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Antibiotic resistance is a major public health concern. Antibiotic combinations, offering
better efficacy at lower doses, are a useful way to handle this problem. However, it is
difficult for us to find effective antibiotic combinations in the vast chemical space. Herein,
we propose a graph learning framework to predict synergistic antibiotic combinations. In
this model, a network proximity method combined with network propagation was used to
quantify the relationships of drug pairs, and we found that synergistic antibiotic
combinations tend to have smaller network proximity. Therefore, network proximity can
be used for building an affinity matrix. Subsequently, the affinity matrix was fed into a graph
regularization model to predict potential synergistic antibiotic combinations. Compared
with existing methods, our model shows a better performance in the prediction of
synergistic antibiotic combinations and interpretability.
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INTRODUCTION

Antibiotic resistance is a growing health crisis, and it is emerging globally (Author Anonymous,
2013; Zhabiz et al., 2014; Murray et al., 2022). This crisis has been ascribed to the wide use and even
abuse of antibiotics in the clinic, as well as a lack of economic incentives and market regulation of
new antibiotic development (Ventola, 2015; Farha et al., 2021). An increasing number of Big Pharma
have stopped developing new antibiotics, and the number of new FDA-approved antibiotics has
gradually decreased since the 1980s (Ventola, 2015). Therefore, we have to find an alternative way to
address this pressing public health problem.

Antibiotic combinations offer an effective strategy to combat antibiotic resistance (Tyers and
Wright, 2019; Lv et al., 2021). Generally, antibiotic combinations can be divided into three groups:
synergy, additive, and antagonism (Cokol et al., 2011). Synergistic antibiotic combinations are often
used in clinics because they can offer better efficacy at lower doses (Mathers, 2015). In the
microbiology laboratory, synergy or antagonism is usually identified through the fractional
inhibitory concentration index (FICI) (Odds, 2003). However, this approach is expensive and
time-consuming. To date, more than 300 antibiotics have been discovered (Wright, 2014),
generating at least 44, 850 drug pairs. In addition, the efficacies of antibiotic combinations were
also affected by doses (Maan et al., 2021), metabolic conditions (Cokol et al., 2018), and bacterial
strains (Chandrasekaran et al., 2016). Consequently, millions of drug pairs need to be tested. As a
result, it is impossible to screen synergistic antibiotic combinations by experimental approaches.
Recently, with the development of artificial intelligence, many researchers have started to use
computational approaches to identify synergistic drug combinations (Sheng et al., 2017; Weinstein
et al., 2017). They used drug structures (Mason et al., 2017; Mason et al., 2018) and chemo-genomics
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data (Chandrasekaran et al., 2016) as input to the “black-box”
machine learning model to predict potential synergistic drug
combinations. Although these models have shown good
performance (Chandrasekaran et al., 2016; Mason et al., 2017;
Mason et al., 2018), some limitations still exist. First and
foremost, the curse of dimensionality is a serious problem.
Specifically, the number of features (chemogenomic data:
3,979 and Morgan fingerprint: 2048) is much greater than the
number of training sets (approximately 100). Furthermore, some
features [e.g., chemo-genomics (Nichols et al., 2011)] are not only
difficult to obtain but also hard to use to explain the mechanisms
of the synergy effect. Therefore, more effective and interpretable
features are needed.

Network pharmacology is a new paradigm for drug discovery
(Hopkins, 2008) that can help us better understand intricate
relationships between drugs, targets, pathways, and diseases
(Menche et al., 2015; Cheng et al., 2019; Wang J. et al., 2021;
Wang Y. et al., 2021; Li et al., 2021). In network pharmacology,
the actions of drugs are regarded as perturbations to the network

(Csermely et al., 2013). When a node is perturbed, neighboring
nodes will also be affected (Saraswathi et al., 2009). However,
perturbation experiments are expensive and time-consuming
(Nichols et al., 2011). In this study, we introduced a network
propagation method to simulate perturbation patterns of drug
pairs (Figure 1B). Intuitively, variations in the medication
regimen (synergy or antagonism) cause them to have a slight
difference in the network structure and dynamics. Subsequently,
we used the network proximity method (Figure 1C) to quantify
the relationships between the interactomes between targets of
different drugs. We found that synergistic antibiotic
combinations tend to have smaller network proximity. In
other words, network proximity is a good parameter to classify
drug pairs and to avoid the curse of dimensionality. Finally, we
introduced a mechanism-driven graph regularization model to
predict synergistic antibiotic combinations based on this finding
(Figure 1D). The results demonstrated that our method
outperformed other existing methods in the prediction of
synergistic antibiotic combinations and interpretability.

