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Aims: To evaluate the effectiveness and potential mechanism of calcium

dobesilate (CaD) in diabetic kidney disease (DKD) patients.

Methods: We searched for available randomized controlled studies on DKD

patients’ treatment with CaD through open databases. Continuous variables

were expressed as standardized mean difference (SMD) with a 95% confidence

interval (CI). The putative targets and possible pathways of CaD on DKD were

analyzed by network pharmacology. Molecular docking was employed to verify

the match between CaD and the target genes.

Results: In the meta-analysis, 42 trials were included, involving 3,671 DKD

patients, of which 1,839 received CaD treatment in addition to conventional

treatment, while 1,832 received conventional treatment. Compared with

routine therapy, the levels of serum creatinine (Scr) and blood urea nitrogen

(BUN) significantly decreased in the CaD treatment (early stage of DKD, Scr: p <
0.00001; BUN: p < 0.0001; clinical stage of DKD, Scr: p < 0.00001; BUN: p <
0.00001; kidney failure stage, Scr: p = 0.001; BUN: p = 0.004). The levels of

serum cystatin C (Cys-C), urine levels of molecules reflecting kidney function

(urinary albumin excretion rate (UAER) and micro glycoprotein), and

inflammatory factors [hypersensitive c-reactive protein (hs-CRP)] were

reduced compared with control groups, while glomerular filtration rate
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(GFR) was increased in patients treatedwith CaD for 12 weeks. CaD also showed

a better effect on improving endothelial function. Network pharmacology

results showed that the interaction pathway between CaD and DKD was

mainly enriched in MAPK and chemokine signaling pathways. AKT1, CASP3,

IGF1, MAPK8, and CCL5 might be the key targets for CaD in treating DKD.

Conclusion: Combination with CaD is effective and safe in patients with DKD.

Inhibition of MAPK and chemokine signaling pathways might be vital in treating

CaD in DKD patients.

KEYWORDS

calcium dobesilate, diabetic kidney disease, network pharmacology, MAPK signaling
pathway, chemokine signaling pathway

1 Introduction

Diabetes mellitus (DM) has afflicted around 422 million

people worldwide and has become a leading cause of

morbidity and mortality (Zhang et al., 2017). Diabetic kidney

disease (DKD) is one of the most severe microvascular

consequences of diabetes, accounting for 30%–50% of all end-

stage kidney disease patients (Qin et al., 2017). It also imposes a

significant financial cost on patients, families, and society

(Zhang, 2012). The severity of DKD was divided into five

stages using an albuminuria-based methodology.

The interstitial space grows in the first two phases, the

mesangial volume rises, and the glomerular basement

membrane thickens. They are silent stages because there is

no detectable microalbuminuria in clinical practice, and there

are currently no effective indicators for their detection (Salem

et al., 2020). The early and clinical stages are the third and

fourth stages, respectively. Microalbuminuria to overt

proteinuria is a sign of progressing from early stage to

clinical overt diabetic kidney disease. End-stage renal failure

(ESRD) is the ultimate stage (Cai et al., 2017). Because DKD is

still reversible in its early phases, novel therapeutic medicines

for aggressive therapy are urgently needed to avert progression

to ESRD.

Calcium dobesilate (CaD) is a microcirculation-improving

medication that improves hemodynamics, inhibits inflammatory

responses, and suppresses interstitial fibrosis, among other things

(Chen and Bai, 2017). CaD has long been utilized to treat diabetic

retinopathy (DR) due to its potential to reduce oxidative stress by

decreasing the activation of the p38MAPK and NF-B pathways

(Liu et al., 2019; Ashraf et al., 2021). CaD’s efficacy in kidney

illness (Zhang et al., 2021), chronic venous insufficiency

(Ciapponi et al., 2004), thrombotic disorders (Michal and

Giessinger, 1985), and various types of cardiac disease (Besirli

et al., 2012) has received great attention recently. CaD

considerably affects DKD in lowering the urine albumin

excretion rate (Qin et al., 2017) and has been studied

extensively in clinical trials (Zhou et al., 2018). There is little

authoritative conclusion on the benefits and possible adverse

effects due to the limited sample sizes and variable findings of

currently available randomized controlled studies (RCTs)

on CaD.

Some medications have a wide range of effects on humans,

but they all point in the same therapeutic direction, implying

that they can work on diverse targets in the same pathways. We

have found that network-related approaches can be employed

to emphasize our findings of drug action mechanisms in various

data layers in the drug development process (Boezio et al.,

2017). Based on the network pharmacology mechanism, we

created a network between the putative CaD targets and the

implicated gene targets of DKD. The PPI network is formed

when common targets interact with each other. Furthermore,

we may use GO and KEGG analyses on these proteins to

identify the main pathway that plays a crucial role in CaD’s

treatment of DKD.

2 Materials and methods

2.1 Meta-analysis

2.1.1 Randomized controlled study preparation
The PRISMA (preferred reporting items for systematic

reviews and meta-analyses) guidelines were followed in this

meta-analysis (Page et al., 2021). The PubMed Database, MED-

LINE, Global Health, EMBASE, EBSCOhost, Cochrane Library,

China National Knowledge Internet, VIP, Wanfang, and

SinoMed databases were used to find the literature.

