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Poly [adenosine diphosphate (ADP)-ribose] polymerases (PARPs) are members of a family
of 17 enzymes that performs several fundamental cellular processes. Aberrant activity
(mutation) in PARP12 has been linked to various diseases including inflammation,
cardiovascular disease, and cancer. Herein, a large library of compounds (ZINC-FDA
database) has been screened virtually to identify potential PARP12 inhibitor(s). The best
compounds were selected on the basis of binding affinity scores and poses. Molecular
dynamics (MD) simulation and binding free energy calculation (MMGBSA) were carried out
to delineate the stability and dynamics of the resulting complexes. To this end, root means
deviations, relative fluctuation, atomic gyration, compactness, covariance, residue-residue
contact map, and free energy landscapes were studied. These studies have revealed that
compounds ZINC03830332, ZINC03830554, and ZINC03831186 are promising agents
against mutated PARP12.
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1 INTRODUCTION

Poly [adenosine diphosphate (ADP)-ribose] polymerases (PARPs) are the nuclear enzymes that
regulate fundamental cellular processes involving protein degradation and gene expression (Kim
et al., 2011; Bai and Virag, 2012; Langelier et al., 2018). PARPs use nicotinamide adenine dinucleotide
(NAD+) for the process of post-translation that modify substrate proteins with ADP-ribose, a vital
process referred to as ADP ribosylation (Carter-O’Connell and Cohen, 2015; Griffiths et al., 2020).
The majority of PARP family members are monoPARPs as they catalyze the transfer of mono-ADP-
ribose (MAR) onto their substrates (MARylation) (Cohen, 2020). In contrast, polyPARPs attach
polymers of poly-ADP-ribose (PAR) onto their substrates (PARylation) (Carter-O’Connell and
Cohen, 2015; Lu et al., 2019). PARP1 is a well-known cancer target involved in DNA damage-
induced cellular stress/genetic mutation/cytotoxic chemotherapy (Gozgit et al., 2021). There are four
drugs readily available on the market, and other drugs are at their late-stage development (Schiewer
et al., 2012; Schiewer and Knudsen, 2014; Green et al., 2015; Rudolph et al., 2021). PARP12 is also a

Edited by:
Fengfeng Zhou,

Jilin University, China

Reviewed by:
Debashree Chakraborty,

National Institute of Technology,
Karnataka, India

Tugba Taskin-Tok,
University of Gaziantep, Turkey

Sumit Sharma,
Dr. B. R. Ambedkar National Institute

of Technology Jalandhar, India

*Correspondence:
Mohd Saeed

mo.saeed@uoh.edu.sa
Dharmendra K. Yadav

dharmendra30oct@gmail.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Pharmacology of Anti-Cancer Drugs,
a section of the journal

Frontiers in Pharmacology

Received: 02 January 2022
Accepted: 27 April 2022

Published: 09 August 2022

Citation:
Almeleebia TM, Ahamad S, Ahmad I,

Alshehri A, Alkhathami AG,
Alshahrani MY, Asiri MA, Saeed A,

Siddiqui JA, Yadav DK and Saeed M
(2022) Identification of PARP12

Inhibitors By Virtual Screening and
Molecular Dynamics Simulations.

Front. Pharmacol. 13:847499.
doi: 10.3389/fphar.2022.847499

Frontiers in Pharmacology | www.frontiersin.org August 2022 | Volume 13 | Article 8474991

ORIGINAL RESEARCH
published: 09 August 2022

doi: 10.3389/fphar.2022.847499

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.847499&domain=pdf&date_stamp=2022-08-09
https://www.frontiersin.org/articles/10.3389/fphar.2022.847499/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.847499/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.847499/full
http://creativecommons.org/licenses/by/4.0/
mailto:mo.saeed@uoh.edu.sa
mailto:dharmendra30oct@gmail.com
https://doi.org/10.3389/fphar.2022.847499
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.847499


