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Regulatory toxicology testing has traditionally relied on in vivomethods to inform decision-
making. However, scientific, practical, and ethical considerations have led to an increased
interest in the use of in vitro and in silico methods to fill data gaps. While in vitro experiments
have the advantage of rapid application across large chemical sets, interpretation of data
coming from these non-animal methods can be challenging due to the mechanistic nature
of many assays. In vitro to in vivo extrapolation (IVIVE) has emerged as a computational tool
to help facilitate this task. Specifically, IVIVE uses physiologically based pharmacokinetic
(PBPK) models to estimate tissue-level chemical concentrations based on various dosing
parameters. This approach is used to estimate the administered dose needed to achieve
in vitro bioactivity concentrations within the body. IVIVE results can be useful to inform on
metrics such as margin of exposure or to prioritize potential chemicals of concern, but the
PBPK models used in this approach have extensive data requirements. Thus, access to
input parameters, as well as the technical requirements of applying and interpreting
models, has limited the use of IVIVE as a routine part of in vitro testing. As interest in
using non-animal methods for regulatory and research contexts continues to grow, our
perspective is that access to computational support tools for PBPKmodeling and IVIVEwill
be essential for facilitating broader application and acceptance of these techniques, as well
as for encouraging the most scientifically sound interpretation of in vitro results. We
highlight recent developments in two open-access computational support tools for PBPK
modeling and IVIVE accessible via the Integrated Chemical Environment (https://ice.ntp.
niehs.nih.gov/), demonstrate the types of insights these tools can provide, and discuss
how these analyses may inform in vitro-based decision making.

Keywords: physiologically–based pharmacokinetic model, in vitro to in vivo extrapolation, risk assessment,
computational modeling methods, hazard screening, new approach methodology

Edited by:
Yu-Syuan Luo,

National Taiwan University, Taiwan

Reviewed by:
Matthew Linakis,

Ramboll, United States
Ted Simon,

TedSimon LLC, United States
Kevin McNally,

Health and Safety Executive,
United Kingdom

*Correspondence:
David E. Hines

david.hines@inotivco.com

Specialty section:
This article was submitted to

Predictive Toxicology,
a section of the journal

Frontiers in Pharmacology

Received: 28 January 2022
Accepted: 28 March 2022
Published: 13 April 2022

Citation:
Hines DE, Bell S, Chang X, Mansouri K,

Allen D and Kleinstreuer N (2022)
Application of an Accessible Interface
for Pharmacokinetic Modeling and In

Vitro to In Vivo Extrapolation.
Front. Pharmacol. 13:864742.

doi: 10.3389/fphar.2022.864742

Abbreviations:AC50, half-maximal activity concentration; ADME, absorption, distribution, metabolism, and excretion; cHTS,
curated high-throughput screening; Cmax, maximum plasma concentration; CNPA, 2-chloro-n-phenylacetamide; DTAC,
dodecyltrimethylammonium chloride; EAD, equivalent administered dose; HTS, high-throughput screening; httk, high-
throughput toxicokinetic; ICE, Integrated Chemical Environment; IVIVE, in vitro to in vivo extrapolation; NAM, new approach
methodology; OPERA, Open (quantitative) structure–activity Relationship App; PBPK, physiologically based pharmacokinetic;
PK, pharmacokinetics; QSAR, quantitative structure-activity relationship; EPA, U.S. Environmental Protection Agency;
NICEATM, National toxicology program’s Interagency Center for the Evaluation of Alternative Toxicological Methods.

