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The choice of target pocket is a key step in a drug discovery campaign. This step can be
supported by in silico druggability prediction. In the literature, druggability prediction is
often approached as a two-class classification task that distinguishes between druggable
and non-druggable (or less druggable) pockets (or voxels). Apart from obvious cases,
however, the non-druggable class is conceptually ambiguous. This is because any pocket
(or target) is only non-druggable until a drug is found for it. It is therefore more appropriate
to adopt a one-class approach, which uses only unambiguous information, namely,
druggable pockets. Here, we propose using the import vector domain description
(IVDD) algorithm to support this task. IVDD is a one-class probabilistic kernel machine
that we previously introduced. To feed the algorithm, we use customized DrugPred
descriptors computed via NanoShaper. Our results demonstrate the feasibility and
effectiveness of the approach. In particular, we can remove or mitigate biases chiefly
due to the labeling.

Keywords: druggability prediction, drug design, machine learning, unsupervised methods, one-class classification,
import vector domain description, conceptron

1 INTRODUCTION

Drug discovery is a time-consuming and complex task (Nicolaou, 2014). It requires a multistep
pipeline from biological understanding to fine-tuning of the lead candidate (for small molecules),
often via computational means (Csermely et al., 2013; Jamali et al., 2016). In the past 20 years,
computation has significantly contributed to many drug discovery steps via physics-based
simulation, machine learning modeling, and the combination of the two (Decherchi and Cavalli,
2020b; Decherchi et al., 2021).

In particular, computational modeling can help find a putatively druggable target and hence a
pocket that may accept a small molecule. A protein of interest is considered druggable when a drug
has been found to inhibit it. However, some authors consider ligandability to be a more appropriate
term for the propensity of the target/protein to accept drug-like molecules, irrespective of the more
complex pharmacokinetic and pharmacodynamic mechanisms implied by the term druggability
(Edfeldt et al., 2011). Here, we use the term druggable pocket to indicate a region of a protein with a
high probability of accepting a small molecule. The reliable in silico identification of potentially
druggable pockets is important for drug discovery. Finding new druggable hot spots can be
particularly relevant when searching for an allosteric binder and to boost selectivity. Selectivity,
in turn, is particularly important when designing chemical entities like PROTACs (Shimokawa et al.,
2017; Qi et al., 2021), even more relevant than optimizing the affinity of the warhead itself. While
researchers often know about the orthosteric pocket of a specific protein, it requires geometric and
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chemical insights to detect alternate druggable pockets, making it
a much more complex task. Effective tools are therefore required
to support the computational medicinal chemist in detecting and
ranking new pockets in order to design highly selective drugs.

The literature contains many reports on the computational
estimation of druggability (Agoni et al., 2020). The available tools
for this task include standalone software [e.g., P2Rank (Krivák
and Hoksza, 2018)] and web servers [e.g., PockDrug (Hussein
et al., 2015)]. Prediction often involves defining geometric and
chemical features to support machine learning techniques (Xie
et al., 2009) [e.g., DrugPred (Krasowski et al., 2011)].
Alternatively, more recent deep learning methodologies often
use 3D grids (voxels) of physicochemical fields. Indeed, there are
several methods for predicting the probability of a pocket’s
druggability. DoGSiteScorer (Volkamer et al., 2012b) is an
algorithm that detects pockets and estimates druggability by
considering global and local pocket proprieties. It uses support
vector machines to build a predictive model. PRANK (Krivák and
Hoksza, 2015) uses decision trees and random forests to re-rank/
re-score the pockets predicted by other software, such as
ConCavity (Capra et al., 2009) and Fpocket (Le Guilloux et al.,
2009). PRANK could help improve the performance of existing
prediction methods; it aims to predict the ligandability of a
specific point near the surface of the pocket. TRAPP is a
powerful method for analyzing molecular dynamics
trajectories. It was recently endowed with druggability
assessment capabilities, extending its analysis to an entire
ensemble of structures (Yuan et al., 2020).