mono-ART of the PARP family, which controls the regulation of
cell survival and regrowth (Catara et al., 2017). The function of
PARP12 is the mono-ADP-ribosyltransferase that mediates
mono-ADP-ribosylation of target proteins, although the
molecular mechanism responsible for cell survival is still
unclear (Catara et al., 2017; Grimaldi et al., 2020). Recently,
PARP12 involvement in intracellular membrane transport at this
point deserves much attention and alternative effective strategies
(Gozgit et al., 2021). Several studies also suggested that PARP12 is
a novel target that reduces breast cancer resistance to genotoxic
stress (Ke et al., 2019). Thus, PARP12 is marked as a potential
target that must be utilized further to identify and design
potential inhibitors/vaccine candidates at the molecular and
genetic levels. The authors identify PARP1 potent targets and
various computational studies that have been published to utilize
the ZINC-FDA library and traditional Chinese medicine
(Costantino et al., 2001; Chen et al., 2014; Maksimainen et al.,
2021; Sahin and Durdagi, 2021). Similarly, there are other
recently published theoretical studies on PARP2 to find novel
benzimidazole derivatives (Venugopal and Chakraborty, 2021).

Bioinformatics tools and databases are wonderful approaches
to identify the novel drugs and vaccine candidates as an
alternative strategy. Taking the lead from here, the current
study aimed to utilize the available small-molecule ZINC
database, which is a publicly available and accessible database.
We used a comprehensive in silico approach involving literature
mining, virtual screening based molecular docking,
pharmacological analysis, and large-scale molecular dynamics
(MD) simulations to identify potential PARP12 inhibitors from a
pool of ZINC-FDA. We analyzed 3,100 chemically diverse
pharmacologically active compounds (Sterling and Irwin,
2015). Based on the comparative analysis of docking scores,
binding affinity, and energies, we selected four compounds,
namely, ZINC03830332, ZINC03830554, ZINC03831186, and

ZINC03831189. Consequently, the compounds were analyzed
for ADME/T properties and were potential drug-like candidates.
Furthermore, we analyzed the conformational stability of the
docked complexes using MD simulations with the help of various
parameters such as root mean square deviation (RMSD), root
mean square fluctuation (RMSF), radius of gyration (Rg), solvent
accessible surface area (SASA), free energy landscapes (FEL),
H-bond monitoring, principal component analysis (PCA), and
density distribution map (Ahamad et al., 2021b). Based on MD
simulation results, two compounds (ZINC03830332 and
ZINC03831186) were identified as PARP12 inhibitors.

2 MATERIALS AND METHODS

The work was carried out on a Dell workstation, 256 GB RAM,
and NVIDIA graphics card GeForce GTX 1080Ti GDDR5 11 GB.
The workstation was installed with several bioinformatics
software applications such as GROningen MAchine for
Chemical Simulations (GROMACS), XMGrace (GROMACS
results analysis), and Schrödinger Molecular Mechanics
Generalized Born Surface Area (MMGBSA) and 2D plots. The
detailed workflow used in this study is represented in Figure 1.

2.1 Protein Preparation and Grid Generation
for Docking Studies
The human PARP12 with four-point mutations (Val570, Gly573,
His577, and Phe607) has been selected in this study. The PARP12
has a 701 amino acid length, and the crystal structure (PDB =
6V3W) is available with the PARP catalytic domain (496–680 amino
acids). To identify the potential surface structural pockets, their
shape and volume, internal cavities of the protein, and surface areas,
6V3Wwas given as the input (Gozgit et al., 2021). The active site and

FIGURE 1 | Optimized protocol employed in this work.
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the interactive residues were identified using the online tools CASTp
and PDBsum and verified using the literature (Laskowski, 2001;
Dundas et al., 2006; Gozgit et al., 2021). The ligands (FDA-ZINC
compounds) were prepared using AutoDock tools (ADT) by
converting the PDB file into a PDBQT format (Huey and
Morris, 2008; Ahamad et al., 2019). The crystal structure of
PARP12 was prepared by using the ADT protein preparation
wizard. Polar hydrogen (H) bonds and missing H-atoms were
added while the water molecules and heteroatoms were deleted
from the 3D structure. Energy minimization was performed with a
default constraint of 0.3 Å root mean square (RMS), and charges
were assigned. Finally, the clean structure was saved as a PDBQT file,
and docking was performed by AutoDockVina (version 1.1.2)
software (Trott and Olson, 2010). The size of the grid box
selected was 106 Å × 108 Å × 106 Å, respectively, and generated
around the centroid of the compounds and PARP12 complex.
Default parameter settings were used during docking. The 3D
structure of the docked complexes was analyzed with the help of
the PyMOL visualization tool (DeLano, 2002).