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 8647421

PERSPECTIVE
published: 13 April 2022

doi: 10.3389/fphar.2022.864742

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.864742&domain=pdf&date_stamp=2022-04-13
https://www.frontiersin.org/articles/10.3389/fphar.2022.864742/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.864742/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.864742/full
https://ice.ntp.niehs.nih.gov/
https://ice.ntp.niehs.nih.gov/
http://creativecommons.org/licenses/by/4.0/
mailto:david.hines@inotivco.com
https://doi.org/10.3389/fphar.2022.864742
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.864742


INTRODUCTION

Historically, toxicity testing has relied on laboratory animal-
based methods to inform decision-making. However, practical
and ethical considerations and concern over the human biological
relevance of some effects observed in animals has fueled interest
in non-animal approaches (EPA, 2019). A 2016 amendment to
the Toxic Substances Control Act by the United States
Environmental Protection Agency (EPA) calls for the
development of new approach methodologies (NAMs), such as
in vitro assays and computational models, to meet the challenge
of informing hazard and risk assessment while reducing
dependence on animal testing (ICCVAM, 2018). In response,
development of NAM applications for regulatory decision-
making has been a priority for risk assessors (Craig et al.,
2019; Parish et al., 2020) and regulatory agencies such as the
US EPA (EPA, 2019).

In vitro assays have the potential to rapidly evaluate bioactivity
across broad chemical sets. However, application of data from
these assays to risk assessment requires translation of the
bioactivity concentrations to exposures relevant at the
organism level. The absorption, distribution, metabolism, and
excretion (ADME) of chemicals within in vivo systems can
influence toxicity. Therefore, results of in vitro tests need to be
related back to the biological context where metabolism and
redistribution occurs, which can be accomplished in part using
in vitro to in vivo extrapolation (IVIVE). IVIVE makes use of
physiologically based pharmacokinetic (PBPK) models to
estimate relevant tissue concentrations (Cohen Hubal et al.,
2019). These models apply reverse dosimetry to predict the
equivalent administered dose (EAD) of a chemical that will
result in tissue concentrations that match in vitro bioactivity
concentrations (Yoon et al., 2012; Moxon et al., 2020).
Additionally, PBPK models can be useful for informing the
relevant concentrations and doses for in vitro and in vivo

experiments by predicting target tissue concentrations from
expected exposures. Thus, PBPK modeling and IVIVE are
essential tools for experimental design and interpretation
(Figure 1).

While PBPK models and IVIVE analyses can facilitate the
interpretation of in vitro results, the application of these
techniques requires chemical-specific ADME parameters,
PBPK model equations, relevant in vitro data for endpoints of
interest, and the technical knowledge to integrate this
information. Data availability can limit applications, but
increased access to predictions from quantitative structure-
activity relationship (QSAR) models is helping to address data
gaps. Additionally, open-access computational support tools for
PBPK modeling and IVIVE promote the transparency and
accessibility of these approaches. As regulatory application of
NAMs become more common, tools that broaden the
accessibility of IVIVE will be crucial for the use and
interpretation of in vitro data.

Here we discuss approaches, data needs, and applications of
PBPK modeling and IVIVE, as well as examples of open-access
computational support tools that can help to democratize these
analyses. We demonstrate how these techniques can place in vitro
results in an in vivo context and why this context is important for
interpretation when informing decision making. Further, we
highlight potential regulatory applications and future
directions for using in vitro and in silico NAMs in decision
making.

PHYSIOLOGICALLY BASED
PHARMACOKINETIC MODELING

Open-access PBPK modeling tools provide transparent use of
generalized models designed to predict pharmacokinetics (PK)
for a broad range of chemicals. This represents an advantage over

FIGURE 1 | Overview of the uses of PBPK modeling for dose prediction and IVIVE. Dotted lines show forward dosimetry for predicting relevant doses from an
external exposure, while dashed lines show reverse dosimetry for IVIVE and prediction of EADs.
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commercial models, which are often tailored for pharmaceutical
applications (Heimbach et al., 2009; Jamei et al., 2009).The EPA’s
high throughput toxicokinetic (httk) R package, for example, is an
open-access tool that can generate PK predictions for thousands
of chemicals in generalized models of mice, rats, dogs, rabbits,
monkeys, and humans (Pearce et al., 2017).