Information from well-known registries, such as Current

Controlled Trials, the World Health Organization

International Clinical Trials Registry Platform, the

Clinicaltrials.gov trials registry, and published review papers

and editorials, was considered. The search terms were “Calcium

Dobesilate” and “diabetic kidney disease” or “diabetic kidney

disease” or “diabetic kidney disease” or “randomized” or

“double-blind trial”, with no restrictions on subheadings or

language. Other likely relevant citations were found in the

reference lists of all included papers, and the literature not
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found in the abovementioned electronic databases was

manually reviewed.

2.1.2 Inclusion and exclusion criteria of studies
The inclusive criteria were as follows: 1) study subjects were

diagnosed as DKD according to the corresponding guidelines, 2)

all patients were randomized to receive treatment with CaD and

contemporary medications or contemporary medications alone,

3) sample size in each study group was ≥ 15cases, 4) follow-up in

each study group was ≥ 8 weeks; and 5) the outcomes were

quantitative to facilitate outcome analysis.

Exclusion criteria were as follows: 1) studies were

nonrandomized or nonblinded, 2) patients enrolled had no

definite diagnosis, 3) different medications were compared, 4)

studies reported only symptomatic changes in patients without

objective laboratory measurements; and 5) methodological

quality was poor with a Jadad score <2.

2.1.3 Stage of diabetic kidney disease
DKD is categorized into five stages according to the

albuminuria-based classification. There was a hemodynamic

alteration at the start of the first stage, with increased

glomerular capillary hydrostatic pressure but no abnormalities

in the ultrastructure. Hyperglycemic effects begin in the second

part of the first stage, with thickening of the glomerular basement

membrane, increased mesangial volume, and interstitial

expansion. Because microalbuminuria cannot be measured in

clinical practice and no suitable test marker has yet been

discovered, the second stage is quiet (Salem et al., 2020). The

early stage of diabetic kidney disease is the third stage. Previous

structural changes had become severe, and microalbuminuria

had been diagnosed. The fourth stage is known as clinically

severe diabetic kidney disease, and it is at this stage that these

changes may progress to significant proteinuria, formerly known

as “macroalbuminuria.” Microalbuminuria to overt proteinuria

FIGURE 1
Flow chart of the investigation of calcium dobesilate in the treatment of diabetic kidney disease.
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is a marker of progression from early stage to clinical overt

diabetic kidney impairment. ESRD is the final stage (Cai et al.,

2017).

2.1.4 Statistics analysis
RevMan version 5.3 was used to synthesize the data.

Continuous variables were expressed as standardized mean

difference (SMD) with a 95% confidence interval (CI). Chi-

square and I2 tests were used to test heterogeneity.

Nonheterogeneous results (P˃0.1, I2 < 50%) were adopted for

the fixed effects model, and heterogenous results (p ≤ 0.1, I2 ˃

50%) were adopted for the random effects model. Statistical

significance was defined as a two-tailed p < 0.05. The fail-safe

number was used to estimate the extent of publication bias

(Cheng et al., 2016). The formula for the fail-safe number was

Nfs0.05 = (ΣZ/1.64)2-S, where S is the number of the included

trials.

2.2 Network pharmacology

2.2.1 Predicting potential targets of calcium
dobesilate

The bioactive component of CaD was found in the published

literature using the keyword “Calcium Dobesilate” in the

PubMed database. The 2D structure of CaD was then

retrieved from PubChem (Kim et al., 2021) and uploaded to

Pharmmapper (Wang et al., 2017) to forecast the drug’s potential

targets. All target names were entered into Uniprot sites (UniProt

Consortium., 2019) and selected by Homo Saipan species to

standardize the gene information.

2.2.2 Screening of targets for diabetic kidney
disease

The target genes of DKD were found using the key

phrases “diabetic kidney disease” or “diabetic kidney dis-

ease” in the Online Mendelian Inheritance in Man database

(OMIM) (Amberger et al., 2015), Gene Cards database

(Stelzer et al., 2016), and DisGeNET database (Piñero

et al., 2017).

2.2.3 Construction of protein–protein
interaction network

To identify the interaction targets of CaD in the treatment

of DKD, we selected the online drawing tool Interactive Venn

(Heberle et al., 2015) to draw a Venn diagram, whose

overlapping section represented the typical targets for CaD

and DKD. These common targets were uploaded to the

STRING 11.0 platform (Szklarczyk et al., 2019), and the PPI

network was built using the STRING database and the Network

Analyzer plugin of Cytoscape (Shannon et al., 2003). The

stronger the interaction in a network, the higher the degree.

The more significant degree nodes, which may play a critical

role in the overall network, were screened based on the

network’s topological qualities.

2.2.4 Enrichment analysis
Metascape1 (Zhou et al., 2019) was used to perform Gene

Ontology (GO) functional analysis,Kyoto Encyclopedia of Genes,

and Genomes (KEGG) pathway enrichment analysis, with p ≤
0.01 as the cut-off threshold. Bioinformatics web tools2 and the

EHBIOGene Technology Platform3 were then used to display the

top 10 GO items and 20 KEGG pathways that met the criteria.

2.2.5 Construction of the
component–target–pathway network

The integrated network of component–target–pathway was

constructed using Cytoscape 3.7.1. The topology parameters of

the network were analyzed with the built-in tool Network

Analyzer in Cytoscape to identify the relationships of protein

targets with components and the involved pathways.

2.2.6 Molecular docking verification
Suitable 3D structure “pdb” files of the core targets were

downloaded from RCSB Protein Data Bank (Berman et al., 2000).

