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Atherosclerosis (AS) features include progressive hardening and reduced elasticity of
arteries. AS is the leading cause of morbidity and mortality. An increasing amount of
evidence showed that epigenetic modifications on genes serve are a main cause of several
diseases, including AS. Histone deacetylases (HDACs) promote the deacetylation at lysine
residues, thereby condensing the chromatin structures and further inhibiting the
transcription of downstream genes. HDACs widely affect various physiological and
pathological processes through transcriptional regulation or deacetylation of other non-
histone proteins. In recent years, the role of HDACs in vascular systems has been revealed,
and their effects on atherosclerosis have been widely reported. In this review, we discuss
the members of HDACs in vascular systems, determine the diverse roles of HDACs in AS,
and reveal the effects of HDAC inhibitors on AS progression. We provide new insights into
the potential of HDAC inhibitors as drugs for AS treatment.
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INTRODUCTION

As a critical potential pathology of cardiovascular disease (CVD), atherosclerosis (AS) is
characterized by the progressive hardening and reduced elasticity of arteries; AS is a leading
cause of morbidity and mortality (Aghamajidi et al., 2021). Its progression will ultimately lead
to myocardial infraction, ischemic stroke, cerebrovascular incidents, and peripheral vascular disease,
thereby increasing the risk of death (Yang et al., 2021). The most outstanding feature of AS is the
plaque formation in the arteries. Vascular cell homeostasis low-density lipoprotein (LDL) oxidation,
monocyte recruitment, macrophage-derived foam cell formation, and thrombus formation play
important roles during AS progression (Luan et al., 2021). Among them, vascular homeostasis is one
of the major AS risk factors (Rajendran et al., 2013). The maintenance of vascular homeostasis
requires the joint participation of various vascular cells. Vascular cells are composed of endothelial
cells (ECs) and smooth muscle cells (SMCs). The alteration of proliferation, migration, and apoptosis
of ECs and SMCs is indispensable in AS (Dai et al., 2018). Endothelial dysfunction includes abnormal
proliferation, migration, and apoptosis and contributes to enhanced endothelial permeability to
lipoproteins, increased leucocyte migration and adhesion, and reduced nitric oxide production,
thereby subsequently triggering fatty streak formation (Liu et al., 2007). The proliferation and
migration of SMCs are critical in the formation of fatty steak, which induces advanced lesions and
fibrous cap formation (Clarke et al., 2006). AS is very likely to form at certain areas of arteries, such as
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branching points and bends, because of the local disturbance of
endothelial functions (Ravensbergen et al., 1998). In addition,
lipid metabolism disorder also plays an important role in AS
progression. As reported, LDL, especially that modified by
oxidation, enzymatic processing, desialylation, and aggregation,
is the main substance in the atherosclerotic lesions (Torzewski,
2021). These LDL modifications are prone to induce immune
response; thus, the body forms highly atherogenic circulating
LDL, which are involved in immune complexes (Zhang et al.,
2018a). Other cell types are also involved in AS pathogenesis,
such as macrophages and stem cells (Wang et al., 2015a;
Takamura et al., 2017; Ruytinx et al., 2018; Kloc et al., 2020).

An increasing amount of evidence indicated that epigenetic
modifications on genes are the main cause of many diseases, such
as, cancer, and CVDs (Yang et al., 2021). Epigenetic modifications
can modulate gene expression without altering gene sequences,
thereby facilitating rapid and reversal of the regulation of targeted
genes (Wee et al., 2014). Epigenetic modifications are composed
of DNA and histone modifications. DNA modifications are
inheritable, whereas histone modifications are not (Qin et al.,
2021). Histone methylation and acetylation are the main forms of
histone modification (Rajan et al., 2020). Acetylation changes the

condensation of chromatin and has been considered as a
therapeutic target. Histone acetylation is tightly controlled by
histone acetyltransferases (HATs) and histone deacetylases
(HDACs), which exert contradictory functions (Raman and
Rai, 2018). Acetylation in histones and non-histones can be
catalyzed by HATs and removed by HDACs. In most cases,
HDACs repress gene expressions through interactions with
histones and transcription factors (Gallinari et al., 2007).

The Classification of HDACs
HDACs promote the deacetylation at lysine residues and
condense the chromatin structures, thereby further inhibiting
the transcription of downstream genes (Walther et al., 2020).
HDACs are composed of two families, namely, HDAC and
sirtuin, which include 18 members (Dai et al., 2021). These
members can be clearly classified into four groups, namely,
Class I, II, III, and IV, based on the enzymatic activities,
domain structures, functions, and sequence similarity
(Figure 1) (Zhang et al., 2020). Class I HDACs (HDAC1/2/3/
8) share high sequence similarity with yeast Rpd3 and are mostly
located in the nucleus (Zaidi et al., 2020). Class II HDACs are
subclassified into subclass IIa (HDAC4, 5, 7, and 9) and subclass