PBPK modeling packages such as httk often require technical
knowledge and coding ability to operate. While powerful for
customization of analyses, these requirements can create a barrier
to exploratory PBPK applications and decrease accessibility for
users who could benefit from rapid PBPK predictions. The
National Toxicology Program’s Integrated Chemical
Environment (ICE, https://ice.ntp.niehs.nih.gov/) is an open-
access web tool that provides PBPK and IVIVE workflows via
an intuitive graphical user interface. These tools provide a user-
friendly front end and combine the httk package with parameter
data to aid users in gaining comfort with modeling by reducing
the technical knowledge requirements for conducting and
interpreting analyses (Bell et al., 2020; Abedini et al., 2021).

All PBPK models require chemical-specific ADME and
physicochemical parameters. For example, metabolism
parameters such as intrinsic clearance (Obach, 2011; OECD,
2018), plasma protein fraction unbound (Poulin, Burczynski
and Haddad, 2016; Hartung, 2018), and tissue-specific
partition coefficients (Schmitt, 2008) are necessary and
chemical structure-dependent. While availability of
experimental data may be limited, QSAR modeling can help
address this issue by providing parameter predictions where
measured values are unavailable (Peyret and Krishnan, 2011;
Zhang et al., 2018) and has the potential to broaden the
applicability of PBPK approaches to all chemicals with defined
structures (Escher et al., 2019).

ICE utilizes predictions generated by the Open (quantitative)
structure–activity Relationship App (OPERA), a free and open-
source/open-data suite of QSAR models developed and
maintained under an ongoing collaboration between
NICEATM and the EPA (Mansouri et al., 2018). OPERA
provides “in silico” predictions for numerous physicochemical
and ADME properties. OPERA also provides applicability
domain assessment and accuracy estimates following
established principles for QSAR validation (Tichý and Rucki,
2009; Mansouri et al., 2018, 2019). OPERA-generated ADME
related properties used for PBPK modeling and IVIVE include
intrinsic clearance, plasma protein fraction unbound, octanol-
water partition coefficient, dissociation coefficient, Henry’s Law
constant and the logarithmic acid dissociation constant. Details
regarding the calculation and use of each of these parameter
predictions can be found in the Supplementary Material S1.
OPERA can be downloaded as either a command-line or
graphical interface from the official NIEHS GitHub repository
(https://github.com/NIEHS/OPERA).

To maximize approachability, ICE includes detailed
walkthrough documentation and modifiable code in the form
of R Notebooks (Abedini et al., 2021). The ICE PBPK tool allows
users to select httk model type, species, exposure route, and
dosing schedule to use exposure dose to predict in vivo
internal concentrations (forward dosimetry). Furthermore, ICE

allows for specification of physiochemical parameter sources
(either measured, in silico, or default) to provide the users
with control over the types of data being used for modeling.
The default option is to use experimentally measured parameter
values, where available, and predicted (in silico) values otherwise.
Results provide PK time-series plots for up to eight different
organs and tissues, as well as downloadable tables of model
parameters, sources, and outputs. Tools such as ICE greatly
increase the accessibility of PK prediction generation for
chemical sets, and thus promote application of PBPK models
in a broader range of studies, including those with regulatory
applications (Sipes et al., 2017; Smith et al., 2020).

IN VITRO TO IN VIVO EXTRAPOLATION

IVIVE uses PBPK models to estimate tissue-level concentrations,
then applies reverse dosimetry (in vivo internal concentration
back to dose) to calculate EADs that correlate to in vitro
bioactivity concentrations. Importantly, IVIVE accounts for
some ADME processes that are not present in vitro to support
interpretation of in vitro results in an in vivo context.

Applying IVIVE to high-throughput screening (HTS) data sets
from programs such as Tox21 (Tice et al., 2013) and ToxCast
(Kavlock et al., 2012) can enable rapid chemical risk screening
and prioritization for large, diverse chemical sets. The availability
of QSAR-parameterized PBPK models has made such
applications practical (Breen et al., 2021). For example, the
EPA’s Endocrine Disruptor Screening Program used an IVIVE
approach combined with HTS data to develop an integrated
bioactivity-exposure relationship metric and prioritize
chemicals for future testing for estrogenic and androgenic
activity (EPA, 2015).

