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Growing evidence suggests that drug interactions may be responsible for much of the
known association between opioid use and unintentional traumatic injury. While prior
research has focused on pairwise drug interactions, the role of higher-order (i.e., drug-
drug-drug) interactions (3DIs) has not been examined. We aimed to identify signals of
opioid 3DIs with commonly co-dispensed medications leading to unintentional traumatic
injury, using semi-automated high-throughput screening of US commercial health
insurance data. We conducted bi-directional, self-controlled case series studies using
2000–2015 Optum Data Mart database. Rates of unintentional traumatic injury were
examined in individuals dispensed opioid-precipitant base pairs during time exposed vs
unexposed to a candidate interacting precipitant. Underlying cohorts consisted of 16–90-
year-olds with new use of opioid-precipitant base pairs and ≥1 injury during observation
periods. We used conditional Poisson regression to estimate rate ratios adjusted for time-
varying confounders, and semi-Bayes shrinkage to address multiple estimation. For
hydrocodone, tramadol, and oxycodone (the most commonly used opioids), we
examined 16,024, 8185, and 9330 drug triplets, respectively. Among these, 75 (0.5%;
hydrocodone), 57 (0.7%; tramadol), and 42 (0.5%; oxycodone) were significantly positively
associated with unintentional traumatic injury (50 unique base precipitants, 34 unique
candidate precipitants) and therefore deemed potential 3DI signals. The signals found in
this study provide valuable foundations for future research into opioid 3DIs, generating
hypotheses to motivate crucially needed etiologic investigations. Further, this study applies
a novel approach for 3DI signal detection using pharmacoepidemiologic screening of
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health insurance data, which could have broad applicability across drug classes and
databases.

Keywords: drug interactions, injury, opioid analgesics, pharmacoepidemiology, population health, self-controlled
case series

1 INTRODUCTION

Opioid-relatedmorbidity andmortality are pressing public health
challenges in the US, with more than 197,000 emergency
department visits, 91,000 hospitalizations, and 42,000 deaths
associated with opioids in 2016 alone (Centers for Disease
Control and Prevention, 2018; Centers for Disease Control
and Prevention, 2019). There is a growing body of evidence
demonstrating that major drivers of this morbidity and mortality
are unintentional traumatic injuries (i.e., fractures, motor vehicle
accidents, etc.) resulting from the central nervous system (CNS)
depressant effects of opioids (Buckeridge et al., 2010; Yoshikawa
et al., 2020; Cameron-Burr et al., 2021). Pharmacodynamic and
pharmacokinetic opioid-drug interactions can significantly
potentiate these opioid CNS depressant effects, and thus
represent key contributors to opioid-induced traumatic injuries
(Gudin, 2012; Bain and Knowlton, 2019; Matos et al., 2020).
Because detecting such interactions could play a critical role in
preventing opioid-related injuries, we previously conducted a
large-scale screening of real-world data to identify signals of
injury-inducing opioid interactions with commonly co-
prescribed drugs (Leonard et al., 2020). However, an intrinsic
limitation of our prior screening study, and investigations into
opioid interactions more generally, is the exclusive focus on
pairwise interactions that fails to identify higher-order
interactions.

Despite considerable attention being focused on drug
interactions as a significant source of preventable iatrogenic
harm, higher-order interactions, such as drug-drug-drug
interactions (3DIs), remain underappreciated and
understudied (Horn and Hansten, 2011). This knowledge gap
has become particularly noteworthy in the context of rising
polypharmacy rates worldwide (Wastesson et al., 2018; World
Health Organization, 2019), which continue to increase the
probability and relevance of 3DIs (Létinier et al., 2021). While
some 3DIs may be postulated based purely on knowledge of
pairwise interactions, real-world evidence is often needed to
determine the clinical effects on patient outcomes from
multiple coincident pharmacokinetic and/or pharmacodynamic
drug interactions (Horn and Hansten, 2011). These assessments
of 3DIs are especially important for medications that are
frequently received by populations with high rates of
polypharmacy, such as among those populations for which
opioids are often indicated. Estimates suggest that people who
use opioids fill a mean of 52 prescriptions annually from
approximately 10 drug classes, and that opioids represent the
most common component of polypharmacy among CNS-active
medications (Medicare Payment Advisory Committee, 2015;
Gerlach et al., 2017; Matos et al., 2020). While these findings
illustrate the critical need for research on higher-order

interactions, the lack of established strategies for assessing
3DIs has stymied such investigations.

Therefore, we sought to accomplish the following objectives:
1) to develop and implement a semi-automated, high-throughput
approach to screen for 3DIs using pharmacoepidemiologic
methods applied to administrative healthcare databases; and 2)
to identify signals of opioid 3DIs with commonly co-dispensed
medications associated with unintentional traumatic injury.

2 MATERIALS AND METHODS

We conducted semi-automated, high-throughput
pharmacoepidemiologic screening of Optum’s de-identified
Clinformatics® Data Mart Database (Optum Inc, 2014)
administrative data from 5/1/2000-9/30/2015 (see
Supplementary Methods for additional details on data
source). From this large US commercial health insurance
database, we sought to identify 3DI signals between opioid
object + precipitant base pairs and candidate interacting
precipitants. In the context of drug interactions, the object is
the drug being affected (i.e., “victim”), whereas the precipitants
are the drugs doing the affecting (i.e., “perpetrators”) (Hennessy
et al., 2016). We first identified both the potential base pair
precipitants and candidate interacting precipitants, which we
operationalized as any orally administered, non-opioid drugs
that were frequently co-dispensed with opioids. We
constructed separate study cohorts for 16–90-year-old, new
users of each combination of an opioid with a base pair
precipitant, and identified 3DI signals by performing
thousands of confounder-adjusted self-controlled case series
studies. The goal of these studies was to examine the
associations between different sets of opioid object +
precipitant base pairs with candidate precipitants and the
following outcomes: unintentional traumatic injury (primary
outcome); typical hip fracture (secondary outcome); and
motor vehicle crash while the person was driving (secondary
outcome) (Supplementary Table S1).

For each drug triplet consisting of an opioid object-
precipitant-precipitant set, we conducted a bi-directional self-
controlled case series study to examine the rate of each outcome
in an individual treated with the opioid object + precipitant base
pairs during time exposed vs unexposed to the candidate
precipitant. Figure 1 provides a graphical representation of the
design. Although the “case series” phrase within self-controlled
case series may seem to imply the absence of a comparator, the
approach is a rigorous controlled self-matched epidemiologic
study design; it is the cohort analogue of the case-crossover design
(Maclure et al., 2012). The self-controlled case series design is
ideal for drug interaction screening because: 1) the causal contrast
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is made within an individual and thus inherently controls for
confounding by measured and unmeasured factors that remain
constant within an individual over the observation period (e.g.,
sex, genetics); 2) the underlying statistical model can control for
time-varying factors; (Lee and Carlin, 2014); 3) the approach is
highly computationally-efficient (Whitaker et al., 2009), since it
includes only persons experiencing an outcome; and 4) there is
precedent for the use of high-throughput applications. Analogous
pharmacoepidemiologic screening studies have identified drugs
associated with hypoglycemia in people using insulin
secretagogues (Han et al., 2017), rhabdomyolysis in people
using statins (Bykov et al., 2019), and serious bleeding in
people using clopidogrel (Leonard et al., 2019) and
anticoagulants (Pottegård et al., 2014; Martín-Pérez et al.,
2018; Bykov et al., 2019).

The University of Pennsylvania’s institutional review board
approved this research under protocols #831486 and #819924.