PyMol2.6.0 embellished the downloaded complexes to remove

the original ligand and water molecules. The “sdf” file of the DKD

bioactive component from the PubChem database was obtained,

and its format was converted to a “pdb” file by Open Babel2.4.0

(O’Boyle et al., 2011). Then, we used AutoDockTools1.5.6

(Goodsell and Olson, 1990) to evaluate and verify the binding

affinity of the compound–target relationship. The critical models

were visualized by PyMol2.6.0 software and Discovery

Studio4.5 software. A flow chart of the meta-analysis, network

pharmacology, and molecular docking is shown in Figure 1.

3 Result

3.1 Meta-analysis

A total of 939 trials were retrieved through database

searches—PubMed (48), MEDLINE (17), EMBASE (25),

Cochrane library (5), China National Knowledge Internet (248),

VIP (219), Wanfang (277), and SinoMed (100). Five hundred and

thirty-seven duplicate records were eliminated using endnote

software. Subsequently, among the remaining 402 pieces,

123 trials were excluded from the primary screening according

to the inclusion and exclusion criteria. Of the remaining 279 trials,

1 https://metascape.org/.

2 http://www.bioinformatics.com.cn/.

3 http://www.ehbio.com/ImageGP/.
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273 were evaluated as eligible, and 42 shots were finally included

for meta-analysis (Figure 2; Table 1).

3.1.1 Blood kidney function (Scr&BUN)
Among all of the 42 trials, 38 trials evaluated the Scr and

BUN. Thirty-five of the 38 trials were focused on DKD in its early

stages. Two trials (Zhang et al., 2013; Wang et al., 2015) focused

on DKD patients in the clinical phase, while one (Wu et al., 2007)

concentrated on DKD patients in the kidney failure stage. As for

the studies performed on the early stage of DKD patients, the

results showed that the function of the kidney was markedly

better in the CaD treatment group than that of the control groups

(Scr: SMD = −0.84; 95% CI, −1.05 to −0.62; p < 0.00001; I2 = 87%,

BUN: SMD = −0.64; 95% CI, −0.96 to −0.32; p < 0.0001; I2 =

86%). The early phase was subdivided into 8-week and 12-week

treatment cycles in most of the included literature. Furthermore,

FIGURE 2
Flow chart of the systematic search process.

Frontiers in Pharmacology frontiersin.org05

Du et al. 10.3389/fphar.2022.850167

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.850167


the results showed that CaD treatment for 8 weeks (Scr:

SMD = −0.45; 95% CI, −0.73 to −0.17; p = 0.002; I2 = 78%,

BUN: SMD = −0.48; 95% CI, −0.65 to −0.31; p < 0.00001; I2 = 0%)

and 12 weeks (Scr: SMD = −0.97; 95% CI, −1.27 to −0.67; p <
0.00001; I2 = 89%, BUN: SMD = −0.55; 95% CI, −1.03 to −0.07;

p = 0.03; I2 = 87%) could significantly reduce Scr and BUN levels

compared to the control group. In the clinical stage of DKD,

patients treated with CaD for 12 weeks also exhibited a

statistically significant reduction in the expression level of the

Scr and BUN compared with control groups (Scr: SMD = −2.08;

95% CI, −2.45 to −1.72; p < 0.00001; I2 = 99%; BUN:

SMD = −0.70; 95% CI, −0.97 to −0.43; p < 0.00001; I2 =

19%). In the kidney failure stage of DKD, the data showed

the same trend, that the groups treated with CaD for 12 weeks

had a better effect on reducing Scr and BUN than comparators

(Scr: SMD = −0.71; 95% CI, −1.15 to −0.27; p = 0.001; BUN:

SMD = −0.63; 95% CI, −1.07 to −0.20; p = 0.004).

3.1.2 Serum cystatin C
Serum cystatin C (Cys-C) has been recognized as an ideal

marker of kidney function (Dharnidharka et al., 2002). Nine trials

(Hong, 2013; Wang et al., 2015; Cen et al., 2016; Liu et al., 2016;

Chen and Bai, 2017; Fan and Ma, 2017; Qin et al., 2017; Li, 2018;

and Zeng et al., 2018) reported serum Cys-C. The treatment

durations were both 8 and 12 weeks. A total of 1,036 patients

were included, 518 of whom were in the treatment group and

TABLE 1 Meta-analysis of the randomized controlled study of DKD patients’ treatment with CaD.

Category n Participants, n
(cases/controls)

Heterogeneity SMD
(95%CI)

Z-test

Ph I2 (%)

Blood kidney function (Scr&BUN) 38

Scr early stage-all 34 1,464/1,462 0.00 87 −0.84 (−1.05 to −0.62) Z = 7.58; Pz<0.00
early stage-8W 9 500/499 0.00 78 −0.45 (−0.73 to −0.17) Z = 3.16; Pz<0.00
early stage-12W 23 898/895 0.00 89 −0.97 (−1.27 to −0.67) Z = 6.37; Pz<0.00
clinical stage-12W 2 113/113 0.00 99 −2.08 (−2.45 to −1.72) Z = 11.15; Pz<0.00
kidney failure stage-12W 1 43/42 NA NA −0.71 (−1.15 to −0.27) Z = 3.18; Pz = 0.00