IVIVE can also support an informed interpretation of in vitro
data. Typically, in vitro assays target specific mechanistic
endpoints (e.g., membrane binding), and therefore are often
associated with specific toxicity endpoints. The interpretation
of in vitro response metrics for a chemical, such as the half-
maximal activity concentration (AC50), may vary depending on
the chemical, assay mechanism, and decision-making needs.
IVIVE facilitates incorporation of this knowledge into
decisions by providing in vivo context for the results of these
assays.

The ability to run IVIVE analyses has generally been limited to
users who have coding abilities and an understanding of the
models or custom software. This presents a barrier to the user
without these skills and knowledge who nevertheless wishes to
explore potential applications of IVIVE. This barrier is addressed
by tools like ICE, which provides free and open access to a user-
friendly interface for generalized PBPK models, along with
chemical parameters (experimentally measured and predicted)
and curated high-throughput screening (cHTS) in vitro assay
data. While full code for the ICE PBPK and IVIVE tools is
publicly available (https://github.com/NIEHS/ICE_
IVIVEpipeline) for those interested in using it, the ICE
interface, tools, and data allow users with no coding ability
and only a general understanding of PBPK models to estimate
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EADs based on a variety of user-specified parameters (Bell et al.,
2020). Importantly, the cHTS data in ICE are curated to increase
data robustness and the assays are linked to mechanistic targets
andmodes of action to provide additional biological context, both
of which facilitate use and interpretation by users new to IVIVE
analyses. Via the Curve Surfer tool, ICE includes the ability to
view and interact with concentration response curves for the
cHTS data, allowing users to explore the activity data used for
EAD predictions. This feature is key for increasing the
transparency of the analyses, as the curves provide
experimental context essential for interpreting results, thus
encouraging broader use of IVIVE approaches.

POTENTIAL APPLICATIONS FOR
REGULATORY USE

Applications of PBPK modeling and IVIVE can support
regulatory decision-making by informing experimental design,
incorporating consideration of ADME processes in chemical
screening, facilitating the interpretation of bioactivity observed
in vitro, and enabling margin-of-exposure assessment of in vitro
assay results.

PBPK modeling estimates plasma and tissue concentrations
that result from an external exposure. As these models can
simulate in vivo ADME across different species and uptake
across different exposure routes (Hines et al., 2021), they can
inform on relevant doses to use in in vivo or in vitro experiments.
For example, an experiment’s dosing range could be set based on
the human plasma concentration estimated from expected
exposures and consideration of population variability (Kenyon
et al., 2003). This helps ensure that planned experiments cover the
concentrations of interest without testing concentrations that far
exceed realistic exposures. Accounting for population variability,
for example, in the metabolism rates of chemicals, may help
identify doses relevant for vulnerable population groups and may
allow for more accurate estimation of the safety factors used in
traditional risk assessment (Ring et al., 2017; Judson et al., 2018).

PBPK modeling can also inform exposure-based hazard
screening. Using QSAR parameters, these models can provide
computational predictions of which chemicals may accumulate in
the body and which chemicals are likely to be poorly absorbed or
cleared quickly. Chemicals that are likely to accumulate may be of
greater concern and thus could be candidates for study
prioritization. While the applicability domain of QSAR models
should be considered during this kind of screening, the results
offer insights that would not be possible to obtain by relying solely
on experimental data (Kar et al., 2018). Both experimental at
QSAR data are available in ICE, U.S. and international regulatory
authorities have issued guidance and recommendations for PBPK
modeling and development that highlight regulatory applications
of PBPK, including extrapolation between species and exposure
routes, application of read-across, acute to low-dose
extrapolations, and IVIVE (FDA, 1999, 2018; OECD, 2021). It
is noteworthy that PBPK models can range from generalized,
such as those used in ICE, to highly chemical-specific in nature.
Generalized models have the benefit of lower data requirements

and can facilitate hazard and risk screening across broad chemical
sets, while models constructed, parameterized and calibrated
based on individual chemical data may provide more precise
results for different questions in regulatory decision making
(Zhao et al., 2011). While the simplicity of the generalized
models used in ICE can limit predictive precision, it facilitates
rapid and broad-reaching application of to inform screening
assessments.