2.1 Creating Study Cohorts of Persons With
New Use of Opioid + Precipitant Base Pairs
Our study cohorts were composed of 16–90-year-olds, with this
range selected to maximize capture of opioid 3DI signals across
the age spectrum. While it may be reasonable to suspect greater
risks of opioid 3DI-related traumatic injuries in older populations
(i.e., due to greater numbers of co-prescribed drugs and baseline
outcome risks, etc.), opioid dispensing rates remain high in
younger US populations (Renny et al., 2021). Thus,
identification of potentially clinically impactful 3DIs has real-
world relevance across these age groups. The specific inclusion of
persons ≥16 years of age also served to facilitate more complete
assessment of our secondary outcome, motor vehicle crash while
the person was driving (i.e., 16 is the youngest full-license legal
driving age in the US).

We constructed separate study cohorts for new users of each
combination of an opioid object drug with a base pair precipitant.
We achieved this by requiring a baseline period (see “Defining
observation and baseline periods”) without dispensing for the
given opioid in the base pair. We then utilized pharmacy claim
dates and days’ supply values to build opioid object + precipitant
base pair exposure episodes consisting of ≥1 dispensings of the
opioid object and base pair precipitant. We permitted a grace
period between contiguous dispensings and at the end of the last

dispensing for the opioid objects and base pair precipitants. The
length of the grace period was calculated as days’ supply × 0.20.

See Supplementary Methods for additional details on
identification of base pair precipitant drugs and candidate
interacting precipitant drugs during opioid object drug use.

2.2 Defining Observation and Baseline
Periods
For each new user of a base pair meeting inclusion criteria, we
began the observation period at the start of concomitant use of
the opioid object and base pair precipitant, and censored the
observation period upon the earliest occurrence of: 1) lapsed
exposure to the opioid object and/or base pair precipitant
(permitting the grace period); 2) a switch from the opioid
object to a pharmacologic alternative (i.e., a different opioid or
opioid agonist-antagonist); 3) health plan disenrollment
(allowing gaps of 45 days); or 4) the end of the study dataset.
If inclusion criteria were met at more than one time during the
study period, a single individual could have more than one
observation period as part of different base pair assessments.
Since the self-controlled case series design is a case-only
approach, we required new users of base pairs to experience
an outcome (see “Identifying outcomes”) during their
observation period. We did not censor upon outcome
occurrence since this would violate an underlying assumption
of the self-controlled case series design (Whitaker et al., 2006;
2009).

We defined the baseline period as the 183 days immediately
preceding yet excluding the first day of the observation period.
We required the baseline period be devoid of an interruption in
health plan coverage (allowing a maximum gap of 45 days) or
dispensing for the opioid object drug under study. We did not
exclude episodes preceded by a baseline dispensing for a
pharmacologic alternative to the opioid object drug; this
permitted us to study second- and later-line opioid therapies.
For example, we excluded from the hydrocodone cohort episodes
with baseline hydrocodone dispensing, but not episodes with
baseline tramadol dispensing. We also did not exclude episodes
with baseline dispensing of base pair precipitants, as it was
infeasible to individually assess therapeutic alternatives for all
base pair precipitants. We further required the 30 days
immediately preceding and including the observation period

FIGURE 1 | Example of opioid object + precipitant base pair exposure episode eligible for inclusion. The presence of candidate precipitant-unexposed person-days
before and after candidate precipitant-exposed person-days is indicative of a bi-directional implementation of the self-controlled case series design.
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start date be event-free; this served to minimize reverse causation
since opioids are used to treat injury-induced pain.

2.3 Categorizing Observation Period Time
Based on Candidate Precipitant Drug
Exposure
The exposure of interest was use of the candidate interacting
precipitant drug. We classified each day in the observation period
either as exposed to the candidate precipitant or as unexposed to
the candidate precipitant. Candidate precipitant exposed days
were defined by exposure to the candidate interacting precipitant
drug concomitant with the opioid object + precipitant base pair.
Candidate precipitant unexposed days were all other observation
period days (i.e., days with exposure to the opioid object +
precipitant base pair, but no exposure to the candidate
precipitant). To minimize exposure trend bias (Maclure et al.,
2012), we included candidate precipitant-unexposed days
occurring both before and after candidate precipitant-exposed
days (see Supplementary Methods).

2.4 Defining the Covariates of Interest
The self-controlled case series design implicitly controls for time-
invariant, but not time-varying, covariates (Whitaker et al., 2006).
We therefore included in each regression model the following
time-varying covariates assessed during each day of observation
time: 1) opioid daily dose, in morphine milligram equivalents (see
Supplementary Methods); (Centers for Medicare and Medicaid
Services, 2018); and 2) presence of prior traumatic injury of
interest in any diagnostic position on any claim type (e.g., a prior
secondary-position ambulatory care hip fracture diagnosis in an
analysis of the hip fracture endpoint). The latter covariate is
relevant because prior injury may predict subsequent injury
(Fulton et al., 2014), and the self-controlled case series design
does not censor observation time upon event occurrence. In a
secondary analysis, we further evaluated the impacts of prior
injuries on our findings by removing episodes with unintentional
traumatic injury prior to the first day of observation.

2.5 Identifying Outcomes
The primary outcome was unintentional traumatic injury,
defined as an emergency department or inpatient
hospitalization for fracture, dislocation, sprain/strain,
intracranial injury, internal injury of thorax, abdomen, or
pelvis, open wound, injury to blood vessels, crushing injury,
injury to nerves or spinal cord, or certain traumatic
complications and unspecified injuries. Consistent with the
American College of Surgeons’ National Trauma Data
Standard (American College of Surgeons, 2016), our definition
excluded: 1) late effects of injuries, poisonings, toxic effects, and
other external causes; 2) superficial injury; 3) contusion with
intact skin surface; and 4) effects of a foreign body entering
through an orifice. Consistent with work by (Sears et al., 2015),
our definition also excluded burns, as such injuries are unlikely to
be due to opioid use. A secondary outcome was inpatient
hospitalization for typical hip fracture. We excluded: 1)
pathologic hip fractures, since these events are due to a

localized process such as malignancy or infection (Curtis et al.,
2009); and 2) atypical hip fractures, since these events are
infrequently traumatic and often attributed to bisphosphonate
and/or glucocorticoid use (Shane et al., 2014). Another secondary
outcome was motor vehicle crash while the person was driving,
defined as an unintentional traumatic injury (see primary
outcome above) plus an external cause of injury code for an
unintentional traffic or nontraffic accident. We excluded crashes
of a self-inflicted, assault, or undetermined manner, consistent
with the Centers for Disease Control and Prevention’s injury
mortality framework (Recommended framework for presenting
injury mortality data, 1997). We provide operational outcome
definitions, their operating characteristics, and other support for
their use in Supplementary Table S1.

2.6 Statistical Analysis
For assessing each opioid object + precipitant base pair relative to
each outcome, we constructed an analytic file in which the unit of
observation was the person-day covered by active prescriptions
for the opioid object and base pair precipitant. The binary
dependent variable was whether the unintentional traumatic
injury occurred on that day. Independent variables included a
unique subject identifier, whether a person-day was exposed vs
unexposed to the candidate precipitant, and the time-varying
covariates (see “Defining the covariates of interest”). The
parameter of interest was the outcome occurrence rate ratio
(RR) during candidate precipitant-exposed vs candidate
precipitant-unexposed days (i.e., rate exposed to opioid object
+ precipitant base pair and candidate precipitant/rate exposed to
opioid object + precipitant base pair). We used conditional
Poisson regression models (xtpoisson with fe option, Stata v.16:
College Station, TX, United States) to estimate RRs and 95%
confidence intervals (CIs) (Whitaker, 2005; Whitaker et al., 2006,
2009). To avoid statistically unstable estimates, we did not
estimate RRs when there were: 1) < 5 candidate precipitant-
exposed persons; or 2) no events during candidate precipitant-
exposed time. Further, we do not report RRs from non-converged
conditional Poisson regression models or if the variance of the
beta estimate for the parameter of interest was >10.