2.2 Structure-Based Virtual Screening
The PDBQT formatted ligands (ZINC-FDA compounds) were
screened against PARP12. A total of 3,100molecules were retrieved
from the ZINC-FDA database to identify potential PARP12
inhibitors (Sterling and Irwin, 2015). The compounds were
ranked on the basis of their binding energy scores and docking
interaction poses, and the top four compounds were selected.

2.3 Molecular Dynamics (MD) Simulations
MD simulations were carried out for the best-docked complexes
using GROMACS (version 5.18.3) to determine the PARP12

enzyme behavior in the presence of water (Van Der Spoel
et al., 2005; Abraham et al., 2015). The topology of PARP12
was created via the GROMOS9643a1 force field (Pronk et al.,
2013). The PRODRG server was used to generate molecular
topologies and coordinate files (Schuttelkopf and van Aalten,
2004). All the systems were solvated using a simple point-charge
model (SPC/E) in a cubic box (Mark and Nilsson, 2001). To
neutralize the system, 0.15 M counter ions (Na+ and Cl−) were
added. The energy minimization of all the neutralized systems
was performed using the steepest descent and conjugate gradients
(50,000 steps for each). The volume (NVT) regulation and
pressure (NPT) were run for system equilibration. Steepest
descent followed by conjugate gradient algorithms was utilized
on enzyme-ligand complexes. The NVT ensemble at a constant
temperature of 300 K and the constant pressure of 1 bar was
employed. The SHAKE algorithm was used to confine the
H-atoms at their equilibrium distances and periodic boundary
conditions.

Moreover, the particle mesh Ewald (PME) method was used to
define long-range electrostatic forces (Darden et al., 1993; Lee
et al., 2016; Wang et al., 2016). The cut-offs for van derWaals and
Columbic interactions were 1.0 nm. The LINC algorithm was
used to constrain the bonds and angles (Hess et al., 1997). Finally,
the production runs were performed for the period of 500 ns The
energy, velocity, and trajectory were updated at the time interval
of 10 ps The MD simulation analyses were performed, and
trajectoris were found by GROMACS utilities and MDTraj-
based Python scripts (McGibbon et al., 2015). The Cα-atom
deviations of PARP12 and complexes were utilized to calculate
using RMSD and RMSF for relative fluctuations of each amino
acid. The compactness was measured by Rg, while the SASA was

FIGURE 2 | (A) Close-up view of the binding pockets (A* and B* encircled by black dotted lines) of the PARP12 enzyme. H-bond interactions between (B)
ZINC03830332 (white stick), (C) ZINC03831186 (yellow stick), and PARP12 receptor (in green and blue color cartoon models). (D,E) 2D plot of the complexes.
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used to know the electrostatic contributions of molecular
solvation. PCA is one of the best techniques that help reduce
complexity to extract the intensive motions in MD simulation
analysis. The matrix was formed for the MD trajectory after
excluding rotational and translational movements. So the
essential dynamics protocol was implemented to calculate the
eigenvectors and eigenvalues and their projections along with the
first two principal components (PCs). The diagonalized
covariance matrix, eigenvectors, and eigenvalues were
identified. The eigenvector of the matrix gives the
multidimensional space and the displacement of atoms in the
molecule in each direction. This analysis processed the essential
subspace built on knowing each atom’s movements, which were
plotted by Cartesian trajectory coordinates using GROMACS
utilities (Ahamad et al., 2021a).

2.4 MMGBSA Calculation
The MMGBSA (ΔGbind) was calculated by the Schrödinger Prime
module to compute the ligand binding energies. The prime-
MMGBSA was used for rescoring the docked poses.