FIGURE 1 |Overview of the network-based method for antibiotic combinations, including four main parts (A) collect antibiotic combinations and target information
from the literature (B) describe drug actions by network propagation (C) evaluate relationships between each drug pair by network proximity, and (D) predict new
synergistic antibiotic combinations.
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MATERIALS AND METHODS

In this section, we introduced the architecture of our model, as
shown in Figure 1. In Figure 1A, we collected antibiotic
combinations and their targets from the literature. In
Figure 1B, the targets of these antibiotics were fed into the
network propagation model. When a node is perturbed,
neighboring nodes will also be affected, resulting in a
subnetwork. We named this subnetwork as a drug action-
propagating module (DAPM). In Figure 1C, we used a
network proximity model to quantify the relationships
between drug pairs. In Figure 1D, the network proximity of
each drug pair was converted to an affinity matrix. This affinity
matrix and the known antibiotic combinations were employed to
build a graph regularization model, thereby predicting new
synergistic antibiotic combinations.

Constructing the Protein–Protein Network
and Drug–Target Network
We constructed the PPI network of Escherichia coli based on the
STRING database version 11.5 (Szklarczyk et al., 2020). The
interactions with a score less than 0.7 were ignored. The
ultimate network included 59, 496 interactions involving 4,
020 proteins.

We collected drug–target interactions from previous literature
reports or the DrugBank database (Wishart et al., 2017). Since we
used the data from the in vitro antimicrobial test, proteins from
bacteria were considered and proteins of Homo sapiens were
ignored in this study.

Collecting Pairwise Antibiotic
Combinations
In this study, we focused on pairwise antibiotic combinations by
recent experimental data of the Escherichia coli strain MG1655
(Chandrasekaran et al., 2016). Interactions were quantified based
on the α-score, and the following three types were used: synergy
(α-score ≤ −0.25), additive (−0.25< α-score < 1), and antagonism
(α-score ≥ 1) (Cokol et al., 2011). In this study, we only
considered antibiotics with known targets (protein or RNA).
In total, 91 pairwise antibiotic combinations involving 14
antibiotics were retained.

Network Propagation of Drug Action
Targets of the aforementioned antibiotics were fed into a network
propagation model (Vanunu et al., 2010) to simulate the
propagation of drug-action effects on the PPI network:

Ft+1 � βA′Ft + (1 − β)F0, (1)
where β is a parameter (0≤ β≤ 1). Vanunu et al., (2010)
confirmed that the algorithm is not sensitive to the choice of
β as long as it is above 0.5, so we set β to 0.7. A’ � D−1/2AD−1/2 in
which D is a diagonal matrix, and the values of the diagonal
element (dii) are equal to the degree of the vertexes (ki), and A is
an adjacency matrix. F0 denotes a matrix, in which “1” indicates

that the drug can bind to this target, and if the drug can bind
multiple targets (n), the values were set as 1/n. During each
iteration, nodes can not only receive the information from their
neighbors (first term) but can also retain their initial
information (second term), resulting in a DAPM. Next, let us
show that formula (1) converges. The general term formula of
formula (1) is

Ft � (βA′)tF0 + (1 − β)∑t−1
i�0

(βA′)iF0 (2)

Since 0< β< 1 and the eigenvalues ofA’ are in the range of −1 to 1
(according to the Perron–Frobenius theorem),

lim
t→∞

(βA′)t � 0 and lim
t→∞

∑ t−1
i�0 (βA′)i � (I − βA′)−1 (3)

Hence,

lim
t→∞

Ft � (I − βA′)−1 (4)

Quantification of Relationships Between
Each Drug Pair
Subsequently, the Jaccard index (Eq. 5) and network proximity
model (Eq. 6) (Menche et al., 2015; Cheng et al., 2019) were used
to quantify the relationships of each DAPM:

JAB � |SA ∩ SB|
|SA ∪ SB| (5)

where SA and SB are the nodes of drug A and drug B in their
DAPMs, respectively.