BUN early stage-all 14 629/629 0.00 86 −0.64 (−0.96 to −0.32) Z = 3.92; Pz<0.00
early stage-8W 4 281/281 0.00 0 −0.48 (−0.65 to −0.31) Z = 5.60; Pz<0.00
early stage-12W 9 297/295 0.00 87 −0.55 (−1.03 to −0.07) Z = 2.24; Pz = 0.03

clinical stage-12W 2 113/113 0.27 19 −0.70 (−0.97 to −0.43) Z = 5.1; Pz<0.00
kidney failure stage-12W 1 43/42 NA NA −0.63 (−1.07 to −0.20) Z = 2.85; Pz = 0.00

Serum Cys-C 9 518/518 0.00 85 −0.95 (−1.29 to −0.61) Z = 5.43; Pz<0.00
Serum Cys-C-8W 4 276/278 0.02 68 −0.78 (−1.10 to −0.45) Z = 4.73; Pz<0.00
Serum Cys-C-12W 5 242/240 0.00 91 −1.13 (−1.78 to −0.47) Z = 3.37; Pz<0.00

GFR

GFR -8W 2 82/79 1.00 0 0.17 (−0.14–0.48) Z = 1.09; Pz = 0.27

GFR-12W 2 82/79 0.26 22 1.66 (1.26–2.07) Z = 7.99; Pz<0.00
Molecules in urine

UAER 15 643/645 0.00 93 −1.29 (−1.75 to −0.82) Z = 5.41; Pz<0.00
24 h urinary protein/24 h urinary albumin 12 448/443 0.00 94 −1.95 (−2.63 to −1.27) Z = 5.63; Pz<0.00
α1-MG 4 142/142 0.00 91 −2.32 (−3.36 to −1.28) Z = 4.38; Pz<0.00
β2-MG 6 368/368 0.00 98 −3.00 (−4.41 to −1.58) Z = 4.14; Pz<0.00

Endothelium function

NO 3 155/155 0.43 0 0.68 (0.45–0.91) Z = 5.81; Pz<0.00
ET 4 205/205 0.10 51 −0.81 (−1.11 to −0.51) Z = 5.26; Pz<0.00

Inflammation index

Hs-CRP 4 205/205 0.00 96 −1.43 (−2.66 to −0.21) Z = 2.30; Pz = 0.02

IL-6 2 80/80 0.00 99 −6.07 (−14.56 to 2.43) Z = 1.40; Pz = 0.16

TNF-α 2 55/55 0.00 99 −8.07 (−24.95 to 8.81) Z = 0.94; Pz = 0.35

Hemodynamic index (Blood viscosity) 2 93/90 0.00 98 −2.06 (−5.35 to 1.23) Z = 1.23; Pz = 0.22

PZ<0.05, shows a significant association. CI, confidence interval; NA, not available; SMD, standardized mean difference; Ph, p-values for heterogeneity of Q-test; Scr, serum creatinine;

BUN, blood urea nitrogen; GFR, glomerular filtration rate; UAER, urine albumin excretion rate; a1-MG, alpha-1-microglycoprotein; β2-MG, β2-microglobulin; Cys-C, cystatin C; NO,

nitric oxide; ET, endothelin; Hs-CRP, hypersensitive c-reactive protein; IL-6, interleukin-6; and TNF-α, factor-α.
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518 in the control group. The results proved that the CaD groups

exhibited a statistically significant reduction in serum Cys-C

compared with the control groups (SMD = −0.95; 95%

CI, −1.29 to −0.61; p < 0.00001; I2 = 85%). Subgroup analysis

was conducted to determine that the source of heterogeneity was

from different treatment methods: one trial (Qin et al., 2017)

reported the patients treated with CaD plus alprostadil and routine

treatment, another (Wang et al., 2015) focused on the patients

treated with CaD plus α-thioctic acid plus routine treatment, and

the remaining studies (Zhang, 2012; Hong, 2013; Cen et al., 2016;

Liu et al., 2016; Chen and Bai, 2017; Fan and Ma, 2017; Li, 2018)

compared two treatment methods, including CaD, angiotensin-

converting enzyme inhibitor (ACEI)/angiotensin II receptor

blockers (ARBs) and routine treatment (CaD group) or ACEI/

ARB and routine treatment (control group) (MD = −0.37; 95%

CI, −0.43 to −0.30; p < 0.00001; I2 = 18%).

3.1.3 Glomerular filtration rate
Glomerular filtration rate (GFR) is widely recognized as a

comprehensive measure of renal function, and its assessment is

essential for clinical practice, research, and public health (Levey

et al., 2020). GFR was reported in two trials (Wu et al., 2007;

Zhang, 2018), and both treatment cycles were divided into 8 and

12 weeks. The results revealed that after 12 weeks of treatment,

patients in the CaD group had considerably higher GFR levels

than the control group (SMD = 1.66; 95% CI, 1.26 to 2.07; p <
0.00001; I2 = 22%), while patients who received CaD for 8 weeks

had increased GFR levels, but there was no statistical difference

(SMD = 0.17; 95% CI, −0.14 to 0.48; p = 0.27; I2 = 0%).

3.1.4 Urinary albumin excretion rate, 24 h urinary
protein/24 h urinary albumin, α1-MG, and β2-MG

The kidney function can be quantified by detecting the level

of some molecules in urine. These molecules are divided into

primary outcomes and secondary outcomes. The primary

outcomes include urine albumin excretion rate (UAER) and

24 h urine protein/24 h urine albumin, and the secondary

outcomes consist of alpha-1-microglycoprotein (α1-MG) and

β2-microglobulin (β2-MG).