FIGURE 1 | Classification and sublocation of HDACs. HDACs can be classified into Class I, II, III, and IV according to similarities. Class I HDACs (HDAC1/2/3/8) are
mostly located in the nucleus. Class II HDACs are subclassified into subclass IIa (HDAC4, 5, 7 and 9) and subclass IIb (HDAC6 and 10). Class IIa HDACs translocate
between cytoplasm and nucleus. Class IIb members mostly localize in the cytoplasm. Class III contains seven members (SIRT1 to 7). SIRT1/2 shuttle between the
nucleus and cytoplasm. SIRT6/7 are mostly in the nucleus. SIRT3/4/5 are localized in the mitochondria. Class IV HDAC (HDAC11) is predominantly located in the
nucleus.
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IIb (HDAC6 and 10). Class IIa HDACs are specifically expressed
in muscle and heart tissues; they translocate between cytoplasm
and nucleus, interact with kinase proteins (calcium-independent
protein kinases and the MAPK), and act as signal transducer
(Ziegler et al., 2020). Class IIb members mostly localize in the
cytoplasm and are distinguished from the class IIa members in
terms of the tandem deacetylase domains (Yu et al., 2020). Class
III is composed of the sirtuin family and contains seven members
(SIRT1 to 7), which share high sequence similarity with the yeast
protein silent information regulator 2 (Sir2) (Chen et al., 2020).
These HDACs require NAD+ to catalyze the deacetylation
reaction due to their conserved catalytic domain, whereas
other HDACs rely on the binding of zinc molecule as an
activator (Vaquero et al., 2007). SIRT1/2 shuttle between the
nucleus and cytoplasm. SIRT6/7 are mostly in the nucleus, and
SIRT3/4/5 are localized in the mitochondria (Figure 1) (Villalba
and Alcaín, 2012). Class IV HDAC (HDAC11, the sole member
in class IV) shares sequence homology with Class I and II
members (Seto and Yoshida, 2014). HDAC11 modulates the
protein stability of CDT1 and negatively modulates the
expression of interleukin (IL)-10 and the activity of T cells,
thereby indicating the potential role of HDAC11 in AS
progression (Glozak and Seto, 2009). The classical HDAC
family also consists of Class I, II, and IV besides Class III (Dai
et al., 2021).

Although HDACs are commonly recognized as enzymes that
catalyze the removal of acetyl group from histones, present
studies have identified many other non-histone substrates,
such as NF-kB, E2F1, SP1, KLF2/4, and STAT1 (Villagra

et al., 2010). Considering the diversity of HDAC substrates,
they are also related to multiple cellular processes and several
diseases, including AS (Ke et al., 2021). Notably, the sirtuin family
is widely acknowledged because of its diverse roles in vascular
functions. In this review, we discuss the role of HDACs in
vascular function and AS process and the pharmacological
effects of HDAC inhibitors (HDACi) on AS treatment.

HDACs in Modulating the Function of
Endothelial Cells (ECs)
Endothelial cells (ECs) are a main type of cells in blood vessels
that modulate vascular tone, blood coagulation, and mediate
inflammatory reaction (Wautier and Wautier, 2021). HDACs
are a major group of histone deacetylases that are extensively
involved in endothelial cell function regulation (He et al., 2011).
HDACs are critical in modulating the gene expressions involved
in vascular homeostasis and vessel development as
transcriptional cofactors (Figure 2) (Zhao et al., 2020). Among
the HDACs, HDAC1/2/3 are reportedly involved in EC
proliferation mediated by oscillatory shear stress, which
increases the expression of cyclin A and decreases p21 (Bazou
et al., 2016). HDAC2 overexpression suppresses vascular
dysfunction induced by oxidized LDL (Pandey et al., 2014).
HDAC3 mediates EC differentiation from embryonic stem
cells and keeps endothelial integrity dependent on PI3K/Akt
and TGFβ2 pathways (Wang et al., 2021). Moreover, the
knockdown of HDAC3 is associated with the decrease of
Nox4, a major source of reactive oxygen species (ROS)

FIGURE 2 | The function of HDACs in ECs, SMC, and macrophages. The alteration of proliferation, migration, and apoptosis of ECs and SMCs is indispensable in
AS. HDAC1/2/3/7 regulate SMC proliferation. HDAC3/4/7 are involved in SMC migration. HDAC3/5 modulate inflammation in macrophage. HDAC3/9 regulate
proinflammatory gene expression by modulating M2 macrophage polarization. HDAC11 plays a critical role in vascular injury. SIRT1 is directly related to EC senescence
and apoptosis. SIRT6 protects EC from senescence. HDAC1/2/3 are reportedly involved in EC proliferation mediated by oscillatory shear stress. In addition,
HDAC5 represses angiogenesis in ECs.
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production in the vascular wall, thereby suggesting the critical
role of HDAC3 in EC function (Fu et al., 2020).

Class IIa HDACs are involved in vascular homeostasis
response to signals in the modulation of gene expression
(Clocchiatti et al., 2011). For instance, HDAC4/5 nuclear
translocation is initiated by nitric oxide (NO) to modulate the
activation of protein phosphatase 2A (PP2A) (Illi et al., 2008).
Moreover, NO promotes the formation of a complex containing
HDAC3, HDAC4, HDAC5, and an active PP2A (Illi et al., 2008).
HDAC5 represses angiogenesis by mediating the expression
profile of angiogenic genes in ECs (Shiva Shankar and
Willems, 2014). Its overexpression weakens sprout formation,
whereas its inhibition by the inhibitors manifests pro-angiogenic
effect by inducing EC migration, sprouting, and tube formation.
Previous studies indicated that HDAC7 regulated EC
proliferation by modulating beta-catenin translocation.
HDAC7 overexpression prevented nucleus beta-catenin
translocation and inhibited EC proliferation (Margariti et al.,
2010). HDAC7 knockdown promoted the nuclear translocation
of beta-catenin and inhibited the levels of cyclin D1, cyclin E1,
and E2F2, thereby causing EC hypertrophy. Moreover, HDAC7-
mediated EC proliferation suppression can be partially
ameliorated by VEGF through the induction of HDAC7
degradation via PLCg-IP3K signaling pathway (Chang et al.,
2006). Another HDAC, HDAC9, affected EC dysfunction and
permeability dysfunction in oxygen-glucose deprivation-induced
ischemia in the cerebral hemisphere (Shi et al., 2016).

