK1 expression
circumscribed to glomerular capillaries. ALK1 heterozygous
mice display albuminuria, as a result of changes in endothelial
cells and podocytes, leading to exacerbated levels of collagen IV

FIGURE 9 | Proposed cellular mechanism. After 3 days of Unilateral Ureteral Obstruction (UUO), myofibroblasts emerge in the renal tubular interstitium and
synthesize ECM proteins. At the same time, peritubular capillaries (PTC) undergo vascular rarefaction. This process starts with an angiogenic phase followed by a
regression phase in which endothelial cells detach from pericytes and basement membrane, followed by apoptosis and leading to loss of functional capillaries. Both
endothelial cells and pericytes can transdifferentiate intomyofibroblasts and act as a source of extracellular matrix (ECM) components (A,C). ALK1 heterozygosity is
associated with PTC stability linked to an angiogenic process VEGF-dependent and the reduction of myofibroblast abundance, leading to reduced tubule-interstitial
fibrosis (A,B) Previous results from our laboratory demonstrated that after 15 days of UUO, Alk1+/+ and Alk1+/−mice show the same number of myofibroblasts but those
from Alk1+/− mice produce higher amounts of ECM proteins leading to increased tubulointerstitial fibrosis (C,D). Figure 9 was created using BioRender.com.
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and thickening of the glomerular basement membrane (Lora Gil
et al., 2020).

Our study shows that ALK1 is involved in the regulation of the
stability of renal peritubular capillaries. In the same circumstances
we observe a lower number of myofibroblasts in mice with lower
expression of ALK1, which also show lower tubule-interstitial
fibrosis. With these results, we suggest that both processes may
be linked. Reduced levels of ALK1 together with an increase inVEGF
levels maintains the stability of peritubular capillaries protecting
kidney from myofibroblast emergence and ECM deposition.
Considering all these facts, ALK1 seems to regulate the
endothelial activation and quiescence in the context of UUO.
Endothelial activation in kidney fibrosis occurs in the early steps
of vascular rarefaction, and it is accompanied of endothelial and
pericyte detachments. Both cell types might be the source of the
increased number of myofibroblasts, as it has been demonstrated
during the last years (Zeisberg and Kalluri, 2013).

CONCLUSION

ALK1 is involved in the early changes of UUO, promoting the
development of vascular rarefaction. Alk1+/− mice maintain the
stability of the peritubular capillaries network after UUO, leading
to a decrease of myofibroblasts emergence and ECM deposition.
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