SAB ≡ < dAB > − < dAA > + < dBB >
2

(6)

where < dAA > and < dBB > are the mean shortest distances
between each pair of nodes in the DAPM. < dAB > is the mean
shortest distance between each pair of nodes between the DAPM
of drug A and the DAPM of drug B:

< dAB > � 1

||A|| + ||B|| ∑y∈Aminx∈Bd(x, y) (7)

where A and B are the DAPMs of drug A and drug B, respectively.
d(x, y) is the shortest distance between node x and node y. In the
next section, we demonstrated how to build the affinity matrix
and graph regularization model based on network proximity.

Prediction of Synergistic Antibiotic
Combinations Based on Graph
Regularization
Given three drugs (drug A, drug B, and drug C), if drug A–drug B
is a synergistic antibiotic combination and drug A and drug C are
pharmacologically similar, then drug C–drug B will likely be a
synergistic antibiotic combination. Therefore, we can define a loss
function:
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E(Y) � 1
2
⎛⎝ ∑l+u

i,j�1
Wij

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
Yi


di

√ − Yj


dj

√
∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2⎞⎠ + μ∑l

i�1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣Yi − Ŷi

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2

(8)

where Y and Ŷ are the entire and the known drug combination
matrix, respectively. μ (μ> 0) is the regularization parameter. di is
the degree of node i. The key to this model rests on the
construction of the affinity matrix W, which is calculated by
Eq. 9.

Wij � { 1, −1< Sij < 0;
0, otherwise

(9)

where Sij is the network proximity (Eq. 6) between drug i and
drug j. The classifying model is as follows.

Yp � argmin E(Y) (10)
We then take the derivation of E(Y) with respect to Y to solve

the optimization problem.

zE(Y)
zY

∣∣∣∣∣∣∣Y�Yp

� Yp − QYp + μ(Yp − Ŷ) � 0 (11)

whereQ � D−1/2WD−1/2. The detailed derivation of Eq. 11 can be
found in the supporting information, and the analytical solution
of Eq. 11 is

Yp � δ(I − γQ)−1Ŷ (12)
where I is the identity matrix, γ � 1/1 + μ, and δ � μ/1 + μ.

Performance Evaluation Metrics
The performance of the graph regularization model was
estimated using the precision (Eq. 13), recall (Eq. 14),
accuracy (Eq. 15), and F1 (Eq. 16), and these evaluation
metrics can be defended as follows:

precision � TP

TP + FP
(13)

recall � TP

TP + FN
(14)

accuracy � TP + TN

TP + FP + TN + FN
(15)

F1 � 2 × precision × recall

precision + recall
(16)

where TP, FP, FN, and TN are true positive, false positive, false
negative, and true negative, respectively.

RESULTS

The Data Set of Antibiotic Combinations
We used previously reported antibiotic combinations
involving 14 antibiotics (Chandrasekaran et al., 2016) listed
in Table 1. These antibiotics range over various mechanisms of
action, including protein biosynthesis, DNA and RNA
replication, folate metabolism, and cell wall biosynthesis.
Since we concentrated on the subtle differences among
synergy, additive, and antagonism, all 91 pairwise
combinations fall into three categories, according to the α-
score (Supplementary Table S1). Targets of these antibiotics
were collected from previous literature studies (Pongs et al.,
1973; Shen and Pernet, 1985; Buck and Cooperman, 1990; Pan
et al., 1996; Onodera et al., 2002; Aracena et al., 2014; Kocaoglu
and Carlson, 2015; Wekselman et al., 2017; Lin et al., 2018;
Salehi et al., 2020; Wróbel et al., 2020). Because some
antibiotics are RNA-targeted small molecules, ribosomal
proteins that affect antibiotic binding are considered targets
of antibiotics. For example, 30S ribosomal proteins S7 (rpsG)
and S14 (rpsN) were shown to be the most important for
tetracycline binding (Buck and Cooperman, 1990). Mutations
of 50S ribosomal proteins L22 (rplV) and L4 (rplD) will lead to
macrolide (erythromycin, etc.) resistance (Wekselman et al.,
2017).