To address multiple estimation inherent in calculating
numerous RRs, we used a semi-Bayes shrinkage method. This
approach improves the validity of effect estimates and preserves
nominal type-1 error (Greenland and Poole, 1994; Steenland
et al., 2000). See details in Supplementary Methods.

To contextualize findings, we compared 3DI signals generated
by our semi-automated approach to putative, pairwise
interactions documented in the following drug interaction
knowledgebases: Micromedex (IBM Watson Health:
Cambridge, MA, United States); and Facts & Comparisons
Clinical Drug Information (Wolters Kluwer: Alphen aan den
Rijn, South Holland, Netherlands).

3 RESULTS

The three most commonly used opioids were hydrocodone,
tramadol, and oxycodone, which are the focus of the
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TABLE 1 | Descriptors of persons experiencing unintentional traumatic injury while receiving opioid object drugs.

Object Drug

Codeine Fentanyl Hydrocod Hydromor Levorph Meperidine Methadone Morphine Oxycodone Oxymorph Tapentadol Tramadol

Persons 6,065 1,435 25,019 828 2 248 439 1,612 10,826 224 163 12,650

Days of
observation
period, median
(Q1-Q3) per
person

10.0
(6.0–19.0)

33.0
(16.0–57.0)

12.0
(7.0–27.0)

13.0
(7.0–31.0)

26.5
(19.0–34.0)

9.0
(5.0–13.0)

50.0
(24.0–145.0)

35.0
(16.0–72.0)

13.0
(7.0–37.0)

38.5
(22.0–152.5)

24.5
(10.5–37.0)

19.0
(10.0–37.0)

Days of
observation, sum

130,951 95,350 1,066,507 32,251 53 7,656 52,699 152,303 641,103 28,640 10,075 574,007

Unintentional
traumatic
injuries, sum

7,790 1,894 33,567 1,023 2 293 644 2,082 14,071 299 284 17,385

Demographics

Age, median
(Q1–Q3), years

54.5
(40.5–72.6)

73.8
(60.0–80.2)

59.2
(44.2–75.4)

60.7
(50.0–72.7)

75.0
(71.9–78.1)

52.2
(40.4–62.8)

59.2
(48.4–70.6)

67.1
(55.0–77.7)

60.2
(46.8–73.6)

58.2
(50.5–67.6)

57.2
(48.7–69.1)

71.1
(55.2–80.9)

Age <35 years,
sum (%)

1,041
(17.2)

34 (2.4) 3,183
(12.7)

45 (5.4) 0 (0.0) 34 (13.7) 28 (6.4) 44 (2.7) 1,081 (10.0) 11 (4.9) 9 (5.5) 697 (5.5)

Sex, sum (%)
female

3,801
(62.7)

987 (68.8) 14,488
(57.9)

512 (61.8) 1 (50.0) 165 (66.5) 244 (55.6) 969 (60.1) 6,199 (57.3) 129 (57.6) 108 (66.3) 8,535
(67.5)

Race, sum (%) Caucasian 4,159
(68.6)

1,081
(75.3)

17,707
(70.8)

619 (74.8) 2 (100.0) 172 (69.4) 308 (70.2) 1,242
(77.0)

7,722 (71.3) 168 (75.0) 128 (78.5) 8,938
(70.7)

African
American

471 (7.8) 110 (7.7) 2,206 (8.8) 69 (8.3) 0 (0.0) 21 (8.5) 43 (9.8) 122 (7.6) 1,047 (9.7) 27 (12.1) 12 (7.4) 1,439
(11.4)

Hispanic 536 (8.8) 84 (5.9) 1,901 (7.6) 49 (5.9) 0 (0.0) 10 (4.0) 26 (5.9) 90 (5.6) 691 (6.4) 7 (3.1) 8 (4.9) 1,098 (8.7)
Asian 172 (2.8) 16 (1.1) 381 (1.5) 13 (1.6) 0 (0.0) 1 (0.4) 8 (1.8) 21 (1.3) 145 (1.3) 1 (0.4) 3 (1.8) 182 (1.4)
Unknown 727 (12.0) 144 (10.0) 2,824 (11.3) 78 (9.4) 0 (0.0) 44 (17.7) 54 (12.3) 137 (8.5) 1,221 (11.3) 21 (9.4) 12 (7.4) 993 (7.8)

Geographic
division, sum (%)

New England
(CT, ME, MA,
NH, RI, VT)

320 (5.3) 80 (5.6) 820 (3.3) 48 (5.8) 0 (0.0) 1 (0.4) 19 (4.3) 85 (5.3) 533 (4.9) 8 (3.6) 2 (1.2) 568 (4.5)

Middle
Atlantic (NJ,
NY, PA)

328 (5.4) 80 (5.6) 844 (3.4) 54 (6.5) 1 (50.0) 3 (1.2) 23 (5.2) 81 (5.0) 734 (6.8) 13 (5.8) 16 (9.8) 646 (5.1)

East North
Central (IN,
IL, MI,
OH, WI)

1,138
(18.8)

255 (17.8) 4,049
(16.2)

82 (9.9) 1 (50.0) 13 (5.2) 48 (10.9) 201 (12.5) 1,503 (13.9) 31 (13.8) 19 (11.7) 1,974
(15.6)

West North
Central (IA,
KS, MN, MO,
NE, ND, SD)

759 (12.5) 165 (11.5) 2,183 (8.7) 56 (6.8) 0 (0.0) 13 (5.2) 36 (8.2) 122 (7.6) 879 (8.1) 9 (4.0) 6 (3.7) 1,098 (8.7)

South
Atlantic (DE,
DC, FL, GA,

1,111
(18.3)

305 (21.3) 5,660
(22.6)

265 (32.0) 0 (0.0) 104 (41.9) 112 (25.5) 413 (25.6) 3,377 (31.2) 85 (37.9) 81 (49.7) 3,489
(27.6)

(Continued on following page)
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TABLE 1 | (Continued) Descriptors of persons experiencing unintentional traumatic injury while receiving opioid object drugs.

Object Drug

Codeine Fentanyl Hydrocod Hydromor Levorph Meperidine Methadone Morphine Oxycodone Oxymorph Tapentadol Tramadol

MD, NC, SC,
VA, WV)
East South
Central (AL,
KY, MS, TN)

183 (3.0) 88 (6.1) 1,336 (5.3) 22 (2.7) 0 (0.0) 36 (14.5) 46 (10.5) 97 (6.0) 540 (5.0) 22 (9.8) 6 (3.7) 613 (4.8)

West South
Central (AR,
LA, OK, TX)

606 (10.0) 151 (10.5) 3,713
(14.8)

51 (6.2) 0 (0.0) 44 (17.7) 44 (10.0) 146 (9.1) 507 (4.7) 20 (8.9) 10 (6.1) 1,783
(14.1)

Mountain
(AZ, CO, ID,
NM, MT, UT,
NV, WY)

595 (9.8) 141 (9.8) 2,684
(10.7)

128 (15.5) 0 (0.0) 26 (10.5) 49 (11.2) 245 (15.2) 1,563 (14.4) 28 (12.5) 12 (7.4) 1,341
(10.6)

Pacific (AK,
CA, HI,
OR, WA)

999 (16.5) 167 (11.6) 3,569
(14.3)

120 (14.5) 0 (0.0) 8 (3.2) 58 (13.2) 214 (13.3) 1,137 (10.5) 6 (2.7) 11 (6.7) 1,086 (8.6)

Unknown 26 (0.4) 3 (0.2) 161 (0.6) 2 (0.2) 0 (0.0) 0 (0.0) 4 (0.9) 8 (0.5) 53 (0.5) 2 (0.9) 0 (0.0) 52 (0.4)