The sirtuin family is also involved in mediating the function of
ECs (Matsushima and Sadoshima, 2015). SIRT1 is critical in
modulating neovascularization by regulating angiogenic ability
when stimulated by angiogenic cues (Botti et al., 2014). The
deacetylase activity of SIRT1 on Foxo transcription factors
repressed its transcription and restrained EC proliferation,
migration, and neovessel formation (Gu et al., 2016). SIRT6
protected EC from senescence. SIRT6 depletion aggravated the
percentage of senescent cells in HUVEC and aortic endothelial
cells and suppressed the formation of tubule networks (Cardus
et al., 2013). The sole member of class IV, HDAC11, restored the
expression of angiogenic factor in response to carotid artery
ligation in mice (Nunez-Alvarez and Suelves, 2021). HDAC11
depletion mitigated vascular injury in mice, suggesting its critical
role in vascular injury (Nunez-Alvarez and Suelves, 2021).

The apoptosis of ECs also plays critical role in endothelial
dysfunction during AS progression (Qin et al., 2017). In addition,
recent studies implied that apoptosis in luminal EC probably
induced the formation of thrombus on eroded plaques without
rupture (Quillard et al., 2017). HDACs are believed to affect EC
apoptosis. Knockdown of HDAC3 induced extensive membrane
blebs and more Annexin V staining and reduced cell survival (Lee
and Chiu, 2019). In addition, HDAC3 overexpression facilitated
Akt phosphorylation and activated its kinase activity (Long et al.,
2017). Therefore, HDAC3 is crucial in maintaining cell survival
and prevents AS by activating Akt. In addition, SIRT1 is directly
related to EC senescence and apoptosis (Liu et al., 2018). Hou
et al. showed that SIRT1 prevented the externalization of early
membrane apoptotic phosphatidylserine, and the DNA
degradation was dependent on Akt1 and FoxO3a (Hou et al.,

2011). Other studies demonstrated that SIRT1 mediated EC
proliferation and senescence by modulating a serine/threonine
kinase and tumor suppressor LKB1 (Zu et al., 2010). Inhibition of
HDACs by valproic acid induced phosphorylation of extracellular
signal-regulated kinase1/2 (ERK 1/2) and subsequently caused
phosphorylation of Bcl-2 and EC apoptosis inhibition in response
to serum starvation (Joanna et al., 2009).

HDAC Modulation in Smooth Muscle Cells
(SMCs)
The proliferation of smooth muscle cells (SMCs) is necessary in
the formation of neointima and arteriosclerosis (Daniel and
Sedding, 2011). Following EC injury and activation, diverse
growth factors (e.g., PDGF and TGF-beta) and cytokines
(interferon-ɣ) were released and promote SMC proliferation,
which aggravated the generation of advanced lesions during
AS (Annoni et al., 1992). Interference in the level of HDAC1/
2/3 attenuated SMC proliferation induced by mitogens (Figure 3)
(Findeisen et al., 2011). The suppression in the activity of Classes I
and II HDACs by apicidin inhibited proliferation in newborn
pulmonary arterial SMCs and cell cycle arrest at G1 phase (Zhao
et al., 2020). HDAC inhibition by butyrate abrogated Akt
activation and subsequent downstream Akt targets, thereby
promoting proliferation arrest (Zhao et al., 2020). Among
SMCs, vascular smooth muscle cells (VSMCs) are crucial in
regulating blood pressure and tissue repair (Jaminon et al.,
2019). HDACs mediate the functions of VSMCs. SIRT1 could
regulate VSMC proliferation and motility and induce cell cycle
arrest at G1/S transition (Wang and Chen, 2020). Overexpression
of the unspliced form of HDAC7 (HDAC7u) attenuated SMC
proliferation by decreasing cyclin D1, whereas the spliced
HDAC7 did not result in the same effect (Zhou et al., 2011a).
HDAC7u showed binding with beta-catenin and inhibited its
nuclear translocation; moreover, it mitigated beta-catenin activity
(Zhou et al., 2011b). Knockdown of HDAC7 exacerbated
neointimal formation in femoral artery wire injury animal
model, indicating a potential therapeutic in AS (Margariti
et al., 2009).

In addition, VSMC migration is tightly related to vascular
remodeling, which is likely to trigger AS progression (Lin et al.,
2021). Mechanical cyclic strain reportedly suppressed the
migration of SMCs along with the elevation of acetylated
histone H3 and HDAC7 and decreased the level of HDAC3/4
(Figure 2) (Yan et al., 2009). Treatment with HDAC inhibitor
tributyrin diminished VSMC migration and reduced the level of
HDAC7 (Yan et al., 2009).