Network analysis showed that the shortest distance between
targets of antibiotic combinations ranged from 0 to 5
(Supplementary Figure S1). Most antibiotic combinations
(92.3%) did not share the same targets. Approximately
thirty percent of antibiotic combinations were adjacent, and
almost half of synergistic antibiotic combinations (57.1%)

TABLE 1 | List of antibiotics used for network analysis and their targets and mechanisms.

Drug Abbreviation Targets Mechanism of action

Amikacin AMK rpsL Lin et al. (2018) Protein synthesis, 30 S inhibition
Gentamicin GEN rpsL Lin et al. (2018) Protein synthesis, 30 S inhibition
Tobramycin TOB rpsL Lin et al. (2018) Protein synthesis, 30 S inhibition
Tetracycline TET rpsG, rpsN Buck and Cooperman (1990) Protein synthesis, 30 S inhibition
Clarithromycin CLA rplD, rplV Salehi et al. (2020) Protein synthesis, 50 S inhibition
Erythromycin ERY rplD, rplV Wekselman et al. (2017) Protein synthesis, 50 S inhibition
Chloramphenicol CHL rplP Pongs et al. (1973) Protein synthesis, 50 S inhibition
Ciprofloxacin CIP gyrA, parC Pan et al. (1996) DNA gyrase inhibition
Levofloxacin LEV gyrA, parC Onodera et al. (2002) DNA gyrase inhibition
Nalidixic acid NAL gyrA Shen and Pernet (1985) DNA gyrase inhibition
Trimethoprim TRI folA Wróbel et al. (2020) Folic acid biosynthesis inhibition
Oxacillin OXA dacB, ftsI Kocaoglu and Carlson (2015) Cell wall
Cefoxitin CEF mrcA, mrcB, dacB, dacA, dacC, pbpG, ftsI Kocaoglu and Carlson (2015) Cell wall
Nitrofurantoin NIT nfsA Aracena et al. (2014) Multiple mechanisms
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were included (Supplementary Figure S1). However, a
considerable portion of antagonistic or additive antibiotic
combinations have adjacent targets, but they are not
synergistic (Supplementary Figure S1). Therefore, mere
knowledge of the network structure may not be sufficient to
explain the intricate interactions among antibiotic
combinations and their targets. To investigate the network-
based relationship between antibiotic combinations and their
targets, we introduced network propagation (Vanunu et al.,
2010) to predict the effect of antibiotics and antibiotic
combinations on the PPI network.

Network Propagation of Drug Actions
Network propagation has been used to quantify the influence
of mutations in colorectal tumorigenesis (Shin et al., 2017).

When a mutation arises in a node, perturbation spreads out
along the protein–protein interaction (PPI) network and
eventually forms a mutation-propagating module. Similar to
mutation, if a drug acts on a node, neighboring nodes are also
affected (Figure 1B) (Saraswathi et al., 2009). Predictably, the
impact is greatest in its neighbors, whereas nodes far away
from targets receive attenuated influences. Therefore, we can
generate a subnetwork with drug targets as hubs, and the nodes
(F*

i ≥ 0.0065) will be incorporated into the subnetwork.
Based on the network propagation method (Eq. 1), these

antibiotics and antibiotic combinations were mapped to the
PPI network to investigate the potential relationships of these
subnetworks (Figure 1). On average, DAPMs include
approximately 13 nodes, although almost all drugs only
have 1 to 2 targets. Because of the high threshold, each

FIGURE 2 | Relationships between drug interactions and network structures (A–C) Sketch map of the three topologically distinct classes (D–F) The number of
synergistic, additive, and antagonistic drug combinations for the corresponding network structure.
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DAPM consisted almost exclusively of nearest neighbors.
Interestingly, we found that there are areas of overlap for
some antibiotic combinations and that antibiotic
combinations are associated with the synergy effect
(Figure 1C). Hence, we inferred that the structure of
DAPKs can be used to quantify interactions between drug
pairs and thereby predict synergetic antibiotic combinations.