Time-varying covariates

Opioid average
daily dose, median
(Q1-Q3), MME

9.0
(4.5–18.0)

60.0
(60.0–120)

22.5
(15.0–32.1)

64.0
(48.0–96.0)

65.2
(44.0–65.2)

20.0
(10.0–30.0)

240
(80.0–600)

60.0
(43.5–120)

60.0
(30.0–90.0)

120
(60.0–180)

80.0
(60.0–120)

15.0
(10.0–20.0)

Unintentional
traumatic injury,
ever prior to the
day of
observation,a

person-days (%)

93,889
(71.7)

75,649
(79.3)

774,045
(72.6)

26,384
(81.8)

53 (100.0) 3,759 (49.1) 41,364
(78.5)

119,191
(78.3)

485,679
(75.8)

23,681
(82.7)

8,957 (88.9) 425,268
(74.1)

Unintentional
traumatic injury,
ever prior to the
first day of
observation,a

episodes (%)

3,491
(57.3)

902 (62.9) 13,137
(52.2)

550 (66.3) 2 (100.0) 132 (53.2) 277 (62.7) 972 (60.2) 6,074 (55.9) 161 (71.9) 122 (74.8) 7,494
(58.9)

aDiagnosis (any position, any claim type) ever prior to the day of observation.
Hydrocod, hydrocodone; hydromor, hydromorphone; levorph, levorphanol; MME, morphine milligram equivalents; oxymorph, oxymorphone; Q, quartile.
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TABLE 2 | Summary data on rate ratios for unintentional traumatic injury, by object drug.

Object Drug

Codeine Fentanyl Hydrocod Hydromor Levorph Meperidine Methadone Morphine Oxycodone Oxymorph Tapentadol Tramadol

Unadjusted analyses, before semi-Bayes shrinkage

Drug triplets examined, sum 4,029 2,303 16,751 695 NA 11 250 2,096 10,035 75 15 10,546
3DIs, sum (%) 231 (5.7) 250 (10.9) 1,089 (6.5) 20 (2.9) NA 0 (0.0) 18 (7.2) 146 (7.0) 666 (6.6) 2 (2.7) 1 (6.7) 673 (6.4)
Increased ratea 87 (2.2) 38 (1.7) 409 (2.4) 11 (1.6) NA 0 (0.0) 1 (0.4) 59 (2.8) 267 (2.7) 0 (0.0) 1 (6.7) 290 (2.7)
Decreased rateb 144 (3.6) 212 (9.2) 680 (4.1) 9 (1.3) NA 0 (0.0) 17 (6.8) 87 (4.2) 399 (4.0) 2 (2.7) 0 (0.0) 383 (3.6)
RR geometric mean ± SD 0.84 ± 2.84 0.76 ± 2.92 0.87 ± 2.61 0.80 ± 3.03 NA 0.54 ± 2.51 0.61 ± 3.23 0.85 ± 3.00 0.85 ± 2.73 0.57 ± 2.75 2.00 ± 2.68 0.89 ± 2.64
RR range, min to max 0.00–85.20 0.02–51.33 0.02–78.22 0.05–25.05 NA 0.19–3.00 0.03–13.23 0.02–108.64 0.01–89.83 0.05–4.42 0.41–16.40 0.02–65.63

Confounder-adjusted analyses, before semi-Bayes shrinkage

Drug triplets examined, sum 1,941 1,690 16,024 289 NA NA 17 1,281 9,330 7 NA 8,185
3DIs, sum (%) 154 (7.9) 199 (11.8) 1,264 (7.9) 10 (3.5) NA NA 1 (5.9) 109 (8.5) 749 (8.0) 0 (0.0) NA 659 (8.1)
Increased ratea 61 (3.1) 39 (2.3) 512 (3.2) 4 (1.4) NA NA 0 (0.0) 48 (3.7) 302 (3.2) 0 (0.0) NA 296 (3.6)
Decreased rateb 93 (4.8) 160 (9.5) 752 (4.7) 6 (2.1) NA NA 1 (5.9) 61 (4.8) 447 (4.8) 0 (0.0) NA 363 (4.4)
RR geometric mean ± SD 0.88 ± 3.00 0.78 ± 3.10 0.88 ± 2.77 0.81 ± 3.25 NA NA 0.46 ± 2.93 0.88 ± 3.27 0.87 ± 2.88 0.80 ± 2.57 NA 0.92 ± 2.75
RR range, min to max 0.01–32.93 0.01–329.48 0.01–98.98 0.03–29.77 NA NA 0.07–3.82 0.00–110.29 0.01–226.25 0.28–3.05 NA 0.01–185.41

Unadjusted analyses, after semi-Bayes shrinkage

Drug triplets examined, sum 4,029 2,303 16,751 695 NA 11 250 2,096 10,035 75 15 10,546
3DIs, sum (%) 20 (0.5) 150 (6.5) 246 (1.5) 0 (0.0) NA 0 (0.0) 9 (3.6) 19 (0.9) 128 (1.3) 0 (0.0) 0 (0.0) 126 (1.2)
Increased ratea 5 (0.1) 0 (0.0) 61 (0.4) 0 (0.0) NA 0 (0.0) 0 (0.0) 4 (0.2) 32 (0.3) 0 (0.0) 0 (0.0) 42 (0.4)
Decreased rateb 15 (0.4) 150 (6.5) 185 (1.1) 0 (0.0) NA 0 (0.0) 9 (3.6) 15 (0.7) 96 (1.0) 0 (0.0) 0 (0.0) 84 (0.8)
RR geometric mean ± SD 0.87 ± 1.23 0.68 ± 1.26 0.89 ± 1.26 0.85 ± 1.18 NA 0.46 ± 1.16 0.61 ± 1.22 0.87 ± 1.24 0.88 ± 1.26 0.53 ± 1.16 1.39 ± 1.21 0.93 ± 1.26
RR range, min to max 0.40–2.61 0.28–1.63 0.28–2.87 0.49–1.71 NA 0.37–0.62 0.29–0.97 0.40–2.49 0.20–2.76 0.35–0.73 0.86–1.87 0.30–3.10

Confounder-adjusted analyses, after semi-Bayes shrinkage

Drug triplets examined, sum 1,941 1,690 16,024 289 NA NA 17 1,281 9,330 7 NA 8,185
3DIs, sum (%) 13 (0.7) 108 (6.4) 241 (1.5) 0 (0.0) NA NA 0 (0.0) 11 (0.9) 145 (1.6) 0 (0.0) NA 138 (1.7)
Increased ratea 4 (0.2) 0 (0.0) 75 (0.5) 0 (0.0) NA NA 0 (0.0) 5 (0.4) 42 (0.5) 0 (0.0) NA 57 (0.7)
Decreased rateb 9 (0.5) 108 (6.4) 166 (1.0) 0 (0.0) NA NA 0 (0.0) 6 (0.5) 103 (1.1) 0 (0.0) NA 81 (1.0)
RR geometric mean ± SD 0.90 ± 1.26 0.70 ± 1.28 0.91 ± 1.27 0.90 ± 1.20 NA NA 0.47 ± 1.19 0.91 ± 1.26 0.89 ± 1.27 0.73 ± 1.11 NA 0.94 ± 1.28
RR range, min to max 0.35–3.05 0.28–1.74 0.29–2.75 0.60–2.06 NA NA 0.32–0.67 0.42–2.64 0.20–2.86 0.62–0.87 NA 0.30–2.75

aLower bound of the 95% confidence interval for the RR of interest excluded the null value.
bUpper bound of the 95% confidence interval for the RR of interest excluded the null value.
Hydrocod, hydrocodone; hydromor, hydromorphone; levorph, levorphanol; max, maximum; min, minimum; NA, not applicable; oxymorph, oxymorphone; RR, rate ratio; SD, standard deviation; 3DI, drug-drug-drug interaction.
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TABLE 3 | Drug-drug-drug interaction signals with statistically significantly increased rates of unintentional traumatic injury for commonly used opioids, by therapeutic
category of base pair precipitant drug.