Also, the formation and the accumulation of lipid-loaded
foam cells is the critical step in the pathophysiology of AS in
the vascular wall (Linton et al., 2000). The uptake of modified
lipoproteins in macrophage, such as oxidized LDL and native and
modified LDL, drives macrophages to form foam cells (Linton
et al., 2000). Recent studies also discovered that SMCs can also
form foam cells. The inhibition of HDACs is involved in the
formation of foam cells (Figure 3). MS-275, which is known as a
specific class I HDAC inhibitor, inhibits human foam cell
formation (Jeanblanc et al., 2015).
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The inversion of macrophage to foam cells plays a pro-
atherosclerotic role in the AS process (Moore et al., 2013). The
macrophage uptake of lipoproteins depends on scavenger
receptors (SRs), including SR-A, CD36, and lectin-like
oxidized LDL receptor-1 (LOX-1) (Chistiakov et al., 2016).
The inhibition of SRs suppresses the ingestion of lipoproteins
and hinders the AS process. Schaeffer et al. revealed that LOX-1
expression could be stimulated by pro-inflammatory cytokines in
macrophage, which elevated the uptake of ox-LDL by nidus
macrophages (Pirillo et al., 2013). The deacetylation of RelA/
p65 by SIRT1 induced the suppression of NF-κB signaling
pathway and LOX-1 in macrophage, diminished the uptake of
oxLDL and foam cell formation, and subsequently reduced the
risk of AS (Stein et al., 2010). Moreover, resveratrol decreased the
uptake of oxLDL and protected from AS (Ou et al., 2006).

HDACs in Modulating the Function of
Monocyte/Macrophage
Monocytes and macrophages are critical driving factors in the
inflammatory disease process (Yang et al., 2014). They play an
important role in the pathogenesis and the initiation of AS,
because AS is lipid-driven and occurs with chronic
inflammation (Naruszewicz, 1989). Monocytes and
macrophages develop foam cells and pro-inflammatory
phenotypes in response to oxidized LDLs (Adamson and
Leitinger, 2011). Perturbation of this phenotype would bring
beneficial outcomes in the management of the disease. An
increasing amount of evidence pointed out that histone
acetylation plays an important role in the modulation in

monocytes and macrophages (Das Gupta et al., 2016). In
particular, H3 acetylation plays an important role in
macrophage phenotypic gene expression (Figure 2) (Zubair
et al., 2021). Among the HDACs, HDAC3 acts as a key
modulator in M1 macrophage polarization, thereby blocking
M2 macrophage polarization (Figure 2) (Wang et al., 2015b).
HDAC3 also inhibits NF-κB signaling by deacetylating NF-κB
p65 subunit and inducing its association with the IκB-α
(Rajendrasozhan et al., 2008). Moreover, HDAC3 is
responsible for the modulation of lipopolysaccharide-induced
M1 macrophage-associated inflammatory gene expression
(Treuter et al., 2017). HDAC5 is also a modulator of
inflammation in macrophages (Zhao et al., 2019).

Translocation of circulating monocytes to the artery wall is
one of the prominent phenotypes in AS in endothelial
dysfunction and lipoprotein retention (Manduteanu and
Simionescu, 2012). Upon differentiation into macrophage,
these cells play an important role in sustaining lipid
homeostasis in the vessel wall and inflammatory mediator
secretion. Lipoprotein uptake by macrophage in the initiation
of plaque contributes to the formation of lipid-load macrophage
foam cells, which are hallmarks of AS (Remmerie and Scott,
2018). These foam cells stick to the artery walls, resulting in
adverse inflammatory response that induces the recruitment and
activation of other immune cells. Thus, chronic inflammation is
maintained, which stimulates the progression of plaque
formation. The role of HDACs in this process should not be
ignored.

Histone acetylation also plays an important role in the
cholesterol metabolism of macrophages (Zubair et al., 2021).

FIGURE 3 | Diverse functions of HDACs in blood vessels. HDACs are widely involved in the cellular processes in blood vessels, such as cell proliferation, migration,
and differentiation. HDAC1/2/3/4/5/6/7 and SIRT1/3/6/7 are involved in cell proliferation. HDAC1/3/4/5/6/7 and SIRT1/3/6/7 regulate cell migration. HDAC1/3/4/6/9
and SIRT1/2/3/6 mediate cell apoptosis. HDAC1/2/3/4/5/6/7/8/9/11 and SIRT2/3/4/6/7 modulate inflammation. HDAC1/2/3/4/5/6/7/9 and SIRT1/2/3/6 modulate
angiogenesis. HDAC3/6 and SIRT1/6 modulate cell apoptosis. HDAC2/3/6 and SIRT3/6 are associated with oxidative stress. HDAC1/2/3/5/6 and SIRT2 are
associated with NO production. HDAC1/4/9 and SIRT1/3/6 modulate cell autophagy.
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Alterations in SIRT1 and SIRT6 promote cholesterol efflux by
activating ABCA-1 and ATP-binding cassette subfamily G
member (ABCG-1), leading to reduced macrophage-derived
foam cell formation (D’Onofrio et al., 2018). During AS,
histone modification within the atherosclerotic plaque affects
macrophage phenotype; acetylation level alteration on H3K9
and H3K27 has been detected from human advanced AS
plaques (Zhu et al., 2021).