Network-Based Relationship Between
DAMPs
Network proximity was used to investigate FDA-approved
drug combinations (Cheng et al., 2019) and herb
combinations in traditional Chinese medicine (Wang Y.
et al., 2021; Zhang et al., 2021). Compared with random
herd pairs, herd pairs in traditional Chinese medicine
formulas tend to have smaller network proximity (Wang Y.
et al., 2021). To probe whether it could also be used to
distinguish synergy, additive, and antagonism, we used the
Jaccard index (Eq. 5) and network proximity (Eq. 6) to
quantify DAMP–DAMP interactions. We found that all
possible antibiotic combinations can be divided into three
topologically distinct categories: a) overlap: two DAMPs
overlap but do not equate (Figure 2A); b) separation: two
DAMPs are topologically separated (Figure 2B); and c)
identical: two DAMPs are completely consistent (Figure 2C).

For overlap (Figures 2A,D), these antibiotic combinations
are probably synergetic (87.5%, p − value � 0.118,
permutation test). From the perspective of network

pharmacology, if DAMPs of two drugs overlap, it indicates
that the two drugs are pharmacologically similar (Cheng et al.,
2019). For example, chloramphenicol and erythromycin both
target the 50S ribosome, and their binding sites are the peptidyl
transferase center (PTC) and the nascent peptide exit tunnel
(NPET) on the 50S subunit, respectively (Lin et al., 2018). They
can inhibit protein synthesis in a synergistic way (Figure 3B)
(Chandrasekaran et al., 2016). As shown in Figure 3A, DAMPs
of chloramphenicol and erythromycin have common nodes.
Hence, the network proximity of the two DAMPs is negative,
STET−CHL � −0.97. To verify this idea, we performed virtual
screening for nodes in the DAMP of trimethoprim (a
dihydrofolate reductase inhibitor). Eventually, we identified
a dihydropteroate synthase inhibitor—sulfamethoxazole. The
DAMPs between sulfamethoxazole and trimethoprim overlap
(STRI−SUL � −0.12, Supplementary Figure S2A). Previous
studies have shown that a combination of trimethoprim and
sulfamethoxazole not only interferes with folic acid synthesis
synergistically (Yeh et al., 2006) but also reduces the risk of
bacterial resistance (Pappas et al., 2009). In summary,
synergistic drug combinations tend to act on the same
biological pathways.

For separation (Figures 2B,E), these antibiotic
combinations were almost not synergetic (90.1%,
p − value< 10−4, permutation test, see more from SI). In
other words, the two drugs are pharmacologically distinct
in this case. For example, nalidixic acid (an inhibitor of DNA
gyrase) and chloramphenicol (an inhibitor of protein
synthesis) take effect in different biological processes, so

FIGURE 3 | (A) Chemistry structural formula, targets (PDB ID: 4V48), and DAPMs of chloramphenicol and erythromycin (B) gene enrichment analysis (Mi et al.,
2018) for DAPMs of chloramphenicol and erythromycin.
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their DAMPs are topologically separated (SNAL−CHL � 0.92,
Supplementary Figure S2B), and nalidixic acid and
chloramphenicol do not show the synergy effect.
Levofloxacin not only inhibits DNA gyrase but also inhibits
DNA topoisomerase (Table 1). Hence, the DAMPs of
levofloxacin and nalidixic acid overlap, resulting in the
synergy effect. In addition, DAMPs of some synergistic
drug combinations are topologically separated. This may
result from the following reasons: a) experimental data
itself: the correlation coefficient of the α-score between two
replicates is only 0.81, which leads to a random error; b) some
drugs have unknown targets: recent evidence suggests that
gentamicin has a second binding site around H69 of the 23S
rRNA of the 50S ribosome (Serio et al., 2018). This may be the
reason for the synergy between gentamicin and tetracycline.