Druggability can also be assessed with pharmacophores
(Desaphy et al., 2012) by using either very simple geometric
considerations (e.g., Cavity (Yuan et al., 2013)) or fully fledged
deep learning approaches. There are many such deep learning
approaches, which often leverage convolutional neural networks
coupled to 3D grids. In Zhang et al. (2020), the authors used both
the pocket and the ligand with DenseNet architecture. In contrast,
Pu et al. (2019) used convolutional neural networks specialized
for nucleotide and heme-binding sites, again starting from 3D
grids. InDeep (Mallet et al., 2021) is another contribution based
on a convolutional architecture. Here, the focus is on
characterizing protein–protein interfaces (PPI) to allow
designing of PPI disruptors. The capabilities of convolutional
neural networks were boosted by pocket segmentation in
Aggarwal et al. (2021). This work and others [e.g.,
Stepniewska-Dziubinska et al. (2020)] demonstrated that both
prediction and other activities, such as segmentation, are
beneficial, so one can devise a more complex framework than
a pure predictor. Along these lines, PUResNet (Kandel et al.,
2021) uses an interesting deep residual (skip connections)
decoder/encoder architecture derived from the U-net concept.
This work presented both an architecture and a cleanup
procedure for the training set. This class of deep methods is
very accurate but lacks native interpretability.

From the protein dataset perspective, some datasets used in
published works are suitable benchmarks. They are often used to
train and test machine learning protocols, thus creating a shared
base. For instance, in Hajduk et al. (2005), the authors created an
online dataset containing 72 unique protein-binding sites. The

authors in Schmidtke and Barril (2010) published two datasets: a
large but redundant dataset (DD, with 1,070 structures) and a
non-redundant subset (70 binding sites).

Here, we address the problem of druggability estimation from
the perspective of bias mitigation. The a priori dichotomy
between druggable and less druggable (or non-druggable)
pockets technically supports machine learning classifiers.
Conceptually, however, it is questionable to use or define a
non-druggable class. Indeed, apart from trivial cases (e.g., very
small pockets), it is at best ambiguous to define such class.
Defining a pocket as non-druggable (or less druggable)
automatically creates a bias in the learned model, which may
hamper the detection of a potentially useful pocket. Hence, we
argue that druggability estimation should be approached as a one-
class unsupervised learning task, not a classification one. This is
because a classification task would inevitably create arbitrary
user-dependent biases in the definition of the non-druggable
(or less druggable) class. Starting from this observation, we
devised a protocol that uses the import vector domain
description method (a probabilistic one-class non-linear
learner) to learn a hypersphere (a generalized minimum
enclosing ball), which contains druggable pockets (Decherchi
and Rocchia, 2016; Decherchi and Cavalli, 2020a). That is, only
the definition of a druggable pocket is required during training,
avoiding the creation of bias in the definition of the non-
druggable class. To support the learner, we used a
NanoShaper-based implementation of DrugPred (Krasowski
et al., 2011) descriptors with minor modifications (the
entrance area computed by NanoShaper is used as an
additional descriptor). We employed the dataset in Krasowski
et al. (2011) because it is widely used and explicitly defines a less
druggable set of pockets. Furthermore, we defined a diversified
new dataset of 100 protein targets to further validate the method.
This dataset is a subset of the Potential Drug Target Database
(PDTD (Gao et al., 2008)). Our results demonstrate the
effectiveness of the approach. In the following, Section 2
describes the method workflow, Section 3 shows the results of
the experiments, and Section 4 introduces possible future
developments and reports the final conclusions.