Object Base Precipitant,
Therapeutic Category

Base Precipitant,
Drug

Candidate Interacting
Precipitant, Drug

Rate Ratio,
Semi-bayes Shrunk

and Adjusted

95% Confidence
Interval

HYDROCODONE Anti-infective amoxicillin ibuprofen 1.92 1.05–3.49
Cardiovascular amlodipine cephalexin 1.95 1.30–2.93

amlodipine sulfamethoxazole 1.81 1.15–2.85
amlodipine trimethoprim 1.76 1.12–2.75
atenolol cyclobenzaprine 1.88 1.19–2.95
atorvastatin cephalexin 1.55 1.02–2.36
atorvastatin diazepam 2.22 1.26–3.92
diltiazem cephalexin 1.76 1.02–3.01
diltiazem cyclobenzaprine 1.95 1.12–3.41
diltiazem ibuprofen 2.73a,b 1.36–5.45
lisinopril cephalexin 1.42 1.03–1.97
lisinopril meloxicam 2.02 1.29–3.18
lisinopril rosuvastatin 2.00 1.11–3.61
lisinopril sulfamethoxazole 1.59 1.07–2.37
lisinopril trimethoprim 1.56 1.05–2.31
lovastatin cyclobenzaprine 1.95 1.11–3.44
metoprolol diazepam 1.76 1.01–3.06
metoprolol meloxicam 2.22 1.25–3.94
metoprolol prednisone 1.60 1.13–2.27
metoprolol sulfamethoxazole 1.73 1.17–2.54
metoprolol trimethoprim 1.69 1.15–2.47
pravastatin cyclobenzaprine 1.86 1.03–3.38
pravastatin naproxen 2.02 1.00–4.08
simvastatin naproxen 1.74 1.12–2.69
simvastatin tizanidine 2.13 1.07–4.27
valsartan cephalexin 2.50 1.37–4.58
valsartan sulfamethoxazole 1.90 1.01–3.55
valsartan trimethoprim 1.90 1.01–3.55

Central nervous system alprazolam ibuprofen 2.15 1.14–4.05
citalopram cephalexin 2.18 1.27–3.72
citalopram cyclobenzaprine 1.66 1.07–2.60
citalopram nitrofurantoin 2.07 1.06–4.06
cyclobenzaprine cephalexin 1.78 1.03–3.09
cyclobenzaprine diazepam 1.78 1.14–2.77
cyclobenzaprine prednisone 1.42 1.06–1.91
diazepam cephalexin 2.22 1.10–4.48
donepezil cephalexin 2.10 1.13–3.91
etodolac cyclobenzaprine 2.01 1.05–3.86
fluoxetine cyclobenzaprine 2.22 1.27–3.89
fluoxetine ibuprofen 1.95 1.05–3.64
gabapentin cephalexin 1.63 1.04–2.55
meloxicam cephalexin 2.16 1.10–4.26
memantine cephalexin 2.75 1.27–5.97
pregabalin amoxicillin 2.42a,b 1.21–4.85
pregabalin clavulanate 2.34a,b 1.12–4.89
sertraline amoxicillin 2.12 1.27–3.55
sertraline cephalexin 2.16 1.29–3.62
trazodone cyclobenzaprine 2.03 1.17–3.50
zolpidem diazepam 1.98 1.11–3.52

Endocrine and metabolic conjugated estrogens cyclobenzaprine 2.42a,b 1.27–4.61
levothyroxine cephalexin 1.48 1.05–2.10
levothyroxine cyclobenzaprine 2.24 1.63–3.08
levothyroxine diclofenac 2.41 1.11–5.24
levothyroxine isosorbide mononitrate 1.96 1.05–3.64
levothyroxine meloxicam 1.82 1.08–3.06
metformin cephalexin 1.92 1.29–2.87
metformin ibuprofen 2.06 1.26–3.34
metformin sulfamethoxazole 1.60 1.01–2.54
metformin trimethoprim 1.60 1.01–2.54

Gastrointestinal esomeprazole cephalexin 2.57 1.48–4.46
omeprazole cephalexin 1.67 1.11–2.51

(Continued on following page)
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TABLE 3 | (Continued) Drug-drug-drug interaction signals with statistically significantly increased rates of unintentional traumatic injury for commonly used opioids, by
therapeutic category of base pair precipitant drug.

Object Base Precipitant,
Therapeutic Category

Base Precipitant,
Drug

Candidate Interacting
Precipitant, Drug

Rate Ratio,
Semi-bayes Shrunk

and Adjusted

95% Confidence
Interval

omeprazole cyclobenzaprine 2.12 1.38–3.27
omeprazole naproxen 1.95 1.12–3.39
omeprazole sulfamethoxazole 1.69 1.07–2.66
omeprazole trimethoprim 1.62 1.03–2.55
pantoprazole duloxetine 1.97 1.04–3.75

Hematological clopidogrel diazepam 2.28a,c 1.13–4.62
Nutrients and nutritional potassium chloride cyclobenzaprine 1.90 1.22–2.96
Renal and genitourinary furosemide clindamycin 1.86 1.02–3.39

furosemide sulfamethoxazole 1.62 1.08–2.42
furosemide trimethoprim 1.61 1.08–2.41
hydrochlorothiazide cephalexin 1.93 1.37–2.71
hydrochlorothiazide cyclobenzaprine 1.38 1.03–1.83

Respiratory montelukast cyclobenzaprine 1.97 1.14–3.40

OXYCODONE Cardiovascular amlodipine Acetaminophen 2.42 1.36–4.31
amlodipine cephalexin 1.71 1.01–2.90
amlodipine ciprofloxacin 1.78 1.04–3.04
amlodipine clonazepam 2.14 1.06–4.31
amlodipine potassium chloride 1.72 1.03–2.87
lisinopril cephalexin 2.14 1.36–3.37
metoprolol Acetaminophen 2.25 1.28–3.95
metoprolol cephalexin 1.73 1.04–2.87
metoprolol potassium chloride 1.84 1.19–2.83
pravastatin potassium chloride 2.09 1.04–4.18
ramipril potassium chloride 2.31a,b 1.16–4.61
simvastatin Acetaminophen 2.86 1.49–5.49
simvastatin cephalexin 2.44 1.44–4.13
simvastatin ibuprofen 1.99 1.04–3.80
simvastatin naproxen 2.25 1.19–4.26
simvastatin potassium chloride 1.70 1.06–2.73

Central nervous system Acetaminophen potassium chloride 2.01 1.01–3.99
bupropion buspirone 2.44c 1.14–5.19
bupropion cyclobenzaprine 1.96 1.03–3.72
carisoprodol clopidogrel 2.24 1.08–4.65
clonazepam amoxicillin 2.38a,b 1.12–5.05
diazepam prednisone 1.79 1.00–3.19
fluoxetine potassium chloride 2.15 1.13–4.09
ibuprofen methylprednisolone 1.83 1.01–3.32

Endocrine and metabolic levothyroxine ciprofloxacin 1.84 1.21–2.78
levothyroxine clonazepam 1.94 1.01–3.73
levothyroxine cyclobenzaprine 1.77 1.09–2.87
levothyroxine ibuprofen 2.68 1.32–5.43
metformin cephalexin 1.96 1.10–3.48
metformin ibuprofen 2.29a 1.17–4.50