In regulatory applications, IVIVE is useful because it provides
the in vivo (often human) context required to interpret the
activity concentration of the biological mechanisms that are
targeted by in vitro assays. For example, different compounds
may have similar bioactivity across a broad array of in vitro assays
for the same mechanistic target, but IVIVE may result in large
differences in human EAD. These differences arise from the
incorporation of ADME processes in PBPK modeling. In this
way, IVIVE facilitates margin-of-exposure screening by
characterizing the difference between a chemical’s expected
exposure and its EAD. Chemicals that have small differences
between the two values, e.g., less than the standard uncertainty
factors used for risk assessment, or even overlapping ranges,
become higher priority for further characterization such as
chemical-specific models or targeted experimental testing.
Current practices in IVIVE analyses often include parameter
assumptions such as 100% chemical absorption to provide
conservative results. However, additional analysis of
uncertainty in PBPK modeling results and subsequent IVIVE
can improve the utility of these tools for regulator applications.
For example, identifying the maximum and minimum Cmax
values, given parameter uncertainty, could allow for better
understanding of the confidence regulators can have in results.
Additionally, it is worth noting that improved parameter models
such as absorption or food binding models have the potential to
increase the confidence of IVIVE results for regulatory
applications. Future expansions of ICE are underway to
incorporate these sources of uncertainty and address other
aspects such as variability in chemical metabolism and
clearance due to genetic polymorphisms in metabolic enzymes
across human populations.

While regulatory guidance documents specific to IVIVE are
yet to be developed by most agencies, the application of IVIVE
approaches in regulatory contexts has increased dramatically
over the last decade. For example, the U.S. Food and Drug
Administration promotes the use of NAMs, including PBPK
modeling and IVIVE, for filling data gaps to support drug
development (Avila et al., 2020). These approaches have also
been used for hazard and risk screening of chemicals. In an
application relevant to environmental regulation, Wegner et al.
(2020) used IVIVE to develop an exposure-bioactivity index for
endocrine-active chemicals. Recently, Paul-Friedman et al.
(2020) showed how IVIVE can inform point-of-departure
estimation from in vitro data and prioritize chemicals for
further evaluation using bioactivity:exposure ratios. As
agencies move toward reducing dependency on animal
testing through the development and use of NAMs, PBPK
modeling and IVIVE will be crucial tools to facilitate the
interpretation of in vitro data.

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 8647424

Hines et al. Accessible Modeling Interface

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


CASE STUDY DEMONSTRATION

To demonstrate the utility of PBPK modeling and IVIVE
analyses, we compared two chemicals in a case study:
dodecyltrimethylammonium chloride (DTAC; CASRN 112-00-
5), a quaternary ammonium compound used in cleaning
products, as an emulsifier, and a preservative, and 2-chloro-n-
phenylacetamide (CNPA; CASRN 587-65-5), an acetaminophen
impurity with laboratory and industrial applications and anti-
fungal properties (Silva et al., 2022) that is part of a broader class
of chloroacetamides used as herbicides. We selected these
chemicals for our case study because they have different
chemical structures (Figures 2A,B) and ADME properties but
similar in vitro bioactivity in receptor-based assays that were

identified using the key characteristics of carcinogens (KCC8:
Receptor-Mediated Effects) mode of action on ICE. These assays
include those involved in receptor activation and/or inactivation
or modulation of endogenous ligands including hormones (Smith
et al., 2016).