2 METHODS

In this section, we have described the proposed workflow for
druggability prediction. For clarity, we have separated the
training workflow from the testing (the operative phase) one.
The training phase is a step that is required to estimate (learn) the
model and comprises three main steps (see Figure 1):

1 First, we compute descriptors for the proteins of the training
set, in particular, for each protein, as follows:
a) the protein part is filtered from the input PDB, and the

radii of the Amber99SB-ildn force field are assigned to it;
b) the PDB file is thus converted to a .xyzr file and then passed

to NanoShaper to detect all the pockets;
c) a main druggable pocket is identified (one for each training

protein);
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d) the geometric and chemical descriptors of the pocket are
computed.

2 All the information from the previous step is aggregated in
order to form the training dataset, which is therefore composed
by the descriptors of each main druggable pocket of the
training targets.

3 Finally, the training dataset is used to train the import vector
domain description (IVDD) machine learning method. In this
phase, a sphere is learned and allows to assign a probability
value to each pocket and consequently to distinguish druggable
(probability ≥ 0.5) and non-druggable pockets
(probability < 0.5).

On the other hand, the testing/operative protocol, that is,
when the model is used for predictions only, comprises three
main steps (see Figure 2):

1 First, we compute the descriptors for the current target protein,
as follows:
a) the protein part is filtered from the input PDB and the radii

of the Amber99SB-ildn force field are assigned to it;
b) the PDB file is thus converted to a .xyzr file and then passed

to NanoShaper to detect all the pockets;
c) the geometric and chemical descriptors of the pockets are

computed.
2 All the information from the previous step is aggregated
obtaining a single file comprised of the descriptors of each
pocket of the current target.

3 Finally, the previously estimated hypersphere is used to predict
the probability of each of the newly detected pockets. The

pockets with the highest probability are most likely to be
druggable.

In the following sections we provide more details regarding
the abovementioned steps. In particular, Section 2.1 describes
steps 1b and 1c of the pipeline, Section 2.2 provides
information regarding the descriptors building step (1d),
and finally, Section 2.3 explains the IVDD method
mentioned in step 3.

2.1 NanoShaper Pockets Detection and
Main Pocket Identification
The detection of all the available pockets is instrumental for
estimating the druggability of each pocket in the protein of
interest. For this step, we used the NanoShaper tool
(Decherchi and Rocchia, 2013; Decherchi et al., 2018) to
efficiently deliver the set of pockets on a protein. NanoShaper
was chosen as it accurately estimates the molecular surface
(Wilson and Krasny (2021)); the detected pockets are
triangulated with the same technique used for molecular
surface triangulation, hence providing smooth triangulated
meshes.

The detected pockets are saved as mesh files in MSMS or in
the .off format, and they can be easily parsed to support the
subsequent descriptors building step. NanoShaper also
provides volume, surface area, and a list of the
constituining atoms for all the internal cavities and pockets
identified for the given molecular system. These are identified
and computed via an intuitive approach, which involves a

FIGURE 1 | Training workflow. From the creation of the training dataset to the training phase of the IVDD method.
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volumetric difference of the regions of the space between
system’s solvent-excluded surfaces (SESs), with two probe
radii, dubbed a large probe (with radius R) and a small one
(with radius r) (Decherchi et al., 2018). The probe sizes encode
the expectation onto the shape of the pockets. High R values
allow the identification of shallow pockets, whereas high r
values will smooth inner surface gaps. Default values are 3.0 Å
and 1.4 Å for the large and small probes, respectively. The large
radius is based on empirical evidence and the small radius
mimics the water molecule. Here, we used the default value of
the small radius but fine-tuned the large radius to a value of
3.5 Å. With respect to the default value of 3.0 Å, we found that
this value allows a better detection of slightly more shallow
pockets (a larger surface size of pocket entrance).