Gastrointestinal omeprazole cefuroxime 2.46a 1.11–5.46
omeprazole hydrochlorothiazide 1.86 1.04–3.32
omeprazole ibuprofen 1.88 1.04–3.40
omeprazole potassium chloride 1.62 1.00–2.63

Hematological clopidogrel cephalexin 2.02 1.09–3.77
warfarin cephalexin 1.85 1.02–3.33

Nutrients and nutritional potassium chloride ibuprofen 2.41 1.06–5.47
Renal and genitourinary hydrochlorothiazide cyclobenzaprine 1.69 1.13–2.54

hydrochlorothiazide ibuprofen 2.71a,c 1.54–4.76

TRAMADOL Cardiovascular amiodarone sulfamethoxazole 2.68c 1.26–5.73
amiodarone trimethoprim 2.72c 1.27–5.79
amlodipine cephalexin 2.29 1.43–3.67
amlodipine ibuprofen 1.98 1.08–3.62
amlodipine nitrofurantoin 1.90 1.06–3.40
amlodipine ondansetron 1.80 1.06–3.05
atorvastatin cephalexin 2.03 1.09–3.79

(Continued on following page)
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presented results unless otherwise specified. Table 1 summarizes
characteristics of persons experiencing traumatic injury while
receiving opioid object drugs. There were 25,019, 12,650, and
10,826 people with new use of hydrocodone, tramadol, and
oxycodone respectively, all of whom by design experienced an

outcome. The three most commonly occurring injury types were
sprain/strain (39.9%), certain traumatic complications and
unspecified injuries (27.1%), and fracture (25.7%). Median
durations of observation for hydrocodone, tramadol, and
oxycodone were 12, 13, and 19 days, respectively. The plurality

TABLE 3 | (Continued) Drug-drug-drug interaction signals with statistically significantly increased rates of unintentional traumatic injury for commonly used opioids, by
therapeutic category of base pair precipitant drug.

Object Base Precipitant,
Therapeutic Category

Base Precipitant,
Drug

Candidate Interacting
Precipitant, Drug

Rate Ratio,
Semi-bayes Shrunk

and Adjusted

95% Confidence
Interval

atorvastatin clavulanate 1.96 1.06–3.62
atorvastatin ibuprofen 2.49 1.31–4.74
diltiazem hydrochlorothiazide 1.90 1.05–3.44
diltiazem sulfamethoxazole 2.18 1.15–4.13
diltiazem trimethoprim 2.21 1.17–4.18
lisinopril naproxen 2.28a,b 1.24–4.21
lisinopril sertraline 2.05 1.12–3.73
lisinopril sulfamethoxazole 1.75 1.10–2.79
lisinopril trimethoprim 1.74 1.10–2.76
lovastatin amlodipine 2.11 1.06–4.19
metoprolol Acetaminophen 1.84 1.09–3.10
metoprolol amoxicillin 1.87 1.16–3.04
metoprolol cephalexin 1.54 1.01–2.34
metoprolol clavulanate 1.75 1.00–3.06
metoprolol sulfamethoxazole 1.62 1.02–2.57
simvastatin naproxen 2.08 1.12–3.85
simvastatin nitrofurantoin 1.86 1.04–3.32
valsartan Acetaminophen 2.19 1.12–4.28

Central nervous system amitriptyline sulfamethoxazole 2.17 1.07–4.41
amitriptyline trimethoprim 2.17 1.07–4.41
cyclobenzaprine naproxen 2.08 1.07–4.04
divalproex sodium cephalexin 2.41 1.11–5.23
duloxetine diazepam 2.32c,d 1.03–5.21
gabapentin alprazolam 1.85 1.05–3.25
meloxicam cephalexin 2.02 1.06–3.85
sertraline ibuprofen 2.14 1.01–4.55
sertraline sulfamethoxazole 1.95 1.04–3.67
sertraline trimethoprim 1.95 1.04–3.67

Endocrine and metabolic glimepiride cephalexin 2.75 1.25–6.05
levothyroxine cephalexin 1.51 1.00–2.27
levothyroxine sulfamethoxazole 1.58 1.00–2.48
levothyroxine trimethoprim 1.66 1.06–2.59
metformin sulfamethoxazole 1.77 1.01–3.12
metformin trimethoprim 1.83 1.04–3.20

Gastrointestinal omeprazole furosemide 1.58 1.07–2.34
pantoprazole cephalexin 2.36 1.35–4.12
ranitidine sulfamethoxazole 2.39b 1.20–4.76
ranitidine trimethoprim 2.41b 1.21–4.79

Hematological clopidogrel cephalexin 1.93 1.03–3.63
Nutrients and nutritional potassium chloride trazodone 2.48a,b 1.22–5.04

potassium chloride trimethoprim 1.79 1.04–3.07
Renal and genitourinary furosemide cephalexin 1.53 1.02–2.30

furosemide sulfamethoxazole 1.72 1.11–2.68
furosemide trimethoprim 1.78 1.15–2.76
hydrochlorothiazide naproxen 1.99 1.12–3.55
hydrochlorothiazide sulfamethoxazole 1.74 1.07–2.83
hydrochlorothiazide trimethoprim 1.74 1.07–2.83

aDrug interactions involving only two of the drugs in the drug triplet documented in Facts & Comparisons Clinical Drug Information (Wolters Kluwer: Alphen aan den Rijn, South Holland,
Netherlands).
bDrug interactions involving all three of the drugs in the drug triplet documented in Facts & Comparisons Clinical Drug Information (Wolters Kluwer: Alphen aan den Rijn, South Holland,
Netherlands).
cDrug interactions involving only two of the drugs in the drug triplet documented in Micromedex (IBM, Watson Health: Cambridge, Massachusetts, United States).
dDrug interactions involving all three of the drugs in the drug triplet documented in Micromedex (IBM, Watson Health: Cambridge, Massachusetts, United States).
Bolded rows indicate 3DI signals with rate ratio ≥2.25.
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of hydrocodone (40.6%), tramadol (47.3%), and oxycodone
(40.3%) users were Caucasian adult females. Few people using
hydrocodone (18.1%), tramadol (17.3%), and oxycodone (15.0%)
had multiple unintentional traumatic injuries during observation
time. In analyses of secondary outcomes, cohorts consisted of
1,142, 848, and 461, and 246, 98, and 113 users for typical hip
fracture and motor vehicle crash, respectively. Supplementary
Tables S2, S3 summarize characteristics of persons experiencing
these outcomes while receiving opioid object drugs.

Before application of inclusion criteria, we identified 72,343,
51,012, and 54,089 sets of object + precipitant base pairs with
candidate precipitants when the opioid objects were
hydrocodone, tramadol, and oxycodone, respectively. After
application of inclusion criteria, we examined 16,024 (22%),
8185 (16%), and 9330 (17%) sets of base pairs with candidate
precipitants in confounder-adjusted self-controlled case series
studies of unintentional traumatic injury. Table 2 provides
summary data on RRs for unintentional traumatic injury,
before and after confounder adjustment; Supplementary
Tables S4, S5 provide summary data for typical hip fracture
and motor vehicle crash, respectively. The volcano plots in
Supplementary Figures S1, S2 graphically depict semi-Bayes
shrunk confounder-adjusted RRs for the unintentional traumatic
injury and typical hip fracture, respectively; corresponding
secondary analyses using an alternate variance parameter for
semi-Bayes shrinkage yielded similar findings (Supplementary
Figures S3, S4, respectively). There were not any valid adjusted
models generated for motor vehicle crash; thus, plots were not
produced for this outcome.