For identical (Figures 2C,F), these antibiotic combinations
showed a definite additive effect (100%). For example,
clarithromycin and erythromycin not only act on the same
targets (Table 1) but also have similar chemical structures
(98.1%, Tanimoto similarity; more details can be found in SI).
Hence, we consider the two drugs to be pharmacologically
identical, which leads to an additive effect.

To demonstrate the usefulness of the PPI network, an
ablation test was performed where the PPI network was
randomized. Supplementary Figure S3 shows that the

randomized PPI network produces worse results, so an
accurate PPI network is crucial for our model.

Prediction of Synergistic Antibiotic
Combinations by Graph Regularization
Graph regularization is a useful model to predict different
relationships between various types of biological entities (Luo
et al., 2018; Ding et al., 2020). Through the aforementioned
analysis, we found that if two drugs are pharmacologically similar,
then the drug pair is probably a synergistic antibiotic combination
(Figure 2D). Therefore, we can define a loss function of Y (Eq. 8).
However, if two drugs are pharmacologically identical (SAB = −1),
then the drug pair shows an additive effect (Figure 2C). Therefore, we
set Wij of these drug pairs to 0 (Eq. 9). Next, we used the
aforementioned 14 antibiotics (Table 1) for the training set to
predict interactions with the following three antibiotics (Table 2)
by Eq. 12. The entire predicted scores are listed in Table 3. A larger
predicted score of drug pairs suggests that they would probably be the
synergistic antibiotic combinations. In Supplementary Tables
S2–S6, we confirmed that the algorithm is not sensitive to the
choice of γ, so it was simply fixed at 0.7. In Supplementary
Figure S4, we demonstrated that the impact of the threshold
changes on the performance of our method. When the threshold
increases from 0.1 to 0.5, the precision increases, and the recall and

TABLE 2 | List of antibiotics used for the validation set and their targets and mechanisms.

Drug Abbreviation Targets Mechanism of action

Kanamycin KAN rpsL Lin et al. (2018) Protein synthesis, 30 S inhibition
Penicillin G PNG pbpG, dacB Kocaoglu and Carlson (2015) Cell wall
Roxithromycin ROX rplD, rplV Salehi et al. (2020) Protein synthesis, 50 S inhibition

TABLE 3 | The entire predicted scores were calculated by a graph regularization model and synergistic antibiotic combinations are colored red.

Drug1 Drug2 Score Drug1 Drug2 Score

KAN AMK 0 PNG CIP 0
KAN GEN 0 PNG LEV 0
KAN TOB 0 PNG NAL 0
KAN TET 0 PNG TRI 0.259
KAN CLA 0 PNG OXA 0.519 Mason et al. (2017)
KAN ERY 0 PNG CEF 0.519 Mason et al. (2017)
KAN CHL 0 PNG NIT 0
KAN CIP 0 ROX AMK 0.080
KAN LEV 0 ROX GEN 0.162
KAN NAL 0 ROX TOB 0
KAN TRI 0 ROX TET 0.485 Mason et al. (2017)
KAN OXA 0 Mason et al. (2017) ROX CLA 0.405 Mason et al. (2017)
KAN CEF 0 ROX ERY 0.405 Yilancioglu (2019)
KAN NIT 0 ROX CHL 0.485 Yilancioglu (2019)
PNG AMK 0 ROX CIP 0
PNG GEN 0 ROX LEV 0
PNG TOB 0 ROX NAL 0
PNG TET 0.259 Mason et al. (2017) ROX TRI 0
PNG CLA 0 ROX OXA 0.162
PNG ERY 0 Mason et al. (2017) ROX CEF 0 Mason et al. (2017)
PNG CHL 0 ROX NIT 0
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accuracy decrease. When the threshold is larger than 0.2, the F1
decreases. Therefore, we set the threshold to be 0.2 in our model.
Eight potential synergistic antibiotic combinations were found: TET-
ROX, ROX-CLA, OXA-PNG, CEF-PNG, ROX-ERY, ROX-CHL,
PNG-TET, and PNG-TRI. In the experiments conducted by Mason
et al. (Mason et al., 2017), TET-ROX, ROX-CLA, OXA-PNG, CEF-
PNG, and PNG-TET were identified as synergistic antibiotic
combinations, and ROX-ERY, ROX-CHL, and PNG-TRI were
additive. However, as alluded to above, there are random errors in
experimental measurements, which might have some impact on the
classification of antibiotic combinations. As expected, we found that
ROX-ERY and ROX-CHL were identified as synergistic antibiotic
combinations in the experiments by Yilancioglu (Yilancioglu, 2019).
This means that our model has good stability for the prediction of
synergistic antibiotic combinations.