To create the training dataset, we needed an automated
method to detect the orthosteric/main pocket, where the
ligand is located, and discriminate it from the others
(NanoShaper delivers several pockets). Because the
orthosteric pocket is well-identified in the analyzed PDB,
we used the surrounding atoms of the ligand. In detail, we
used the Jaccard index on the atom indices to easily detect the
ortostheric pocket; the Jaccard index of atoms is an accurate
proxy of the discretized volume overlap, often found in
druggability predictors. We defined the orthosteric pocket
as the pocket detected by NanoShaper with the maximal
Jaccard index with respect to the reference indices. This is
easily achieved by localizing the atom indices around target’s

natural substrate (or drug). The Jaccard index is defined as
follows:

J O, Pi( ) � |O ∩ Pi|
|O ∪ Pi|, (1)

where O is the indices set for the orthosteric site and Pi is the set of
detected atom indices in the ith pocket. The Jaccard index is
hence a natural measure of the quality of the detected pocket with
respect to ligand’s envelope. One can note that the Jaccard index
can be decomposed into two components, which account for the
degree of overimposition of the pocket and reference ligand
volume in two different ways. The first component is the
normalized intersection component Jint:

Jint O, Pi( ) � |O ∩ Pi|
|O| , (2)

and the second one is the normalized union component Jor:

Jor O, Pi( ) � |O|
|O ∪ Pi|. (3)

They both belong to the interval (0,1). They account, respectively,
for the ability to detect all the reference atoms (Jint) and the
tightness of detection (Jor). Both properties are desirable and
consistently lead to the Jaccard index upon multiplication. To
fairly evaluate the results, we considered these metrics together
with classification accuracy.

FIGURE 2 | Testing workflow. From the protein PDB file to the druggability prediction with the trained IVDD.
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2.2 Descriptors Building
To characterize each pocket identified by NanoShaper, we used
the descriptors defined by Krasowski et al. (2011) together with
the entrance area provided by NanoShaper (Table 1).

Binding site properties describing size, shape, polarity, and
amino acid composition were calculated using NanoShaper output
files as input to the descriptors builder. In particular, to compute
volume (vol), total surface area (area_b), and entrance area
(area_e) (which describes the area of the pocket mouth), we
directly used the estimations provided by NanoShaper. To
calculate the other descriptors, we started from the NanoShaper
output files describing the atoms and meshes of each pocket. The
hydrogen-bond donor and acceptor properties of each pocket were
calculated by considering the surface area surrounding all the polar
atoms (dsa_t and asa_t). Based on these descriptors, the
hydrophobic surface area (hsa_t) is defined as the difference
between the total surface area and the sum of the hydrogen-
bond donor and acceptor surface areas. Moreover, relative
amplitude of the hydrogen-bond donor and acceptor surface
areas (dsa_r and asa_r) and the hydrophobic surface area
(hsa_r) were computed by dividing each descriptor by the total
surface area of the binding site. Finally, the relative polar surface
area (psa_r) is defined as the sum between the relative hydrogen-
bond donor and acceptor surface areas. To characterize the shape
of different cavities, we used the compactness descriptor, defined
by Krasowski et al. (2011):

cness �
4π

��
vol
4
3 π

3
√( )2

area_b
. (4)

According to this equation, the closer the compactness is to 1, the
more spherical is the pocket. The remaining descriptors, relating
to amino acid composition, were calculated by considering the
occurrence of different classes of amino acids grouped by their
overall physicochemical properties. In particular, all the amino
acids were grouped into the following classes:

• Apolar: Ala, Gly, Val, Ile, Leu, Met, Phe, and Pro.
• Polar: Thr, Lys, Arg, Glu, Asp, Gln, Asn, and Ser.
• Charged: Lys, Arg, His, Asp, and Glu.
• Multifunctional: Trp, Tyr, His, and Cys.

To define the relative occurrence of hydrophic amino acids
(haa), polar amino acids (paa), charged amino acids (caa), and
multifunctional amino acids (maa), we computed the fraction of
each group of amino acids with respect to the total number of
amino acids comprising each cavity. Finally, we reported the
incidence of each amino acid of type (in_X) as descriptors,
defined as the sum of all the surface areas surrounding the
amino acid X.