Physiologically Based Pharmacokinetic
Modeling
PBPK modeling of DTAC and CNPA was conducted using
workflows accessible via ICE to provide an example of how
generalized open-source tools can be useful for PK prediction.
A detailed description of the model parameters used and the ICE
inputs needed to replicate this case study is provided in the

FIGURE 2 | PBPK and IVIVE case study results conducted in ICE. Chemical structures for DTAC and CNPA are from the EPA CompTox Chemical Dashboard [(A,
B), respectively; CAS numbers shown in parentheses]. PK profiles show plasma (bold) and liver (plain) concentrations during the simulation for DTAC and CNPA [(C,D),
respectively]. AC50 boxplot (E) shows similarity between observed bioactivity for receptor-based assays in DTAC and CNPA. Hourly-dosing EAD boxplot (F) shows how
ADME considerations can result in different EAD predictions for chemicals with similar in vitro bioactivity.
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SupplementaryMaterial S2. Briefly, we used a PBPKmodel from
the httk R package (Pearce et al., 2017) to simulate an hourly
1 mg/kg body weight oral bolus exposure of each chemical for
24 h in a 70 kg human. We evaluated liver and plasma
concentrations to demonstrate how tissue-specific effects
resulting from chemical PK properties can influence relevant
concentrations.

A key parameter in evaluating chemical metabolism is the
maximum concentration of a chemical in plasma (Cmax). Our
PBPK modeling results showed that a simulated hourly 1 mg/kg
dose of DTAC induced a Cmax that was over 10-fold higher than
that induced by an equivalent dose of CNPA (Figures 2C,D; bold
lines). This result was largely driven by the accumulation
predicted for DTAC after repeat dosing, likely resulting from
its relatively low metabolic clearance rates and high tissue
partition coefficients (Supplementary Material). When
comparing predicted concentrations in the liver, the
concentration of DTAC was approximately twice that of
CNPA (Figures 2C,D; plain lines). It is notable that the
plasma concentration for DTAC was higher than the liver
concentration, while the opposite was true for CNPA. Since
this case study modeled an oral bolus dose, the chemicals
would undergo first-pass metabolism through the liver prior to
entering the rest of the body. For DTAC, a relatively low rate of
metabolism in the liver (Supplementary Material S2) would
mean that much of the chemical would reach the blood stream
and be circulated throughout the body. The higher rate of
metabolism for CNPA, conversely, would result in less
chemical reaching the blood stream for circulation after first-
pass metabolism, thus the highest concentrations of CNPA were
observed in the liver as this compartment received input directly
from the gut prior to metabolic clearance. This prediction
demonstrates how the differing ADME properties of these
chemicals can influence in vivo target tissue concentrations,
and the importance of understanding relevant target tissues
when interpreting in vitro results.

PBPKmodeling can also facilitate predictions of tissue-specific
in vivo chemical concentrations to help identify relevant
bioactivity levels through forward dosimetry. Specifically,
Cmax estimations predicted to occur from expected exposure
conditions can be used to prescribe test ranges. In this case study
example, plasma Cmax is predicted to be under 1.5 µM for DTAC
and under 0.1 µM for CNPA (under 2 µM; Figures 2C,D).

In Vitro to In Vivo Extrapolation
The IVIVE analysis conducted for this case study utilized the
plasma Cmax from PBPKmodeling results for DTAC and CNPA
to estimate EADs based on ICE cHTS assay data. For this
example, we used AC50s from assays that measured endpoints
affecting receptor-based effects. Receptor-based effects was
selected as an endpoint grouping because it was represented
by several assays having positive results with similar in vitro
bioactivity concentrations (AC50) for both chemicals. A full
description of the ICE inputs for replicating this case study is
provided in the Supplementary Material.

The cHTS data set for “KCC8: Receptor-Mediated Effects”
contained 21 active receptor-based assays for DTAC and 28 for

CNPA, covering molecular targets relevant to endocrine
disruption (e.g., ER and AR), developmental signaling
pathways (e.g., RAR) and metabolic pathways involved in
immune response and cancer (e.g., VDR, PPARg). For DTAC,
the assays in the data set had a median AC50 value of 20.04 µM,
while the assays for CNPA yielded a median AC50 value of
29.16 µM. Figure 2E shows that, except for one high outlier for
CNPA, all the AC50 values for both chemicals in all assays fell
within a similar range. However, the IVIVE analysis (Figure 2F)
predicted that, based on the AC50 values for the assay inputs, the
median EAD would be 13.53 mg/kg/day for DTAC and
271.26 mg/kg/day for CNPA, a difference of approximately 20-
fold.