3.1.4.1 Urinary albumin excretion rate

Evaluated UAER, as the primary symptom of DKD, leading

to a decrease of GFR and proteinuria, is regarded as the essential

criterion for diagnosing DKD in the early stage (Chen et al.,

2017). UAER was reported in 15 trials (Hong, 2013; Li et al.,

2013; Luo and Tao, 2014; Kang et al., 2014; Huang, 2015; Wang,

2015; Gao and Zhang, 2015; Liu et al., 2016; Yu et al., 2016; Deng

and Yuan, 2016; Wang, 2016; Jiang, 2017; Yang, 2018; Zeng et al.,

2018; Ma and Pang, 2018). A total of 1,288 patients were tested,

643 included in the treatment group and 645 in the control

group. The results proved that UAER was reduced after CaD

treatment compared with control groups (SMD = −1.29; 95%

CI, −1.75 to −0.82; p < 0.00001; I2 = 93%).

3.1.4.2 24 h urinary protein/24 h urinary albumin

The data was reported in 12 trials (Wu et al., 2007; Sun, 2012;

Zhang, 2012; Luo and Tao, 2014; Huang, 2015; Deng and Yuan,

2016; Liu et al., 2016; Zhu, 2016; Kuang, 2017; Deng, 2018; Yang,

2018; Zhang, 2008), which included a total of 891 patients, of

which 448 were in the treatment group and 443 were in the

control group. According to the results, we can see that the 24 h

urinary protein/24 h urinary albumin of the CaD group is

reduced compared with the control group (SMD = −1.95; 95%

CI, −2.63 to −1.27; p < 0.00001; I2 = 94%)

3.1.4.3 α1-MG and β2-MG

α1-MG and β2-MG are tubular markers and could be

predictive in diagnosing DKD patients due to their accuracy

(Ferguson et al., 2015). Four trials (Hong, 2013; Zheng et al.,

2013; Zhao et al., 2014; Liu et al., 2015) reported α1-MG. In trials

targeting α1-MG, 284 patients were included, 142 in the

treatment group and 142 in the control group. Control group

patients were treated with ACEI, ARB, and routine treatment.

The treatment duration was all less than or equal to 12 weeks.

The result showed that the CaD group had a better curative effect

(SMD = −2.32; 95% CI, −3.36 to −1.28; p < 0.0001; I2 = 91%). On

the other hand, six trials (Wang et al., 2015; Jiang, 2016; Chen

and Bai, 2017; Fan and Ma, 2017; Qin et al., 2017; Zhou and

Chen, 2017) reported β2-MG. Seven hundred and thirty-six

patients were included, half in the control and half in the

CaD group. We conclude by analyzing the results: CaD can

effectively improve the pathological changes of the kidney caused

by DKD, making the MG in urine decrease significantly

(SMD = −3.00; 95% CI, −4.41 to −1.58; p < 0.0001; I2 = 98%).

3.1.5 Endothelium function
Endothelin (ET) and nitric oxide (NO) were used to show

endothelial function. Three trials (Wang et al., 2015; Wang, 2016;

Kuang, 2017) reported NO, and four trials (Wang et al., 2015;

Wang, 2016; Kuang, 2017; Zeng et al., 2018) reported ET. The

treatment duration was all equal to or less than 12 weeks. The

result showed that the CaD groups had a better effect on

increasing NO (SMD = 0.68; 95% CI, 0.45 to 0.91; p <
0.00001; I2 = 0%) and decreasing ET (SMD = −0.81; 95%

CI, −1.11 to −0.51; p < 0.00001; I2 = 51%) than the control groups.

3.1.6 Inflammation index
Inflammation response was one of the mechanisms related to

DKD development. By modifying vascular permeability;

releasing vasodilator and vasoconstrictor mediators; causing

kidney fibrosis; and inducing cytotoxicity, apoptosis, and

necrosis in the pathogenesis and progression of DKD, it may

have an impact on the glomerular filtration function (Zhou et al.,

2018). The enhanced inflammatory markers such as tumor

necrosis factor-α (TNF-α), interleukin-6 (IL-6), and c-reactive

protein (CRP) could be suggestive molecules in the development

of diabetic vascular disease.
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3.1.6.1 Hypersensitive c-reactive protein

Four trials (Chen and Bai, 2017; Fan andMa, 2017; Qin et al.,

2017; Jia et al., 2018) were collected to evaluate the Hs-CRP. Four

hundred and ten patients were included in the total, half of which

were in the CaD group and half in the control group. The results

showed that CaD could effectively decrease the level of CRP

compared with control groups (SMD = −1.43; 95%

CI, −2.66 to −0.21; p = 0.02; I2 = 96%).

3.1.6.2 Interleukin-6

We collected two trials (Gao and Zhang, 2015; Qin et al.,

2017) involving 160 DKD patients to assess the value of IL-6. In

one trial, patients in the control group were treated with

alprostadil, while in the other, the control group gave patients

with telmisartan. According to this result, we can infer that no

significant correlation was found between the CaD and the level

of IL-6 (SMD = −6.07; 95% CI, −14.56 to 2.43; p = 0.16; I2 = 99%).

3.1.6.3 Tumor necrosis factor-α
Two studies (Qin et al., 2017; Jia et al., 2018) targeted the

measure of TNF-α value. One hundred and ten patients were

included in the total, 55 of which were in the control

group. Although one trial (Qin et al., 2017) demonstrated a

remarkable decrease in TNF-α in CaD patients compared to the

control group, the other (Jia et al., 2018) did not exhibit a

significant difference between the CaD group and control

group (SMD = −8.07; 95% CI, −24.95 to 8.81; p = 0.35; I2 = 99%).