ΔG is calculated by the following equation:

ΔGbind � E complex (minimized) − E ligand(minimized)
− E receptor (minimized),

where ΔGbind specifies the binding free energy, E_complex is the
input for the energy minimization of the protein-ligand
complexes, E_receptor for the free protein, and E_ligand for free

ligands. The sum of molecular mechanical minimized energies
including van der Waals interaction, internal energies,
electrostatic energies, and solvation free energies were also
calculated for the docked conformations.

3 RESULTS

Despite the fact that PARP12 is an intriguing target for treating
various ailments, no computational studies on PARP12 have been
carried out yet. Based on this notion, we screened 3,100
biologically active molecules from the FDA-approved drug
database to find out lead(s) against the PARP12 enzyme. Out
of these, four compounds (ZINC03830332, ZINC03830554,
ZINC03831186, and ZINC03831189, Supplementary Figure
S1) were selected on the basis of their docking score and
interaction with the receptor. Moreover, the four best hits
were analyzed for Lipinski and ADME/T properties. All-atom
MD simulations were further performed on the mutant PARP12
and four-drug complexes. The results of the studies are discussed
herein.

3.1 Molecular Docking
Molecular docking is a powerful tool for lead discovery and to
underpin molecular interactions. Figure 2A depicts the binding
pockets (A* and B* encircled by black dotted lines) of the PARP12
enzyme and binding poses of the docked ligands. Herein, we have
shortlisted four compounds that carried the best binding free

TABLE 1 | Average RMSD, Rg, SASA, and MMGBSA values of the mutant receptor and complexes. Molecular docking results of four shortlisted ZINC-FDA compounds.

Mutant
system and
complex

RMSD
(nm)

Rg
(nm)

SASA
(nm2)

MMGBSA
ΔG score
(kcal/mol)

Binding
score

(kcal/mol)

Residues involved in
H-bonding

Residues involved in
hydrophobic interaction

PARP12 0.43 1.57 101.70 - - - -

ZINC03830332 0.32 1.59 102.17 −135.11 −12.40 Phe563, His564, Asn578,
Trp581, Tyr596, and Ser604

Thr566, Val570, Gly573, Ile574, Cys575, His577,
Phe579, Asp580, Arg582, Val583, Cys584,
Gly585, Val586, Thr589, Gly594, Ser595,
Phe597, Ala598, Asp600, Tyr603, His605,
Phe607, Ser659, Ile660, and Phe661

ZINC03830554 0.34 1.58 104.02 −39.22 −11.80 Phe563, His564, His577,
Asp580, Tyr596, Ser604,
and Lys666

Val570, Gly573, Ile574, Val583, Gly565, Phe597,
Ala598, Tyr603, and His606

ZINC03831186 0.32 1.59 103.26 −57.63 −11.40 His564 and Ser595 Gly565, Thr566, Ser567, Ile569, Val570, Val571,
Gly573, Ile574, His577, Asn578, Phe579,
Asp580, Trp581, Arg582, Val583, Cys584,
Gly585, Val586, His587, Gly588, Thr589,
Gly594, Ser595, Phe597, Ser590, Tyr591,
Gly592, Lys593, Gly594, Phe597, Tyr603,
His606, Phe607, Lys609, Phe661, Valy662, and
Ile663