2.3 Druggability Estimation via IVDD
One-Class Learning
As anticipated, we used a one-class approach, that is, we require
and consider for the training phase only the samples in the class
from which we want to learn the concept. The aim is to learn the
concept of a druggable pocket. This requires only samples
(pockets) that are known to be druggable. To perform this
step, we used the one-class learner dubbed import vector
domain description (Decherchi and Rocchia (2016)). The
import vector domain description method tries to embed the
available training samples into an enclosing hypersphere. This
sphere does not belong to the original input space but rather
resides in a, possibly infinite dimensional, kernel space. This
approach allows us to wrap the data in arbitrarily complex
enclosing surfaces because the hypersphere in kernel space
corresponds to a not necessarily spherical enclosing surface in
the original space (see Figure 3).

This makes the method very flexible. Moreover, the enclosing
surface is endowed with a probabilistic model, which assigns the
probability of belonging (or not) to the enclosing sphere.

The aim of the training procedure of IVDD is to find a sphere
configuration (center position and radius size) that best
minimizes the cost function (see later). The cost function tries
to maintain as much as possible the samples inside the sphere
while at the same time keeping under control the radius size,
possibly letting some training samples outside the sphere. One is
eventually searching for a compact representation of the space
spanned by the samples. We will call [πlow, πhigh] the range of
acceptance of the fraction of training examples inside the sphere.
It can be shown that the optimal sphere (the solution of the
minimization problem) is unique, as the problem is convex. Once
the final sphere configuration is found it determines predictions
during the operative phase. The non-druggable nature of a pocket
is just an interpretation over the probability values; strictly
speaking, one-class learning just describes the adherence of a
sample (a pocket) to a concept (druggability). If a crisp
classification is needed, the probability threshold of 0.5 can be
used. Samples outside the sphere (decision boundary) are
predicted as non-druggable (with a corresponding probability
lower than 0.5), while samples inside the sphere are predicted as
druggable (with a corresponding probability higher than 0.5).
Clearly, the inner and most central pockets are estimated to have

TABLE 1 |Descriptors of the datasets. The incidence is calculated for every amino
acid X.

Descriptor Abbr

Binding site volume vol
Total surface area area_b
Entrance area area_e
Binding site compactness cness
Relative hydrogen-bond donor surface area dsa_r
Hydrogen-bond donor surface area dsa_t
Relative hydrogen-bond acceptor surface area asa_r
Hydrogen-bond acceptor surface area asa_t
Relative hydrophobic surface area hsa_r
Hydrophobic surface area hsa_t
Relative occurrence of polar amino acids paa
Relative occurrence of non-polar amino acids haa
Relative occurrence of multifunctional amino acids maa
Relative occurrence of charged amino acids caa
Relative polar surface area (dsa_r + asa_r) psa_r
incidence of amino acid X in the binding site relative to the surface in_X
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the highest probabilities of being druggable. Indeed, this
probability is high at the core of the sphere and decreases
toward the edges.

At a mathematical level, the training phase of the IVDD
method is characterized by the following minimization problem:

min
Γ,a

Γ2 − Ĉ∑n
i�1

log pi( ), (5)

where Γ is the square of the radius of the hypersphere, constant
Ĉ � C/n represents the trade-off between the radius size and the
error minimization, and pi is the probability defined by a logistic
model:

pi � 1
1 + exp βfi( ), (6)

where β is a fixed coefficient and fi is the decision function defined
as follows:

fi � d2 Φ(xi), a( ) − Γ, (7)
where d2 (Φ(xi), a) is the distance function and a is the center of
the hypersphere. The cost function in Eq. 5 is optimized via an
efficient learning algorithm that can be ascribed to a class of
sequential minimal optimization (SMO) algorithms (Zeng et al.,
2008). The introduced probability model is used to probe the
druggability of each pocket. We refer the reader to Decherchi and
Rocchia (2016) for further details.