LDLR−/− mice, as a general AS mice model, were fed with
atherogenic diet and exhibited elevated HDAC3 and HDAC9
expressions during monocyte differentiation to macrophages
(Figure 3) (Davis and Gallagher, 2019). HDAC3/9 systemic or
myeloid-specific depletion reduced AS by increasing M2
macrophage polarization and lowering proinflammation gene
expression (Sanchez-Lopez et al., 2019). Genome-wide
association studies depicted that HDAC9 genetic variants were
associated with coronary artery disease and AS (Prestel et al.,
2019). Systemic and bone marrow-specific depletion of HDAC9
brought about elevated lipid homeostatic genes, reduced
inflammatory genes, and switched macrophage phenotype to
the M2 state, thereby decreasing AS progression by increasing
the acetylation of the promoter of ABCA-1 and ABCG-1 in
macrophages (Cao et al., 2014). Simultaneously, HDAC3
depletion induced macrophage phenotype switch, increased
anti-inflammatory cytokine secretion, and reduced pro-
inflammatory cytokine, thereby suggesting the promotion
effect of HDAC3 on AS. The above mentioned HDACs
mediated the recruitment and differentiation of monocytes
and modulated AS progression (Hoeksema et al., 2014).
However, the underlying mechanism of HDAC-mediated
monocyte differentiation remains unclear and needs future
research.

The Functions of HDACs in the
Pathogenesis of Atherosclerosis
AS is featured by the accumulated lipid and fatty streak lesion
formation in the vessel, acting as the most prevalent disease in
vasculature (Mundi et al., 2018). Notably, the recruitment of
circulating monocytes to the arterial wall and lipoprotein
retention is one of the earliest events of AS (Moore et al.,
2013). The differentiation of monocytes to macrophages
sustains the homeostasis of lipid in the vessel wall and
secretion of inflammatory mediators, thereby functioning
critically in the pathophysiology of AS (Rajendrasozhan et al.,
2008). Macrophage lipid uptake in the initiation of plaque leads to
the formation of lipid-loaded foam cells, which are hallmarks of
AS (Rajendrasozhan et al., 2008). The presence of these foam cells
at the artery wall stimulates disadvantageous immune response,
which further leads to the recruitment and activation of other
immune cells, maintains chronical immune response, and
induces plaque progression (Wilson, 2010). Epigenetic
modification in VSMCs (the dominant cell type in the arterial
wall), such as acetylation, is reportedly associated with AS
formation.

The effect of cholesterol metabolism on AS is obvious. The
metabolic homeostasis of cholesterol includes cholesterol uptake,

synthesis, and efflux and is critical in maintaining the
homeostasis of blood vessel (Ghosh, 2011). Histone
acetylation, which is affected by HDACs, is important in
cholesterol metabolism. For instance, perturbations in SIRT1
and SIRT6 facilitate cholesterol efflux by activating ABCA-1
and ABCG-1, thereby leading to the reduced formation of
macrophage-derived foam cells (Figure 4) (Ghosh, 2011).
Apart from this, the alteration of histone acetylation by
HDACs also affects macrophage phenotype in AS plaque. The
alteration of acetylation on H3K9 and H3K27 is observed in
advanced plaques compared with healthy samples (Lee et al.,
2020). The levels of several HDAC, HDAC3, and HDAC9 could
be stimulated in response to monocyte differentiation to
macrophages in LDLR−/− mice kept on an atherogenic diet
(Figure 4) (Rajendrasozhan et al., 2008). In addition, myeloid-
specific deletion of HDAC9 and HDAC3 mitigates AS by
promoting M2 macrophage polarization and reducing
proinflammatory gene expression (Qiu et al., 2021). The
mechanism of HDAC9 in promoting pro-inflammatory
responses and augmenting the effects of atherosclerotic plaque
vulnerability involves the binding of HDAC9 to IKKα and β,
which contributes to their deacetylation and subsequent
activation, thereby finally driving vascular inflammation (Van
den Bossche et al., 2014).

In addition to cholesterol metabolism, several biological
processes are involved in the AS process, including the
following: endothelial denudation, injury, activation, and shear
stress; local platelets adherence; lipoprotein oxidation;
lipoprotein aggregation; and inflammatory cytokine secretion
and foam cell formation (Luchetti et al., 2017). The levels of
Class I, IIa, IIb, and IV HDAC isoenzymes were dramatically
augmented in human and mice AS tissues (Lian et al., 2020).
Treatment with SAHA, a HDAC non-selective inhibitor,
mitigated the level of atherosclerotic injury and reduced the
production of ROS induced by NAPDH and pro-inflammation
markers (Zhao et al., 2020). HDAC1 was suppressed in
atherosclerotic lesions and aortic EC-treated with oxidized
lipoproteins (Chen et al., 2020). Arginase 2 (Arg2) regulates
the generation of endothelial nitric oxide, proliferation,
fibrosis, and inflammation, making it a possible target for AS
progression (Yang and Ming, 2014). Arg2 ablation by HDAC2
overexpression in human aortic ECs impaired EC activation
induced by oxLDL (Pandey et al., 2014). Shear stress in the
vicinity of disturbed flow could upregulate the expression of
HDAC3. HDAC3 depletion aggravated atherosclerotic lesion in
aortic isografts of ApoE-knockout mice, thereby indicating the
protective role of HDAC3 in AS (Zhao et al., 2020).