ZINC03831189 0.37 1.58 103.24 −51.92 −12.11 Gly594 and Ser604 Phe563, His564, Gly565, Thr566, Asn578,
Phe579, Asp580, Trp581, Arg582, Val583,
Cys584, Gly585, Val586, His587, Thr589,
Gly592, Lys593, Ser595, Tyr596 Phe597,
Ser590, Tyr591, Gly592, Ala598, Asp600,
Ala601, Tyr603, His605, and Phe607
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energies, as well as polar and non-polar interactions. Molecular
docking allows prediction of the preferred pose and binding
orientations of a ligand inside a receptor binding site
corresponding to the best energy score. The top-scoring
shortlisted four compounds were docked in the A* binding
pocket. However, B* binding pocket interaction compounds
have fewer binding energies. Figures 2B,C and
Supplementary Figure S1 show the molecular interaction
between the four hits and receptor. Table 1 collects the results
of the molecular docking study of four shortlisted ZINC-FDA
compounds. It is clear from the figures that ligands interacted
with the receptor via various polar and non-polar modes (Figures
2D,E and Supplementary Figure S1). It can be seen that
ZINC03830332 formed six H-bonds with Phe563, His564,
Asn578, Trp581, Tyr596, and Ser604 residues of the receptor
with a docking score of −12.40 kcal/mol. On the other hand, the
docking score for the PARP12-ZINC03831186 complex was
−11.40 kcal/mol which formed two H-bonds with the receptors
His564 and Ser595. The two other ligands ZINC03830554 and
ZINC03831189 exhibited relatively higher docking scores
(−11.80 kcal/mol and −12.11 kcal/mol, respectively) and
interacted via seven (Phe563, His564, His577, Asp580, Tyr596,
Ser604, and Lys666) and two (Gly594 and Ser604) H-bonds. The
2D plot analyses of PARP12-ligand complexes revealed that the
complexes were also stabilized through hydrophobic interactions
from nearby residues.

3.2 Physicochemical and ADME/T Studies
The shortlisted best four hits, namely, ZINC03830332,
ZINC03830554, ZINC03831186, and ZINC03831189
compounds were used to calculate the pharmacological
properties such as MW, dipole, SASA, FOSA, FISA, PISA,
WPSA, volume, DonorHB, and AccptHB. We found that all
the four molecules obeyed the rule of three (Ro3) (Ko€;ster et al.,
2011). Preferably, an orally active drug/compound should not
cross more than one violation, but various exceptions are
available (Lipinski, 2004). Two compounds (ZINC03830332
and ZINC03830554) violated one rule increase in MW, which
is still acceptable. The results of the RO3 study revealed that the
molecular weight of the compound was in the range of 422–693,
with 4–10 H-bond acceptor and 0–14 H-bond donating units.
The in silico absorption, distribution, metabolism, excretion
(ADME), and toxicity (T) are the most widely used techniques
in rational drug discovery as it gives a fair idea about the drug
candidateship. In this context, we investigated the ADME/T and
RO3 properties of the best four hits, and the results are compiled
in Supplementary Table S1. The QikProp module output data
generated for the compounds indicated that the blood–brain
barrier (BBB) was in the range of −0.38 to −4.28 with
QPlogPo/w between −0.55 and 5.73, QPlogKhsa between
−0.63 and 1.14, SASA between 714.08 and 1,083.70, and log
Kp value ranging from −2.41 to −10.90. Overall, the four hits
showed fair enough properties and ability needed for a drug to

FIGURE 3 | (A)Mutation induced by PARP12 structures, (B) comparison of the RMSD plot, and (C) dynamic motion of projection in the eigenvector 1 vs. 2 and the
plot two generated for the MD complexes showing conformational space of Cα-atoms.
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possess (Lee et al., 2003; Lipinski, 2016; Nazarbahjat et al., 2016;
Cordeiro and Kachroo, 2020).

3.3Molecular Dynamics Simulation Analysis
MD simulations have the ability to uncover various dynamic
interactions between a ligand and receptor, their interaction
mechanism, and stability. MD simulation was carried out at
the 0 to 500 nanosecond (ns) time scale for each system with
a total of 2,500 ns. The MD simulations of the mutant systems of
PARP12 and ZINC03830332, ZINC03830554, ZINC03831186,
and ZINC03831189 complexes were utilized to measure the
structural changes and parameters such as RMSD, RMSF, Rg,
SASA, H-bonds, and Gibbs free energy, i.e., PCA calculation,
covariance matrix, and density distribution map. The results of
the findings are discussed as follows.