3.1.7 Hemodynamic index
Blood viscosity can reflect the state of hemodynamics, and

alternation of hemodynamics is one of the critical pathways in

DKD pathological development. We found two studies (Gao and

Zhang, 2015; Ma and Pang, 2018) estimating the value of blood

viscosity, and the result showed that CaD had no significant

correlation with blood viscosity (SMD = −2.06; 95% CI, −5.35 to

1.23; p = 0.22; I2 = 98%).

3.2 Network pharmacology

3.2.1 Candidate targets of Calcium Dobesilate
and diabetic kidney disease

For CaD, there are 293 related targets collected by searching

the database. For DKD, we have retrieved 534 genes from the

OMIM database, 1,678 genes from the Gene Cards database, and

1,189 genes from the DisGeNET database. After eliminating the

redundancy, 2,771 known therapeutic targets were collected in

this study. By drawing a Venn diagram to look for the

intersection of CaD and DKD targets, 120 overlapping genes

were obtained (Figure 3A).

3.2.2 Protein–protein interaction network of
diabetic kidney disease targets

To evaluate the role of potential targets in complicated

diseases and discover connections, overlapping targets are

submitted to the STRING11.0 platform to establish a PPI

network. After analyzing the topology parameters of the PPI

network, the 120 targets were sorted in descending order by

degree and arranged in a concentric circle (Figure 3B). Degree

reflected the importance of nodes by representing the number of

connections between nodes and other nodes. According to the

degree, the targets in the innermost circle were predicted as

important targets.

3.2.3 Gene ontology and Kyoto Encyclopedia of
Genes and Genomes enrichment Analyses

We conducted GO functional analysis and KEGG pathway

enrichment analysis to elucidate the biological impacts of CaD

on gene functions and signaling pathways of relevant targets

in treating DKD. As shown in Figure 4, the top 10 GO items

and top 20 KEGG pathways were selected based on the

p-value.

For biological processes, the targets were mainly enriched

in the apoptotic signaling pathway, regulation of kinase

activity, MAPK cascade, cellular response to chemical

stress, and regulation of cytokine production. The top

10 items were mainly related to protein kinase activity,

peptidase activity, and phosphotransferase activity (alcohol

group as acceptor) in molecular functions. The cellular

components were primarily concentrated in cytoplasmic

vesicle lumen, secretory granule lumen, ficolin-1-rich

granule lumen, membrane raft, vacuolar lumen, lytic

vacuole, and lysosome; according to the results of the

KEGG pathway enrichment analysis, most were involved in

the MAPK signaling pathway, PI3K-Akt signaling pathway,

the Ras signaling pathway, focal adhesion, fluid shear stress,

atherosclerosis, Rap1 signaling pathway, and the chemokine

signaling pathway. Interestingly, the typical targets of CaD

and DKD are mainly enriched in the MAPK signaling

pathway, and protein kinase activity was mentioned in the

top 10 molecular function items. Additionally, biological

processes involved apoptosis signaling pathways, regulation

of kinase activity, and MAPK cascade. Therefore, we surmised

that the MAPK signaling pathway might be critical. The

number of targets concentrated in the chemokine pathway

was relatively large in the figure, and the biological process

highlighted cellular response to chemical stress and regulation

of cytokine production. Meanwhile, the meta-analysis results

showed that CaD significantly reduced the level of

inflammatory factors. These imply that the chemokine

signaling pathway cannot be overlooked.
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FIGURE 3
Venn diagram and PPI work. (A) Venn diagram. The blue section indicates DKD-related targets, and the pink section indicates CaD-related
targets. Twenty-five targets in themiddle overlapping section are common targets of DKD andCaD. (B) PPI network. A total of 119 target proteins and
1,175 interacting edges are present in the network. Sizes and colors of the nodes are illustrated from big to small and blue to green in a descending
order of degree values.
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FIGURE 4
Enrichment analysis of the targets of CaD in treating DKD. (A) GO functional analysis. Top 10 items of each part are shown. (B) KEGG pathway
enrichment analysis. The sizes of the bubbles are illustrated from big to small in a descending order of the number of potential targets involved in the
pathways.
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3.2.4 Component–target–pathway network
construction

A component–target–pathway network was constructed with

Cytoscape3.7.1 based on the KEGG pathway enrichment analysis

(Figure 5). Among the essential targets selected by the PPI

network, AKT1, CASP3, IGF1, and MAPK8 were enriched in

the MAPK signaling pathway, and CCL5, a typical inflammatory

chemokine, was increased in the chemokine signaling pathway at

the same time. We speculated that the five targets might be

critical for CaD in treating DKD and used for further molecular

docking.

3.2.5 Molecular docking result analysis
In the present studies, the possible interaction activity

between five key targets and their corresponding compounds

of CaD was investigated with molecular docking verification.