3 RESULTS

3.1 Datasets
In this work, we used two different datasets to run the
experiments. In both cases, we generated two versions of the
dataset: with and without hydrogen atoms. The first dataset is the
NRDLD dataset, presented in Krasowski et al. (2011). It is the
largest publicly accessible non-redundant dataset for model

building and validation of structure-based druggability
methods. The dataset comprises 115 structures (protein-
binding sites), including 71 druggable and 44 less druggable
(which becomes 42 after the analysis in Krasowski et al.
(2011)). For each binding site, 35 different descriptors are
calculated, as described in section 2.2 and summarized in Table 1.

In addition to the NRDLD dataset, we created another dataset
comprising the binding sites of 100 different proteins. Those
targets are taken from the PDTD (Potential Drug Target
Database) (Gao et al., 2008), a free online collection of 1,100
3D structures of proteins. The targets in our 100-protein dataset
include enzymes, receptors, antibodies, signaling proteins, and
lipid-binding proteins. We thus obtained 5,692 and 4,807 binding
sites without and with hydrogen atoms, respectively. Of these, 100
are orthosteric (one for each target). For each structure, we
selected the pocket that hosts the drug or substrate. We
avoided selecting pockets that host cofactors. We defined these
pockets as orthosteric (or main) throughout the text (because the
drug is co-crystallized in the orthosteric site in most cases). As for
the NRDLD dataset, we calculated previously defined descriptors
for each binding site (see Table 1).

For more information on the targets of the NRDLD and the
PDTD datasets, see Supplementary Material Sections S1, S2.

3.2 Model Training
We trained IVDD considering the descriptors of n = 70 druggable
structures in the NRDLD dataset. The 1nvj structure was
excluded since it represents a small oligonucleotide and we
only considered proteins to calculate the descriptors. The
following parameters were adopted: kernel used is RBF with
σ = maxij (dij)/log(n) (where dij is the distance between the i-
th and the j-th sample); value of C is initialized as 0.5, the value of
β is set as 25, while the range of accepted inner samples is set to
[πlow, πhigh] = [0.8, 0.9]. The values of [πlow, πhigh] may vary
according to the reliability of the training dataset. In this case, we
preferred a conservative approach, with 80–90% of samples
included inside the sphere and the remaining peripheral

FIGURE 3 | IVDD method: each sample (druggable pocket) is a single point in a d-dimensional space (here d =35, which is the number of descriptors). The
hypersphere is created in a kernel space. The mapping between the feature space and the kernel space is given by the function ϕ.
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20–10% as outliers, in order to avoid overfitting. The learning
phase is stopped when the range of inner samples is hit. Each time
the training is repeated, the C is increased/reduced by 0.01
(increased if the percentage of samples inside the sphere is
lower than the desired range, reduced otherwise). In our case,
the training procedure ended with 90% samples inside the sphere

and a final C value of 0.1 for the solution without hydrogen atoms
and with 90% of samples inside the sphere and a final C value of
0.12 for the solution with hydrogen atoms.

Figure 4 shows a 2D representation of the training set
obtained by reducing the dimensionality via a principal
component analysis (PCA) (Jolliffe, 1986). For some samples,

FIGURE 4 | 2D representation of the training samples via PCA dimensionality reduction. Each point corresponds to a training sample (protein-binding site). The
color of each point corresponds to the probability assigned by IVDD (graded according to the color map on the right). For some training samples, the corresponding 3D
structure is shown. (A) is without hydrogen atoms, whereas in (B) hydrogen atoms were added.
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we additionally plotted the corresponding 3D structure. In both
cases, most of the training samples coherently obtained a high
probability of druggability (dark red points in Figure 4). This
outcome is obtained because we imposed the solution to include
at least 80% of the training samples inside the sphere.