Comparison With Other Methods
Previously, there have been studies to predict synergistic antibiotic
combinations through computational methods. In this section, we
compared the performance of our model (Eqs 13–16) with other
methods, such as CosynE (Mason et al., 2017) and INDIGO
(Chandrasekaran et al., 2016) on the benchmark dataset. As
shown in Table 4, our model achieved better performance in
terms of various metrics.

DISCUSSION

To reduce the cost and time of high-throughput drug combination
experiments, we proposed a graph learning framework (Figure 1) to
predict potential synergistic antibiotic combinations. First, we
collected antibiotic combinations (Supplementary Table S1) and
their corresponding targets (Table 1) from the literature. Network
analysis revealed that the shortest distance between targets of
antibiotic combinations was not sufficient to classify synergistic
antibiotic combinations (Supplementary Figure S1). Therefore,
we proposed a network proximity method combined with
network propagation to quantify the relationships of antibiotic
combinations (Figures 1B,C). An important finding is that
synergistic antibiotic combinations have a specific network
topological relationship, that is, the overlap pattern (Figure 2).
This suggests that synergistic antibiotic combinations tend to act
on the same biological pathways. Using the antibiotic combination
erythromycin and chloramphenicol as a case study, we confirmed
that the network proximity of their DAMPs is negative
(Supplementary Table S1), and they can inhibit protein
synthesis in a synergistic way (Figure 3B). In addition, the
network proximity of each drug pair can be fed into the graph

regularization model (Eq. 8) to predict new synergistic antibiotic
combinations. Most of the predicted synergistic antibiotic
combinations have been proven by a series of experiments (Table 3).

Previously, chemo-genomics data (Chandrasekaran et al., 2016) or
structural compound fingerprints (Mason et al., 2017) have been used
to build machine learning models and thereby predict antibiotic
interactions between drug pairs. Based on the concepts proposed by
these models, many potential synergistic antibiotic combinations
were predicted and validated. However, the performance of these
two methods is moderate (Table 4) because of the curse of
dimensionality. Compared to these two approaches, our model is
based on a feature at deeper molecular levels, the network proximity
of DAMPs, which provides a more elegant and efficient way to
describe the relationship of drug pairs. This not only makes our
model have better predictability (Table 4) but also allows our model
to achieve better interpretability. Even so, there are some limitations
in ourmodel. First, we focused on the paired antibiotic combinations.
In the future, we will also investigate high-order drug combinations.
Second, the PPI network is crucial for our model (Supplementary
Figure S3). In the current model, an undirected network was used,
and next, we will adopt a directed and signed network, which may be
useful for improving the performance of our model.

CONCLUSION

Antibiotic combinations provide a useful way to combat antibiotic
resistance. In this study, we proposed a graph learning framework to
understand the mechanisms of drug pairs and to predict synergistic
antibiotic combinations. By quantifying the relationship between
drug pairs based on the network proximity of DAMPs, a graph
regularization model can identify potential synergistic antibiotic
combinations. This allows us to explore the need for antibiotic
combinations more effectively.
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