FIGURE 5
Component–target–pathway network. A total of 77 nodes and 372 edges are present in the network. Orange diamond represents the bioactive
component of CaD, 57 green squares represent targets, and 20 blue V-shapes represent pathways. Sizes of the green square node are illustrated
from big to small in a descending order of degree values. A total of 372 edges represent the interaction relationship between components, targets,
and pathways.
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Among the docking results, most binding complexes possessed

high binding affinity, averaging −5.12 kcal/mol. The modes of

five binding complexes are displayed in Figure 6, including CaD-

AKT1 docking (−5 kcal/mol), CaD-CASP3 docking (−5.55 kcal/

mol), CaD-IGF1 docking (−4.62 kcal/mol), CaD-MAPK8

docking (−5.16 kcal/mol), and CaD-CCL5 docking (−5.26 kcal/

mol). For concreteness, taking the CaD-AKT1 docking as an

example, small-molecule ligand CaD may be embedded in the

interfaced pocket formed by the interaction of amino acid

residues in the protein (Figure 6Aa). Figure 6Ab shows three

hydrogen bond formations between ligand and residues in SER

216, LEU202, and VAL201. The other essential residues (LYS214,

TYR215, LEU213, GLN203, and ASN204) interacted with CaD

through van der Waals forces. These forms of hydrogen bonds

and interactions contribute to the stability of the binding of small

molecules to the active sites of proteins.

4 Discussion

We gathered 42 trials of CaD intervention for DKD clinical

treatment, including 3671 DKD patients in various phases of the

disease, and divided them into the CaD experimental and control

groups. The results showed that Scr, BUN, and Cys-C levels in

the blood, as well as molecules including UAER, 24 h urine

protein/24 h urine albumin, 1-MG, and 2-MG in the urine, were

FIGURE 6
Molecular docking diagram. (A) Five conformations of amolecular docking simulation. Diagrams (3D) represent that themolecular model of the
compound is in the binding pocket of the protein. The compound is shown as a stickmodel in orange. The amino acid residues in the surrounding are
represented by surface style. Diagrams (2D) show the interactions between the compound and surrounding residues. (B) 3D column diagram shows
the affinity of six conformations. X-axis: bioactive component, y-axis: target names, and z-axis: docking affinity (absolute value of the binding
energy).
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FIGURE 7
MAPK and chemokine signaling pathways are influenced by dapagliflozin. The red nodes represent the key targets, the orange nodes represent
common targets of CaD and DKD targets, and the green nodes represent the other targets of these two pathways. CaD affects the phosphorylation
of MAPK14 in the p38/MAPK pathway. In the JNK pathway, CaD affects the phosphorylation of MAPK8 and MAPK10 and it also indirectly affects the
activation of CASP3. As for the classical MAPK signaling pathway, CaD affects the activation of GRB2, HRAS, RAF1, and the phosphorylation of
MEK and ERK. The chemokine signaling pathway is closely related to the classical MAPK signaling pathway. CaD inhibits the expression of CCL5. CaD
inhibits apoptosis, oxidative stress, and inflammation by inhibiting the MAPK signaling pathway and the chemokine signaling pathway, thereby
exerting a therapeutic effect on DKD.
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significantly lower in the CaD group compared to the control

group, while GFR levels were substantially higher. These findings

suggested that CaD could help DKD patients improve their

glomerular filtration performance and kidney function. In

addition, CaD could modulate endothelium contraction and

relaxation by boosting NO and lowering ET, regulating

microvasculature function. Inflammatory variables such as

CRP levels also dropped in the CaD group, implying that

CaD can help DKD patients lessen their inflammatory

response. Compared to the control group, patients in the CaD

group showed a trend of improvement in numerous indices,

including glomerular filtering performance, endothelium

function, and inflammatory function. As a result, we

hypothesize that CaD may bind to multiple targets in vivo,

activating or inhibiting multiple metabolic and disease-related

pathways, reminding us that a network pharmacological

approach can be used to investigate the mechanisms by which

drugs improve multiple metrics in patients.

Then, using network pharmacology, we built a PPI network

for the drug’s and disease’s shared targets and ran GO and KEGG

analyses on these genes. According to BP enrichment, multiple

genes are abundant in apoptosis, regulation of kinase activity,

and cellular response to chemical stress, which could be CaD’s

primary approach to suppressing the development of DKD.

Based on the KEGG pathway enrichment analysis and

literature research, we anticipated that CaD would play a

therapeutic function in DKD primarily by modulating the

MAPK signaling pathway and the chemokine signaling

pathway (Figure 7). We identified AKT1, CASP3, IGF1,

MAPK8, and CCL5 as primary targets based on the

component–target–pathway network analysis, implying that

the CaD-mediated DKD treatment is mainly related to the

abovementioned targets.

Reactive oxygen species (ROS), the products of normal

metabolism and xenobiotic exposure, are significant factors

related to the pathogenesis of DKD (Bahmani et al., 2016;

Miranda-Díaz et al., 2016), and their production can induce

apoptosis (Xu et al., 2017). CaD has been shown to prevent cell

apoptosis by lowering the number of ROS (Iriz et al., 2008).

CASP3 is an essential component of apoptosis and is closely

associated with the progression of DKD (Zhou et al., 2021).

Hyperglycemia stimulates CASP3 cleavage and DNA breakage,

and the resulting apoptosis leads to mesenchymal cell loss in

DKD. (Mishra et al., 2005). One of the earliest events in DKD is

glomerular thickening resulting from mesangial cell

hypertrophy, and it has been determined that Akt signaling

contributes to thylakoid hypertrophy in DKD.