Considering the solution without hydrogen atoms (see
Figure 4A), the sample 1udt has the highest probability and is
the sample nearest to the center of the sphere. In this structure,
the pocket identified by NanoShaper is very compact and well-
defined. IVDD performs the best in cases where the pocket closely
surrounds the ligand bound in it. The samples outside the sphere
(corresponding to 10% of the samples) obtained low probability
scores. These scores are explainable by looking at the pocket
shape. Structures such as 1kvo, 4cox, and 1k7f do not look like
well-defined pockets but rather like a fusion of more than one
pocket. This leads to descriptors that are quite distant from those
that the algorithm is learning as the druggable reference. As a
consequence, those structures are scored as outliers. This
highlights that ex post segmentation can be a powerful
preprocessing tool before the machine learning step.
Nevertheless, IVDD can cope with this situation by excluding
or marginalizing percolating pockets. It is possible to identify
another case where NanoShaper did not correctly identify the
orthosteric pocket (i.e., 2aa2). Here, the pocket is very shallow
and the bound ligand is not deeply buried. The identified pocket
is much smaller than it should be, leading to a low probability.
This effect is expected because NanoShaper can only detect
shallow pockets via a proper tuning of the big probe, whereas
the selected value is expected to work mainly for deep buried
prototypical pockets.

The solution with hydrogen atoms (see Figure 4B) identifies
the sample 1xm6 as having the highest probability. In contrast to
the solution without hydrogen atoms, its structure is now more
compact around the ligand with a greater Jint. Since the presence
of hydrogen atoms better defined the orthosteric pocket,
NanoShaper improved its accuracy, leading to a high IVDD
probability. This happened similarly for 1k7f, where the
channel that led to a big pocket was closed by the presence of
hydrogen atoms. In this specific case, NanoShaper identified the
orthosteric pocket with a Jaccard index three times better than the
solution without hydrogen atoms. Although the solution with
hydrogen atoms solved some NanoShaper errors (wide
percolation), pockets such as 1kvo, 4cox, and 2aa2 remained
more or less unchanged, with very big or shallow structures. The
option to use hydrogen atoms (or not) is partially data-dependent
and is further studied in NRDLD and new datasets.

3.3 Experiment on the NRDLD Dataset
In this step, we used the 42 less druggable structures described in
Krasowski et al. (2011) in order to test the previously trained
model and perform druggability prediction. Figures 5 and 6 show
the probability assigned to each structure by the IVDD method
for the solutions without and with hydrogen atoms, respectively.

Generally speaking, the following results are relatively similar.
The resulting trend shows that IVDD predicts a probability
greater than 0.8 for around half of the less druggable set. This
points to a possible bias in the “less druggable” set. Indeed, a
purely unsupervised approach such as this one, in which no a
priori dichotomy is created, shows that several pockets are not
judged to be less druggable. On the contrary, more than half are

FIGURE 5 | Druggability prediction for the less druggable subset of the NRDLD dataset without adding hydrogen atoms. For each protein-binding site (the x-axis),
we predicted its druggability probability (the y-axis and color of the bar).
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scored with high probability values. The less druggable nature can
be ascribed partially to the shallow nature of this set; however,
thanks to the large probe set to 3.5 Å, NanoShaper can still
detect them.

This result hence partially contrasts with the less druggable
labeling of this dataset. One should consider the principles behind
this previous classification. Krasowski et al. (2011) postulated that
a protein (not just the pocket) can be ascribed to the less
druggable realm if none of the following conditions are met:
1) at least one ligand is orally available as judged by the Lipinski’s
rule of five and 2) the ligands must have a clogP ≥ –2. In addition,
the ligand efficiency of at least one of the ligands fulfilling criteria
1) and 2) must be ≥ 0.3 kcal mol−1 per heavy atom. To correctly
fulfill the requirements one should be able to test all the chemical
space before making any conclusion. Indeed, ideally, and more
correctly, one could define the true druggability of a pocket as the
value of the activity of the best possible ligand for that pocket in
the chemical space. As the sampling of the chemical space is
limited and further biases are due to the drug discovery
community interest and efforts for a specific protein, this
classification is questionable and not necessarily reliable. The
problem of druggability classification of a pocket, or a protein,
that is ligand-dependent is that it would require the true sampling
of the chemical space. In our proposal, instead, we do not define a
priori the labels but concentrate on the only reliable information
that is, druggable pockets. The final result of this is that some
pockets previously labeled as less druggable instead obtain high
druggability probability values.