3.3.1 RMS Deviation and Principal Component
Analysis
The MD simulation study result dictates the multidimensional
data’s relative distance to reduce the dimensional space. Atom-
positional RMSD value C-alpha (C-α) atoms were calculated for
the mutant system and complexes (Figure 3A). The MD
simulation of mutant PARP12 systems and complexes with
ZINC03830332, ZINC03830554, ZINC03831186, and
ZINC03831189 compounds provided average RMSD values of
~0.43 nm, ~0.32 nm, ~0.34 nm, ~0.32 nm, and ~0.37 nm,
respectively (Figure 3B). On the other hand, the mutant
system of PARP12 attained equilibrium in 75 ns with a
relatively higher average RMSD value due to the mutations in
the helix and loop region. However, in the case of complexes,
almost all the systems attained equilibrium within 30 ns and the
steady-state in all the complexes except ZINC03831189, which
possess a slightly greater RMSD value (~ 0.37 nm). Overall, the

complexes involving ZINC03830332, ZINC03831186, and
ZINC03830554 possessed a stable binding with PARP12.

The 2D projection of trajectories on eigenvectors 1 and 2 is the
part of essential dynamics (ED) and reflect an overall expansion of
the structural dynamics. The large-scale average motion indicated
higher atomic fluctuations, and its flexibility measures the atomic
mobility of the mutant and complexes. The eigenvector values of the
docked complexes ZINC03830332, ZINC03830554,
ZINC03831186, and ZINC03831189 were calculated. We found
that the essential subspace for the mutant PARP12 of eigenvector 1
in the range from −1.5 to −2.5 nm, vs. eigenvector 2 in the range
from −1.5 to 3 nm of a larger cluster for the mutant PARP12
(Figure 3C). Similarly, we extensively investigated the global motion
for the complex of the ZINC03830332 compound. We found that
the eigenvector 1 in the range from −1.5 nm to −2 nm vs.
eigenvector 2 in the range from −1 to 1.5 nm occupied the
smallest subspace throughout the MD simulation. However,
compounds ZINC03830554 and ZINC03831186 had eigenvector
1 in the range −2 to 2 nm vs. eigenvector 2 in the range −1.5 to
2.5 nm and eigenvector 1 in the range −1 to 3 nm vs. eigenvector 2 in
the range −1 to 1 nm, respectively. The compound ZINC03831189
had eigenvector 1 in the range −3 to 1.5 nm vs. eigenvector 2 in the
range −1.5 to 2 nm. Out of four complexes, we found a more
restricted subspace that leads to well-defined internal motion with
ZINC03830332, ZINC03830554, and ZINC03831186 complexes.

The rigid regions and flexibility could be identified by RMSF
analysis. The plot’s negative drift indicates the increased
movement of the Ca atoms of relative fluctuations. It was
found that the compound ZINC03830332 showed stable
positive amino acid fluctuations at F563-T566, V570, H577-
W581, V583-596, Q613, I660-I663, K666, and Y673. A similar
trend was found for the other two compounds with a high degree
of flexibility (Figures 4A–D).

FIGURE 4 | Root mean square fluctuations (RMSFs) of mutant systems of PARP12 and (A) ZINC03830332, (B) ZINC03830554, (C) ZINC03831186, and (D)
ZINC03831189.
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To gain more insight into the flexibility, the Rg plot, which
measures the mass-weighted RMS distance of a cluster of atoms
from their center of mass, was determined. The Rg analysis of C-α
atoms of ligand–receptor docked complexes average values was
calculated between 0 and 500 ns. Figure 5A illustrates the Rg plot,
and the results indicated a compact conformation of the
complexes, as compared to the native enzyme. For instance,
average values ~1.57 nm, ~1.59 nm, ~1.58 nm, ~1.59 nm, and
~1.58 nm were found for PARP12 and ZINC03830332,
ZINC03830554, ZINC03831186, and ZINC03831189
complexes, respectively (Table 1). Overall, the result suggested
mutant expanded conformation while compact conformation for
the complexes.

To understand the behavior of the PARP12 mutant system and
all the complexes, we also performed a SASA analysis which revealed
the PARP12 surface that can be accessed in the solvent (water). The
average SASA value of the mutant PARP12, complexes with
ZINC03830332, ZINC03830554, ZINC03831186, and
ZINC03831189 were found to be 101.70, 102.17, 104.02, 103.26,
and 103.24 nm2, respectively, (Figure 5B and Table 1).