HDACs are also involved in the modulation of cholesterol
efflux (Cruz et al., 2021). The inhibition of HDACs
upregulates the expression of cholesterol efflux genes
ABCA1 and ABCG1. Perturbations in SIRT1 and SIRT6
facilitate cholesterol efflux by activating ABCA-1 and
ABCG-1, leading to the reduced formation of macrophage-
derived foam cells (Sosnowska et al., 2017). Deacetylation of
autophagy protein 5 (ATG5) by SIRT1 activates ATG5 to
increase autophagy, which protects from atherosclerosis
(Jiang et al., 2016). Furthermore, HDAC3 remains the only
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HDAC that is upregulated in human atherosclerotic lesions
and accompanied by inflammatory macrophages, thereby
indicating that it could be a potential target in AS
prevention. Macrophage-induced inflammatory response
and SMC-elicited vascular remodeling are the two main
pathophysiological features in AS (Deeb and Hajjar, 2016).
CIITA, known as a major histocompatibility class II
transactivator, is a key modulator in these processes. It
modifies IFN-gamma-induced major histocompatibility
class II activation and inhibits type I collagen (Wu et al.,
2009). HDAC2 counteracts CIITA activation via the
degradation of CIITA, which is dependent on deacetylation
activity (Kong et al., 2009). HDAC6 activity was greatly
induced in ApoE−/- mice fed on high-fat diet in spite of the
unchanged protein level, thereby indicating that HDAC6
inhibition can prevent endothelial injury and AS (Xu et al.,
2021). The phosphorylation of HDAC5 was induced in A10
vascular SMCs in response to IGF-1 (Truong et al., 2021).
Interference of IGF-1 receptor tyrosine kinase and NAD(P)H
oxidase mitigated IGF-1 induced HDAC5 phosphorylation,
thereby suggesting that HDAC5 phosphorylation is related to
NAD(P)H oxidase-induced ROS generation and vascular
disorders (Zhao et al., 2020).

Inflammation is considered as a main inducer of AS. Histone
H3 acetylation mediated by the type A KAT p300 transcription
factor is a prerequisite for the expression of inflammatory genes
in the VSMCs of rats (Sun et al., 2017). Furthermore, treatment
with HDAC inhibitor trichostatin A promotes the expression of
inflammatory cytokine tumor necrosis factor (TNF) and
aggravates the development of neointima lesions in AS-
susceptible LDLR−/- mice (Okamoto et al., 2006). Histone
acetylation is important in AS progression, and the
inflammatory status is modulated by HDAC activity (Cosío
et al., 2004). Vascular injury decreases the expression of
VSMC differentiation marker genes and transforms it into a
more proliferative phenotype, thereby increasing the probability
of AS (Morris et al., 2019). Promoting the differentiation of
VSMCs by histone H4 acetylation can restore injury in
response to vascular stress by assisting the combination of
serum response factor (SRF) and myocardin with CArG
elements (Xiao et al., 2012). This process can be reversed by
Kruppel-like factor 4 (KLF4), which promotes the deacetylation
of histone H4 by recruiting HDAC2 (McDonald et al., 2006).
SIRT1 exerts its anti-atherosclerotic effect by deacetylating
autophagy protein 5, thereby impeding the oxLDL-induced
cytotoxicity. The inhibition of SIRT1 facilitated the

FIGURE 4 | The potential mechanism of HDACs in atherosclerosis. SIRT1 and SIRT6 perturbation promotes cholesterol efflux by activating ABCA1 and ABCG1,
leading to reduced macrophage-derived foam cell formation. Deacetylation of ATG5 by SIRT1 activates ATG5 to increase autophagy, which protects from AS. SIRT1-
mediated deacetylation of cortactin promotes the translocation of cortactin to the cell periphery, whereas its interaction with cortical actin activates eNOS under shear
stress conditions, which increases the bioavailability of nitric oxide (NO) and protects from AS. HDAC3/9 are stimulated in response to monocyte differentiation to
macrophages in LDLR−/− mice kept on an atherogenic diet. HDAC6 is implicated in the prevention of endothelial injury and AS. NO bioavailability is increased by SIRT1-
mediated deacetylation of eNOS and decreased by HDAC3-mediated deacetylation of eNOS. Acetylation of NF-κB subunits activates the expressions of Nos1, Nos2,
and pro-inflammatory genes. High levels of NO and oxidative stress promote AS.
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development of atherosclerotic plaque formation inApoE−/−mice
(Yuan et al., 2020). Other studies also showed that SIRT1 might
prevent atherosclerosis by modulating eNOS activation. In
human umbilical vein endothelial cells (HUVECs), cortactin
phosphorylation by AMPK, deacetylation by SIRT1, and eNOS
deacetylation by SIRT1 had atheroprotective effects (Figure 4)
(Shentu et al., 2016), whereas eNOS deacetylation by HDAC3
promoted AS. Different from the reduced level of eNOS in the
atherosclerosis state, neuronal NO synthase (nNOS) levels were
induced in neointimal and media VSMCs (Nakata et al., 2007).
Inducible NO synthase (iNOS) was also induced in
atherosclerotic situations and associated with oxidative stress
and inflammation (Förstermann and Sessa, 2012). Nuclear
factor-κB (NF-κB) is responsible for the induction of nNOS in
VSMC and iNOS and pro-inflammatory genes in ECs. The
transcriptional factor NF-κB is modulated by lysine
acetylation. SIRT1 deacetylation on p65 destroys the
interaction of p300 and NF-κB, thereby reducing NF-κB
transcriptional activity (Figure 4) (Li et al., 2021). SIRT1 is
modulated by iNOS levels through increase in the production
of NO, activity of NF-κB, and expression of pro-inflammatory
genes (Lee et al., 2009). These studies indicated that HDACs
offered protected against AS.