Of 38,764 drug triplets across all assessed opioid objects, 183
(4.7 per thousand triplets) had statistically significantly elevated
adjusted RRs for unintentional traumatic injury after semi-Bayes
shrinkage. The majority of these were sets of base pairs with
candidate precipitants for hydrocodone, tramadol, and
oxycodone, which had 75 (0.5%), 57 (0.7%), and 42 (0.5%)
statistically significantly elevated adjusted RRs for
unintentional traumatic injury. We therefore deemed these
174 sets of object + precipitant base pairs with candidate
precipitants (3 unique opioid objects, 50 unique base
precipitants, 34 unique candidate precipitants) as potential
3DI signals (Table 3; Figure 2). The corresponding secondary
analysis removing episodes with unintentional traumatic injury
prior to the first day of observation yielded generally similar

FIGURE 2 | Commonly prescribed opioid + precipitant base pair with
candidate interacting precipitant associations with unintentional traumatic
injury. (A) depicts associations with hydrocodone. (B) depicts associations
with tramadol. (C) depicts associations with oxycodone. Semi-Bayes
shrinkage prespecified a variance of 0.25, assuming that 95% of true rate

(Continued )

FIGURE 2 | ratios would fall within an unspecified 7-fold range of each other.
The x-axis represents the log base 2 semi-Bayes shrunk adjusted rate ratio for
opioid + precipitant base pair with candidate interacting precipitant vs opioid +
precipitant base pair. The y-axis represents the log(1/p-value) for the semi-
Bayes shrunk adjusted rate ratio. Data points in the upper right quadrant
represent drug triplets with a statistically significant signal for elevated risk of
unintentional traumatic injury. For ease of reading, we limited labeling to upper
right quadrant data points with log base 2 semi-Bayes shrunk adjusted rate
ratio ≥1 or log(1/p-value) ≥10. We excluded signals with propoxyphene (a
medical product eventually withdrawn from the United States market) from the
plots, as they may have represented opioid switching rather than concomitant
therapy. 3DI = drug-drug-drug interactions, SMX = sulfamethoxazole, TMP =
trimethoprim.
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findings, with 34/7,918 (0.4%), 14/3,078 (0.5%), and 11/3,814 (0.3%)
statistically significantly elevated adjusted RRs for hydrocodone,
tramadol, and oxycodone (Supplementary Table S6).

The most common putative interacting combinations of base
precipitants with candidate precipitants were cardiovascular with
anti-infective agents (N = 33, including 10 calcium channel blockers
with antibiotics), cardiovascular with CNS agents (N = 31, including
7 statins with nonopioid analgesics), CNS with anti-infective agents
(N = 19, including 8 antidepressants with antibiotics), CNS with
CNS agents (N = 14, including 4 antidepressants with skeletal
muscle relaxants), endocrine/metabolic with anti-infective agents
(N = 12, including 7 antidiabetics with antibiotics), and endocrine/
metabolic with CNS agents (N = 10, including 3 thyroid hormones
with nonopioid analgesics). The highest magnitude statistically
significantly elevated adjusted RRs for unintentional traumatic
injury after semi-Bayes shrinkage were 2.86 (95% CI: 1.49–5.49)
for oxycodone + simvastatin with acetaminophen, 2.75 (1.27–5.97)
for hydrocodone + memantine with cephalexin, and 2.75
(1.25–6.05) for tramadol + glimepiride with cephalexin. In terms
of interaction reporting in Micromedex and/or Facts &
Comparisons for the 34 highest magnitude 3DI signals (RR ≥
2.25), 12 (35.3%) had reporting for drug interactions involving two
of the drugs in the drug triplets and 6 (17.6%) had reporting for
drug interactions involving all three of the drugs in the drug triplets
(Table 3).

4 DISCUSSION

Higher-order pharmacokinetic and pharmacodynamic drug
interactions have long been recognized, yet remain poorly
understood from a clinical perspective due to a lack of study
(Horn and Hansten, 2011). In this paper, we apply a novel
approach for semi-automated, high throughput screening of
administrative healthcare data to identify potential real-world
3DIs, generating hypotheses that can provide a foundation for
crucially needed 3DI etiologic studies. As the physiologic/
metabolic characteristics of opioids and the common co-
prescription profiles among opioid users yield a particularly
high propensity for 3DIs, we built on our prior screening
study of pairwise opioid DDIs to assess for 3DI signals
associated with an increased rate of unintentional traumatic
injury (Leonard et al., 2020). Among 38,764 drug triplets
including an opioid object, we identified 183 (4.7 per thousand
triplets) statistically significantly elevated adjusted RRs for
unintentional traumatic injury. Of these, 174 (95%) triplets
involved the three most commonly dispensed opioids
(hydrocodone, tramadol, and oxycodone). Although
associations with hip fracture and motor vehicle crash were
also assessed, no 3DI signals were identified for these
prespecified subsets of unintentional traumatic injury.

The limited pool of prior epidemiologic evidence, as well as
the predominance of mechanism-based ideas about opioid
3DIs, have centered on enhanced CNS depression from
concurrent use of three CNS-active agents, with particular
focus on the “holy trinity” of opioids with benzodiazepines
and skeletal muscle relaxants (Forrester, 2011; Garg et al., 2017;

Horsfall and Sprague, 2017; Wang et al., 2019; Li et al., 2020;
Watanabe and Yang, 2020b, 2020a). In our study, the
mechanism of injury that would be anticipated to underlie
many of the observed interaction signals would be these
additive or synergistic pharmacodynamic effects from
concomitant use of three CNS depressants. Specifically, we
found concomitant use to be associated with injury rates
potentially increased by: 1.8-fold for hydrocodone +
cyclobenzaprine (skeletal muscle relaxant) with diazepam
(benzodiazepine) (vs hydrocodone + cyclobenzaprine alone);
1.9-fold for tramadol + gabapentin (anticonvulsant) with
alprazolam (benzodiazepine); and 2.0-fold for hydrocodone +
zolpidem (hypnotic) with diazepam (benzodiazepine). These
findings are consistent with recent studies that have found
an increased risk of opioid overdose emergency department
visits/hospitalizations (Li et al., 2020), all-cause emergency
department visits (Watanabe and Yang, 2020a), all-cause
hospitalizations (Watanabe and Yang, 2020b), and opioid
overdose deaths (Garg et al., 2017) associated with the
concurrent use of opioid, benzodiazepines, and skeletal
muscle relaxants. The biological plausibility of the observed
interaction signals, together with prior epidemiologic evidence,
supports the validity and utility of our screening approach for
detecting clinically meaningful 3DIs. The absence of statistically
significant signals for related combinations of opioids with CNS
depressants (e.g., the previously highlighted opioid-
benzodiazepine interactions with carisoprodol (Horsfall and
Sprague, 2017; Li et al., 2020)) may reflect the limited
statistical precision inherent in the lower numbers of
concurrent dispensations for three potentially interacting
drugs, and/or our selection of conservative assumptions
when adjusting for multiple estimation using the semi-Bayes
method. The latter point was essential to our semi-automated
screening approach, as the intent was to generate hypotheses for
future etiologic studies. Therefore, we deliberately set
parameters that we realized would reduce sensitivity
(i.e., permitting some false negatives) because we placed
greater value on achieving higher specificity (i.e., minimizing
false positives).