(Mahimainathan et al., 2006). DKD is associated with the loss

of renal cells, particularly glomerular podocytes, which form the

glomerular filtration barrier, and changes in Akt signaling as a

critical event in podocyte loss during early DKD. In addition,

inhibition of Akt and its downstream targets such as mTOR may

provide future therapeutic benefits for treating DKD (Heljić and

Brazil, 2011). IGF1 is an important growth factor that maintains

the structure and function of nephritis and plays a vital role in the

pathology of DKD (Bach and Hale, 2015). Previous studies have

shown that IGF1 overexpression causes many histopathology

changes such as kidney tissue hyperplasia, renal cell proliferation,

nephromegaly, mesangial expansion, and increased

inflammatory cytokines (Li et al., 2018). Donath also found

that inhibition of IGF1R could reduce inflammation in DKD

more effectively (Donath, 2013). Animal and human kidney

biopsy studies have shown that activation of stress-activated

protein kinases (p38 MAPK and JNK) is associated with the

progression of inflammation and injury in multiple forms of

kidney disease (Adhikary et al., 2004). In addition,

pharmacological inhibitors of p38 MAPK or c-Jun N-terminal

kinase (JNK) are effective in animal models of renal disease when

used as prophylactic agents to prevent injury development or as

interventional therapies to inhibit the progression of established

injury (Tesch et al., 2016). These findings support the notion that

p38 MAPK and JNK signaling are important therapeutic targets

for preventing kidney damage. Besides, CCL5 is involved in the

pathogenesis of diabetic kidney injury as an inflammatory

chemokine upregulated in response to the metabolic and

hemodynamic characteristics of the diabetic environment

(Pérez-Morales et al., 2019). Subsequently, the desired

molecular docking results strongly prove the criticality of the

above five targets.

Podocytes are terminally differentiated cells, and podocyte

damage is the critical event leading to proteinuria in DKD

(Miranda-Díaz et al., 2016). ROS is essential for initiating

podocyte apoptosis (Zhang et al., 2015). Activating

p38 MAPK, a pro-apoptotic signaling factor downstream of

ROS leads to cell apoptosis (Finkel and Holbrook, 2000).

Evidence has shown that the increase of ROS could activate

profibrotic factors, including TGF-β through P38-MAPK, which

could promote the synthesis of type IV collagen (the main

component of extracellular matrix (ECM)) and fibrin

connection protein, thus causing an increase in ECM, and

forming early DKD (Sakai et al., 2005). Previous studies have

shown that leptin can signal through the leptin receptor isoform

to stimulate glomerular endothelial cell proliferation, increase

TGF-β1 synthesis, and type IV collagen production (Wolf and

Ziyadeh, 2006). Leptin promotes fibrosis primarily on the

glomerulus but can potentially prevent/reverse renal injury by

normalizing metabolic disturbances, including hyperglycemia

and hyperlipidemia (Suganami et al., 2005). Bulent O et al.

suggested the potential importance of leptin in regulating

glucose homeostasis and its possible direct application in

treating disorders of glucose homeostasis (Yildiz and

Haznedaroglu, 2006). These also provide help to broaden our

treatment ideas. Furthermore, the MAPK pathway can be

activated by chronic hyperglycemia, resulting in a local

inflammatory response (Fang et al., 2012). Targeted therapy

for inhibiting the p38 MAPK signaling pathway has shown
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preventive effects on streptozotocin-induced DKD (Lin et al.,

2018). These findings indicate that CaD may significantly

influence DKD by inhibiting the MAPK signaling pathway.

In addition tocell apoptosis, chemokine production has also

been believed to play an essential role in the process of DKD

(Dieter et al., 2019). The proinflammatory chemokine (C–C

motif) ligand 12 caused glomerular sclerosis in T2D mice, and

blocking its expression had a protective effect on DKD

(Darisipudi et al., 2011). Inflammatory CCL5 is expressed in

various cell types, including fibroblasts and renal tubular

epithelial cells. Previously, upregulated CCL5 was found in the

kidney, and its expression is directly related to the proteinuria

concentration in kidney tubular cells (Navarro-González et al.,

2011; Zhang et al., 2016). Consequently, it can be concluded from

the existing research that the chemokine signaling pathway plays

a vital role in CaD in treating DKD.

Although our results revealed the advantages of CaD for

DKD, limitations did remain in the analysis. In the present study,

we chose serum creatinine as amarker to assess renal function. At

the same time, the literature has reported that CaD interferes to

some extent with serum creatinine measured by sarcosine

oxidase, both in vivo and in vitro (Zhou et al., 2018).

However, we also evaluated serum Cys-C, which may be more

sensitive for assessing renal function. Its levels are not interfered

with by CaD, and many studies suggest using serum Cys-C to

evaluate renal function in patients receiving CaD therapy (Guo

et al., 2015). Other studies point out that microalbuminuria is the

current gold standard for predicting and detecting diabetic

kidney disease (Salem et al., 2020). The evaluation of urine

albumin excretion rate (UAER) and 24 h urine protein/24 h

urine albumin are covered in our article. Therefore, this issue

is not sufficient to affect our findings.

5 Conclusion

In conclusion, our research systematically elucidated the

underlying molecular mechanisms by which CaD interfered

with DKD based on the meta-analysis, network

pharmacology, and molecular docking. We predicted five

key targets from complex networks and concluded that

CaD exerts a therapeutic effect on DKD by inhibiting

MAPK and the chemokine signaling pathway. We expect

this research to provide additional reference directions for

CaD as a medicine in treating diabetic microangiopathy.

Further exploration can be done in the future based on this

study.
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