The diverse functions of HDACs in AS have been mentioned
above (Table 1). However, the role of HDACs in AS often leads to
conflicting results. The overexpression of HDAC3, HDAC5, and
HDAC7 displayed a pro-atherosclerotic feature (Zhang et al.,
2018b). HDAC3 depletion induced the increase in the
expressions of IL-4-activated genes and activated anti-
inflammatory phenotype due to the reprogramming-like effect
on macrophage (Kuznetsova et al., 2020). Also, the HDAC9
ablation in mice repressed the expression of inflammatory-
related genes and cytokine secretion in macrophage in
response to LPS (Liu et al., 2021). However, HDACs seemed
to exhibit atherosclerosis protection in animal models (Halili
et al., 2010). HDAC3 depletion in ECs facilitated the increase in
neointimal formation, thereby implicating the beneficial role of
HDAC3 in AS. Similarly, HDAC inhibitor treatment, such as that
of Trichostatin A, by intraperitoneal injection resulted in
augmented plaque size and macrophage infiltration in plaques

in LDLR−/- mice (Manea et al., 2020). These findings suggested
the complicated effects of HDACs on AS and indicated that
HDACs in a specific cell type affect different phenotypes in
atherogenic progression.

Despite the diverse effects of HDACs in AS pathogenesis
(Table 1), some issues need to be discussed. One question to
address is whether the effects of HDACs on tissues or cell types
are specific. Another problem is whether or not the effects of
HDACs on the migration of SMCs and ECs are the same. To
answer these questions, more experiments are required in future.

Promising Therapeutic Targets in AS
HDACs are involved in broad biological processes. Thus,
multiple HDAC inhibitors are developed to target the catalytic
domain in HDACs (Table 2). The inhibitors can be classified into
four groups, namely, hydroxamic acids, short chain fatty acids,
cyclic tetrapeptides, and benzamides, based on their structural
diversity (Table 2) (Li and Seto, 2016).

Inhibitors of HDACs generally cause growth arrest, cellular
differentiation, and apoptosis. Thus, they are used for cancer
treatment (Li and Seto, 2016). The HDAC non-selective
inhibitors, SAHA/vorinostat and Romidepsin (Istodax, FK228),
which are characterized by a relatively low IC50 for HDAC1/2,
have been approved for the clinical treatment of cutaneous T cell
lymphoma by FDA in the United States (Bertino and Otterson,
2011). Romidepsin facilitates the acetylation of non-histone
substrates involved in the transcription of VCAM-1 in ECs,
which mediates the AS process (Tambaro et al., 2010). In
addition, Romidepsin treatment in Apoe−/- mice protected
from diet-induced atherosclerotic lesion accumulation
(Nicorescu et al., 2019). Given the elevated level of HDAC1/2
in advanced AS and the clinical availability of Romidepsin, the
use and mechanism of this specific inhibitor in AS deserve further
investigation. A potent HDAC inhibitor, suberoylanilide
hydroxamic acid, exhibits anti-inflammatory properties by
attenuating the LPS-induced expression of NF-κB-regulated
cytokines (Zhao et al., 2015). Sodium valproate, a class I
HDAC inhibitor, reportedly facilitated the phenotype switch of
macrophage, thereby delaying AS progression (Chen et al., 2014).
Pharmacological inhibition of HDAC1/2/3 by scriptaid prevented

TABLE 1 | Roles of HDACs in blood vessels and the pathology of AS.

Subtypes Classification Functions and Phenotypes

HDAC1 Class I HDACs Stimulates angiogenesis, Promote cell survival and prevent cell apoptosis
HDAC2 Inhibit cell proliferation, Inhibit vascular dysfunction
HDAC3 Stimulate EC differentiation, Upregulate in atherosclerosis
HDAC8 The marker of smooth muscle differentiation
HDAC4 Class IIa HDACs Contributes to angiogenesis
HDAC5 Repress angiogenesis
HDAC7 Stimulate cell migration, Rupture of blood vessels
HDAC9 Increase EC permeability, Develop atherosclerosis
HDAC6 Class IIb HDACs Increase blood pressure and vasoconstriction, increase vascular hyperplasia or vasoconstriction, Develop atherosclerosis
HDAC10 Stimulate tube formation
HDAC11 Class IV HDACs Induce vessel injury
SIRT1 Class III HDACs Modulate homeostasis, Inhibit vascular remodeling, Inhibit neointima formation, Enhance EC survival, Anti-inflammation
SIRT3 Decrease proliferation
SIRT6 Prevent senescence
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smooth muscle cell proliferation and neointima formation
(Findeisen et al., 2011).