3.3.2 Hydrogen Bond Vetting
Hydrogen bonding plays a significant role in knowing the
complexes’ stability. To determine the binding affinity of the
selected compounds toward the PARP12 receptor, MD
trajectories were analyzed, and an H-bond investigation was
carried out to determine the total number of bond formations.
The ZINC03830332 and ZINC03830554 formed 0–14 H-bonds
consistent for both the compounds’ complexes with PARP12
throughout the 500 ns MD simulation. Similarly, the compound
ZINC03831186 complex has quite less 0–5 number of H-bonds,
whereas ZINC03831189 docked complexes showed H-bonds 0–4
(supplementary Figures S3A–D). The intermolecular H-bond
examination revealed that the complex containing ZINC03830332
possessed a minimum of fourteen H-bonds during the MD
simulation. The number of H-bond interactions also increased in

the case of ZINC03830554 during the simulation. Contrarily,
complexes containing ZINC03831186 and ZINC03831189 were
unable to increase the number of H-bonds; however, both
compounds showed consistency in the H-bonds’ profile.

3.3.3 Free Energy Landscape Analysis
To monitor the distinct conformation of binding, FEL analysis
was performed. The principal components (PCs) dictate the
most dominant internal modes of motion of a corresponding
system. In the ligand binding or complex formation in MD,
through PCA, we found the most probable and dominant
conformation changes of the protein during binding. The
first PC1 and second PC2 utilized projected eigenvectors
generated based on PCA (Stein et al., 2006). The contour
map of the FEL derived conformational changes of the
mutant system and complexes of PC1 and PC2 eigenvectors
(Figures 6A–E). The Gibbs free energy landscape shows the
global energy minima states (Ali et al., 2019; Ahamad et al.,
2021b). The energetically favored PARP12 complex
conformation is indicated by dark blue spots, while the
unfavorable conformations are indicated by yellow spots. The
values of FEL ranged from 0 kJ/mol to 19.1 kJ/mol, 18.2 kJ/mol,
18.2 kJ/mol, 18.1 kJ/mol, and 16.7 kJ/mol for the mutant
PARP12 and ZINC03830332, ZINC03831186,
ZINC03831189, and ZINC03830554 docked complexes,
respectively. The FEL results demonstrated several well-
defined energy minima, corresponding to the metastable
conformational states. From Figure 6, it is clear that the
main free energy wells in the global free energy minima area
were altered when selected ZINC-FDA compounds were bound
with PARP12. The PC analysis of the existing results confirmed
that the FEL analysis is complimented to our previous RMSD
finding.

The g_covar module by PCA monitors the conformational
changes of C-α mutant and complexes. In this analysis, every
single atom’s collective motion along with directions provides

FIGURE 5 | (A) Rg and (B) SASA fluctuations per residue variation plot analysis of the mutant system and in the presence of compounds with PARP12 at total
simulation time.
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a covariance matrix that uses atomic motion in Cartesian
coordinate space. There are two types of motion: 1)
correlated and 2) anticorrelated motion. The covariance
matrix is constituted by two intense colors; red-colored
region, which means atoms are moving together, and the
blue-colored region, which means atoms are moving in the
opposite direction. The matrix depicts that the reduction of
negative correlation is largely exhibited with the
ZINC03830332 complex. The covariance matrix results
demonstrated that all the complexes were tolerable atomic
displacement of ZINC03830332, ZINC03830554, and
ZINC03831186 (Supplementary Figure S4). The increment
in negative correlation was observed in the case of mutant,
while reduction of both negative and positive motion was
noted in the case of the ZINC03831189 complex. The
overall positional fluctuations on Cα-atoms of all the
docked complexes revealed that ZINC03830332,
ZINC03830554, and ZINC03831186 were stable with steady
atomic displacement and amplitude toward PARP12.

The atomic density distribution was measured using mutant
PARP12 and complexes ZINC03830332, ZINC03830554,
ZINC03831186, and ZINC03831189 ranging from 1.35 nm−3,
1.89 nm−3, 2.3 nm−3, 1.88 nm−3, and 1.38 nm−3, respectively
(Supplementary Figure S5). The results showed the stable
density area for ZINC03830332, ZINC03830554,
ZINC03831186, and ZINC03831189. The density area of each
atom of the complexes ZINC03830332, ZINC03830554, and
ZINC03831186 was examined to be in stable distribution; the
energy wells displayed three compounds signifying the binding at
the same binding site and the stabilized PARP12 enzyme.