The majority of potential 3DIs flagged by our screening have
not been described in the literature, although many have
plausible physiologic, biochemical, and/or metabolic
pathways. A number of these detected 3DIs involve
mechanisms that warrant further investigation given their
high clinical importance and possible associations with
unintentional traumatic injury risk. First, the potentiation of
well-demonstrated pairwise interactions between opioids and
CNS depressants via pharmacokinetic interactions that increase
the serum concentration of the active opioid form, such as
potent CYP2D6 inhibition by bupropion increasing the level of
oxycodone (Kotlyar et al., 2005; Huddart et al., 2018), and
potentially enhancing its pharmacodynamic interactions (e.g.,
oxycodone + bupropion with cyclobenzaprine, RRinjury = 2.0;
and oxycodone + bupropion with buspirone, RRinjury = 2.4).
Second, the modulation of synaptic serotonin levels by select
opioids, as well as many other CNS depressants (Scotton et al.,
2019; Baldo and Rose, 2020), raises concerns that co-prescribing
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may elevate the risk of potentially injury-inducing CNS
depression and serotonin toxicity (e.g., hydrocodone +
citalopram with cyclobenzaprine, RRinjury = 1.7; hydrocodone
+ trazodone with cyclobenzaprine, RRinjury = 2.0; and
hydrocodone + fluoxetine with cyclobenzaprine, RRinjury =
2.2; however, the specific serotonergic effects of hydrocodone
and cyclobenzaprine remain controversial and merit further
assessment (Gillman, 2009; Baldo and Rose, 2020)). While the
central symptoms of serotonin toxicity (i.e., altered mental
status, autonomic nervous system overactivity, and
neuromuscular hyperactivity) may contribute to traumatic
injury risk (Scotton et al., 2019; Baldo and Rose, 2020), the
listed 3DI signal may also be reasonably attributed solely to the
CNS depressant effects of the drug triplets. Third, hypotensive
and orthostatic effects from drugs that are intended to lower
blood pressure (e.g., beta blockers, calcium channel blockers)
may compound CNS depression from opioid interactions with
benzodiazepines or skeletal muscle relaxants (e.g., hydrocodone
+ metoprolol with diazepam, RRinjury = 1.8; hydrocodone +
atenolol with cyclobenzaprine, RRinjury = 1.9; hydrocodone +
diltiazem with cyclobenzaprine, RRinjury = 2.0; oxycodone +
amlodipine with clonazepam, RRinjury = 2.1).

A substantial subset of the detected 3DI signals involved
concurrent use of opioids with antibiotics and/or nonopioid
analgesics. In select cases, prior research into pairwise
interactions of these drugs has demonstrated plausible
mechanisms for observed increases in injury risk. For example,
in the case of the signal for oxycodone + amlodipine with
ciprofloxacin (RRinjury = 1.8), CYP3A4 inhibition by
ciprofloxacin may raise levels of both oxycodone and
amlodipine (McLellan et al., 1996; Zhu et al., 2014; Huddart
et al., 2018), potentially enhancing their pharmacodynamic
interaction. However, in general, the relatively common signals
among these drug classes are noteworthy as the mechanisms by
which they would be interacting with opioids are unclear. While
the absence of current mechanistic support does not preclude the
possibility of unrecognized 3DI pathways, exploration of
alternate explanations for these signals is warranted. Potential
for within-person confounding by indication merits
consideration, given the underlying factors in traumatic injury
may also be related to prior infection and pain (for which
antibiotics and opioid/nonopioid analgesics would respectively
be prescribed). Thus, the observed associations may be partially
attributable to the indications for specific drug combinations
rather than their interactions (Maclure et al., 2012; Hennessy
et al., 2016). Similarly, for initially less severe traumatic injuries
(i.e., injuries for which an emergency department visit or
hospitalization may not initially be sought), protopathic bias
may play a role if the early symptoms of the injury included
the pain that led to prescription of an opioid/nonopioid analgesic
(Maclure et al., 2012).

An alternative explanation for 3DI signals with one of the
involved drugs lacking a recognized interaction mechanism
(i.e., many of the signals involving antibiotics and nonopioid
analgesics), may relate to signal detection being defined by
injury rates during time using opioid-precipitant base pairs
when exposed vs. unexposed to a candidate interacting

precipitant. This analytic approach introduces the possibility
that some of the signals generated may represent potent
pairwise DDIs between exclusively the opioid object and the
candidate interacting precipitant, rather than true 3DIs (i.e., the
base pair precipitant would have no true role in the interaction).
However, as shown in Table 3, the 3DIs signals involving
antibiotics and nonopioid analgesics predominantly have
these drugs acting as the candidate interacting precipitant or
as both precipitants, suggesting that this explanation would not
be applicable to many of the observed 3DI signals without
known interaction mechanisms.

Our study has notable strengths that make it a valuable
foundation for future research on 3DIs. First, research on
higher-order drug interactions has become increasingly vital in
the context of highly prevalent and rising polypharmacy across
the globe (Wastesson et al., 2018; World Health Organization,
2019). In this study, we developed and applied a novel approach
to screen for 3DI signals in large-scale administrative healthcare
data, without the need for a priori hypotheses regarding
anticipated interactions. Second, we executed our 3DI screen
utilizing a self-controlled case series design, which has been well-
demonstrated as an effective screening strategy in the drug-drug
(i.e., pairwise) interaction literature (Han et al., 2017).
Importantly, this case-only approach eliminates between-
person confounding and within-person confounding by time-
invariant characteristics (Maclure et al., 2012; Hennessy et al.,
2016). Moreover, our bi-directional implementation of this
design reduced its susceptibility to exposure-trend bias
(Maclure et al., 2012). Third, we focused this 3DI investigation
on the known associations between opioid drug interactions and
unintentional traumatic injury (Leonard et al., 2020), a topic of
high clinical relevance with an outcome that has well-supported
algorithms for classification in claims data. Finally, we maximized
the specificity of our screening by using semi-Bayes shrinkage to
account for multiple estimation.

Our study has limitations that are critical to recognize when
interpreting the identified 3DI signals. First, claims for drug
dispensations may not reflect drug intake. Second, the self-
controlled case series design may be more susceptible to
reverse causation than alternate self-controlled designs (though
these alternate designs have their own limitations, including
greater susceptibility to time trend bias) (Maclure et al., 2012).
Third, it is possible that some of the signals generated may
represent pairwise interactions between just one of the drugs
in the base pair and the candidate interacting precipitant, rather
than true 3DIs. Fourth, some of the medications studied as
precipitants are available over-the-counter; thus, their
concurrent use with opioids may have been poorly captured in
claims data. Fifth, while we included opioid daily dose in our
analysis as a time-varying covariate, there are multiple
approaches that could be taken to further account for the
effects of opioid doses over time on injury risk. Future
etiological studies of detected opioid 3DI signals (intended to
assess causation) may be strengthened by accounting for the
effects of cumulative opioid doses, with approaches to flexible
modeling of cumulative drug doses being increasingly well-
validated (Sylvestre and Abrahamowicz, 2009; Danieli and
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Abrahamowicz, 2019; Li et al., 2022). Sixth, the assessed injury
outcomes have not been specifically validated in the utilized data
source (Optum), which limits the ability to interpret the
completeness and accuracy of data capture. Finally, the
detected 3DI signals may not generalize to populations beyond
the assessed commercially insured and Medicare Advantage
ambulatory care beneficiaries.

In summary, our study demonstrated the use of a pioneering
semi-automated, high-throughput approach for detecting three-
way drug interactions in large-scale administrative healthcare
databases. We have applied this approach to identify signals of
increased risk of unintentional traumatic injury related to 3DIs
between prescription opioids and commonly co-prescribed
medications. We identified 174 potential 3DI signals involving
the three most commonly used opioids (75 for hydrocodone, 57
for tramadol, and 42 for oxycodone) based on their statistically
significantly elevated adjusted RRs after semi-Bayes shrinkage.
Review of prior pharmacokinetic and clinical evidence suggests
that biologically plausible mechanisms of interaction underlie
many of these observed 3DI signals, supporting the validity of our
screening strategy. Building forward, the 3DI signals found in our
screening provide important targets to guide future etiological
investigations into higher-order opioid interactions and
unintentional traumatic injury risk. Moreover, this novel 3DI
screening method may be a valuable tool to advance research into
higher-order interactions across different drug classes, clinical
fields, and healthcare databases.
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