Commonly used HDAC inhibitors in experimental animal
models and clinical trials are the Class I and II HDACs. These
consist of the natural products butyrate and Trichostatin A (TSA).
Although the inhibition of HDACs in macrophage brought about
beneficial effects to AS, the broad usage of these inhibitors is limited
by the observation that TSA unexpectedly promoted the progression
of plaque expansion in an AS mouse model (Choi et al., 2005). This
resultmight be due to the negative effects of TSAonother cell types in
AS, such as ECs and SMCs. Therefore, the inhibition of HDACs in
macrophage and monocytes is beneficial in the AS state. Findeisen
et al. reported that scriptaid, a non-selective HDAC inhibitor,
protected from neointimal thickening both in vitro and in vivo in
a mouse model (Findeisen et al., 2011). Also, they demonstrated that
scriptaid had no obvious toxicity at the dosage used.

Treatment with TMP195, a selective inhibitor of Class IIa HDAC,
suppressed critical inflammatory pathways andmitigated atherogenesis
in advanced stage AS, thereby offering a novel therapeutic strategy for
reducing the consequence of vascular inflammation (Asare et al., 2020).
Another Class II HDAC selective inhibitor, MC1568, rescued serum-
dependent histone acetylation in NO-induced HUVECs (Illi et al.,
2008). HDAC3-specific inhibitor RGFP966 suppressed endothelial-to-
mesenchymal transition by modulating inflammatory response in AS
(Chen et al., 2021).

OUTLOOK

AS is a common pathological basis of cardiovascular and
cerebrovascular diseases and seriously endangers human
health. With the further understanding of the pathogenesis of
AS, an increasing amount of evidence suggested the important
role of HDACs in AS. The effects of HDACs on atherosclerosis
are complex and multifaceted. In ECs, SMCs, and even
macrophages, HDACs play different roles in regulating cell
proliferation, migration, apoptosis, differentiation,

inflammation, and oxidative stress (Zhou et al., 2011a;
Grimaldi et al., 2015). It is difficult to characterize the overall
effect of HDACs on AS. A growing number of recent studies
suggested that HDACs can be used as potential therapeutic
targets for AS (Neele et al., 2020; Wong et al., 2021).
Inhibitors of HDACs can improve the symptoms of AS by
precisely inhibiting the deacetylase activity of HDACs (Morrell
et al., 2013). The development of inhibitors of HDACs is one of
the current research hot spots. The current HDACi market,
which includes existing drugs, is expected to expand into other
indications, such as cardiovascular and cerebrovascular diseases
(e.g., AS) (Bagchi and Weeks, 2019).

It is well known that the majority of existing or clinically
available HDAC inhibitors are generic (Bondarev et al., 2021).
The development of selective HDACi could reduce the side effects
of other target activities, such as the potential generic toxicity of
HDAC6 (Yang et al., 2017). However, as there are many subtypes
of HDACs, and there are many similarities in the active domain
and catalytic site among the subtypes, the development of HDAC
inhibitors with high subtype selectivity is a breakthrough point
that can be reached in the future and that will likely face great
challenges in practical research. Clinical verification is needed to
test the efficacy. In addition, the development of dual-target
HDAC inhibitors is one of the current research directions (Jin
et al., 2021). While remaining active against HDAC, they also act
on one or more targets related to AS, which is worth studying in
the future. Dual-target HDACmay be expanded and improved in
terms of indications and efficacy to some extent, but problems
(e.g., high toxicity of dual-target HDAC inhibition) exist (Peng
et al., 2020; Kuznetsoff et al., 2021). These issues need to be
addressed in future research works. HDACi has been extensively
studied in recent years and has been regarded to have a potential
therapeutic effect on many diseases, including neurodegenerative
diseases, autoimmune diseases, acute graft-versus-host disease,
and so on (Vojinovic et al., 2011; Ghiboub et al., 2021). Its
potential therapeutic effect on AS is also worth exploring through
further research. Other issues that need to be addressed are the

TABLE 2 | Effects of HDACis in AS.

HDAC Inhibitor Type HDAC
Specificity

Effects in AS

Valproic acid Short-chain fatty acids Class I, IIa Long-term treatment promotes angiogenesis
Sodium butyrate Short-chain fatty acids Class I, II Impairs atherogenesis
Trichostatin A Hydroxamic acid Class I, II, IV Promotes atherosclerosis, Short-term treatment reduces angiogenesis, Long-term treatment

promotes angiogenesis
Vorinostat/SAHA Hydroxamic acid Class I, II, IV Short-term treatment reduces angiogenesis
Tubastatin A Hydroxamic acid HDAC6 Alleviates Ang II-induced vasoconstriction, decreased the intimal VSMC proliferation and neointimal

hyperplasia
Entinostat/
MS275

Benzamide Class I

Mocetinostat Benzamide Class I, IV
Apicidin Cyclic peptide Class I Increases vessel calcification
Romidepsin Cyclic peptide Class I
Cambinol SIRT inhibitor SIRT1, SIRT2 Reduces inflammation
Nicotinamide SIRT inhibitor Class III (SIRTs)
Metacept-1 Synthetic derivate of

oxamflavin
Inhibits MMP-2 expression in VSMC

Apicidin Cyclic peptides Class I Inhibits TF activity and protein level
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targeting and specificity of HDACi. Researchers need to find out
how to accurately make HDACi act on the AS region without
changing the function of other normal cells. In future studies,
more efficient and accurate HDAC inhibitors need to be
developed, so AS to improve the therapeutic effect of related
inhibitors on AS. With further research, more functions of
HDACs in the pathogenesis of AS will be revealed, which will
help us find a better plan to fight this disease.
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