The EAD predictions generated by IVIVE can be used to
derive a margin of exposure by dividing the EAD by an expected
daily exposure. For example, the EPA’s exposure forecasting
program (ExpoCast; Wambaugh et al., 2013) provides 95th
percentile total daily exposure estimates of 0.106 mg/kg and
7.19e-4 mg/kg for DTAC and CNPA, respectively. Thus, the
margin of exposure based on the 95th percentile of expected
exposure and the median EAD from the input data for this
example would be 127.69 for DTAC and 377,274 for CNPA.
These unitless metrics provide an estimate of the exposure level
expected to result in toxicity relative to anticipated intake,
therefore lower values are of greater potential concern. It
should be noted that EAD calculations from IVIVE based on
Cmax from PBPK modeling are affected by the dosing frequency.
Therefore, an accurate representation of relevant exposure in
IVIVE analyses is essential to informing decision-making
through a margin-of-exposure approach.

It is important to note that the IVIVE analysis simply relates an
in vitro bioactivity measure to what the estimated in vivo plasma
concentration would be (or other modeled tissues). It does not
indicate whether the concentration is sufficient to cause a
sustained in vivo response. Evidence in the literature
demonstrates that the case study chemicals may have different
in vivo effects; quaternary ammonium compounds similar to
DTAC have been shown to affect neural tube development and
fertility in mice at doses of 120 mg/kg/day and (Melin et al., 2014;
Hrubec et al., 2017), while there is evidence that a pesticide similar
to CNPA can induce enterochromaffin cell tumors in mice at
doses above 100 mg/kg/day (Yoshida, 2021). While these
experimental results are observed at doses substantially higher
than predicted human exposures (Wambaugh et al., 2013), they
highlight how these chemicals may affect different in vivo
outcomes. Additional context about the biological outcome is
generally needed to link the mechanistic in vitro assays to an
adverse outcome, which can potentially be identified through
Adverse Outcome Pathways (AOP; Tollefsen et al., 2014;
Villeneuve et al., Villeneuve et al.,2014a, Villeneuve
et al.,2014b). In the case examples here, bioactive
concentrations from a selection of receptor-based assays
annotated to “KCC8: Receptor-Mediated Effects” were used in
IVIVE (Figure 1). These assays target a diverse group of mainly
nuclear receptors, and the overlap between the target chemicals
represents a subset of assays that includes androgen, estrogen, and
vitamin D receptor targets. While this does not represent a
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comprehensive picture of the bioactivity of these chemicals, there
are clear biological connections between the in vitro molecular
target activities and the adverse effects observed in vivo. A
complete table of the assays, AC50 values, and EADs used in
the case study is available in Supplementary Appendix A, in
addition to the relevant ICE query details and associatedmetadata.

CONCLUSION

The overview and case studies presented here illustrated how
user-friendly computational tools such as ICE and OPERA can
address common barriers to PBPK modeling and IVIVE and
provide a practical understanding of the application of these
analyses. Specifically, these open-access tools: 1) expand the range
of chemicals available for analysis using QSAR modeling
(Mansouri et al., 2018) and curated in vitro data (Bell et al.,
2020; Abedini et al., 2021), 2) facilitate non-expert application of
these techniques through a web interface (https://ice.ntp.niehs.
nih.gov/) and walkthrough documentation, and 3) provide
transparency with full access to analysis code and modifiable
R workbooks. As regulatory applications of NAMs continue to
develop, computational tools can facilitate broader
understanding and implementation of these approaches.

It is important to note that tools alone are not sufficient for
advancing our understanding of potential adverse effects
associated with chemical exposure. The case study provided in
this work highlights the utility of IVIVE within the Integrated
Chemical Environment to better contextualize in vitro bioactivity.
In this example, the data used were curated by technical experts
familiar with both the assay technology and the underlying
biology (Bell et al., 2020; Abedini et al., 2021). This approach
puts mechanistic in vitro data into context both quantitatively
(IVIVE) and biochemically (assay metadata) to make the use of
NAMs more broadly accessible and interpretable.
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