4 DISCUSSION

Poly [adenosine diphosphate (ADP)-ribose] polymerases
(PARPs) are one of the attractive and promising targets to
treat several life-threatening diseases including cancer (Kim
et al., 2011; Bai and Virág, 2012; Langelier et al., 2018). The
present study was undertaken to identify promising lead(s)
against the mutated PARP12 enzyme. We carried out an
extensive in silico study, including virtual screening, drug-
likeliness, MD simulations, and MMGBSA analyses. To the
best of our knowledge, no computational studies on PARP12
have been carried out before. To this end, virtual screening of the
ZINC-FDA dataset of 3,100 compounds was performed.

Molecular docking studies revealed the interaction of the
compounds within the active site of receptor via multiple
amino acids. For instance, other than H-bonds, the compound
ZINC03830332 was also stabilized by Gly564, Thr566, Val570,
Gly573, Ile574, Cys575, His577, Phe579, Asp580, Trp581,
Arg582, Val583, Cys584, Gly585, Val586, Thr589, Gly594,
Ser595, Phe597, Ala598, Asp600, Tyr603, His605, Phe607,
Ser659, Ile660, and Phe661 residues. Furthermore, the best
four hits (ZINC03830332, ZINC03830554, ZINC03831186,
and ZINC03831189) were selected based on their docking
score and ADME/T profile used for further studies. The
results of the drug-likeness study revealed that the selected
compounds obeyed Lipinski’s properties very well and have a
high propensity to be developed as a drug.

TheMD simulation study revealed that mutation in the enzyme
altered the enzyme dynamics as revealed by higher fluctuation
throughout the MD simulation. However, upon interaction with

FIGURE 6 | FEL direction of motion and magnitude analysis of the mutant PARP12 (A) and complexes with ZINC03830332 (B), ZINC03830554 (C),
ZINC03831186, and (D) ZINC03831189 (E) throughout MD simulations. The color bar denotes the relative free energy value between 0 and 19.1 kcal mol−1.
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the ligand, PARP12 gets stabilized as indicated by smooth
fluctuations and showed steady-state throughout the MD
simulation. The results of the Rg analysis indicated stable
folding behavior of PARP12 after binding with the compounds.
The results suggested that the Rg values of complexes with four
ZINC-FDA compounds stayed strongly bound to the binding site
and maintained stable and enhanced compactness of the PARP12
structure better than the mutant system throughout the MD
simulation. The H-bonding profile indicated that compounds
ZINC03830332 and ZINC03830554 formed stable complexes
throughout the MD simulation. The FEL demonstrated several
energy minima corresponding to the metastable conformational
states. This analysis observed that the main free energy wells in the
global free energy minima area were altered by the ZINC-FDA
compounds’ complex bound with PARP12.

In addition, SASA study results showed that all the
compounds achieved stable hydrophobic contacts, establishing
the maximum region of PARP12 complexes accessible to the
solvent molecules. The docked complexes exhibited higher
average SASA profiles and stability than the native ligands.

5 CONCLUSION

In the present study, we used pharmacoinformatic techniques to
identify potential inhibitors of mutant PARP12 receptors.
Summarily, we conducted virtual screening, drug-likeliness,
MD simulations, and MMGBSA to identify the best lead
compounds amongst the ZINC-FDA compound library.
Virtual screening–based molecular docking was carried out
to select the best compounds capable of binding to the
mutant PARP12 binding site, which helped shortlist the four
compounds. Furthermore, Lipinski’s rule of three and ADME/T
properties checked the best four compounds with various
parameters to get probable drug candidates. The RMSD,
RMSF, H-bonds, essential dynamics, and FEL wells analysis

dictated that out of 3,100 compounds, only three ZINC-FDA
compounds were the most stable, which perfectly bind to the
binding pocket PARP12. Overall, the results indicated that the
compounds ZINC03830332, ZINC03830554, and
ZINC03831186 were better than others. These promising
candidates could be used in the future and should be further
explored clinically.
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