It is interesting to analyze the probability shift from lower to
upper values, systematically. Figure 7 shows the orthosteric

pockets found by NanoShaper for the less druggable proteins,
where we subsampled the structures set with a ratio of one every
five complexes. The pockets here tend to become deeper and
more compact moving from lesser probability to higher. The shift
is particularly evident comparing 1onz and 1cg0, where the first
case is a very shallow pocket, in which a ligand can be found, but it
is neither a prototypical nor ideal pocket; its probability value is
0.46. In contrast, 1cg0 shows a much better defined and large
enough pocket that would host a potential ligand well; IVDD
classifies it as druggable with a probability value of 0.97. Except
for 1qxo (a pocket detected by NanoShaper that is too large), one
can observe that the lower the score, the smaller andmore shallow
the pocket is. This is also evident looking at the portion of solvent-
exposed surface of the ligands, where the low probability pockets
tend to have more solvent-floating ligands.

There are some particularly interesting cases in this less
druggable set, also considering the ligands found in the crystal
structures. In 1kts, 1gpu, 1ucn, and 1cg0 the ligands are small
molecules or small molecule–like ligands. Missing these pockets
would be quite negative in a drug discovery campaign. All these
pockets score quite high with our method. One should not restrict
to the pure small molecule paradigm; in the case where one is
concerned with the design of a molecular glue or a PROTAC,
even a warhead relatively not too active can be sufficient to
degrade the protein. Our method is agnostic to ligand-induced
labeling and avoids to miss or undervalue this kind of pockets.

At a technical level, it is interesting to compare the pocket
probabilities with and without hydrogen addition and to consider
the NanoShaper’s behaviour. As anticipated, adding or not
adding hydrogen atoms does not change the detection of the

FIGURE 6 | Druggability prediction for the less druggable subset of the NRDLD dataset with the addition of hydrogen atoms. For each protein binding site (the
x-axis), we predicted its druggability probability (the y-axis and color of the bar).
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main pocket by NanoShaper (highest Jaccard index). However,
the shape and relative probability ranking both change. A first
observation is that, in some peculiar cases, the percolating
behavior of NanoShaper pockets cannot be solved by adding
hydrogen atoms. Indeed, 1qxo is still ranked last and, coherently,
this pocket is percolating widely inside protein crevices. This
global invariance is confirmed by analyzing 1icj (see Figure 8). In
this case, the detection of the main pocket is geometrically, but
not semantically, changed when the structure with and without
hydrogens atoms are considered. That is, the main detected

pocket is the same but is in another monomer of the
homotrimeric unit. Despite this finding, its druggability
probability changes when adding hydrogen atoms. This
demonstrates that the same pocket in two different
conformations (monomers) is well-detected and always ranked
as druggable. Indeed, without hydrogen atoms we can identify the
orthosteric pocket in monomer A. Upon addition of hydrogen
atoms, we instead identified the orthosteric pocket in monomer B.
In this last case, the Jaccard index is higher with improved pocket
quality (the pocket is more compact and located at the interface).

FIGURE 7 | Main pockets (computed without hydrogen atoms) of 1onz, 1bmq, 1m0n, 1mai, 1nnc, 3jdw, 1f9g, and 1cg0. The pocket surface is in blue and the
complexed ligand in the pdb file is in the VdW style. The number is the estimated druggability probability value.

FIGURE 8 | Main pocket shift for 1icj together with the co-crystallized ligand. (A) Main pocket detected when adding hydrogen atoms. (B) Main pocket without
adding hydrogen atoms. The pocket is semantically the same orthosteric pocket but changes from onemonomer to another. The three structures of ligands bound in the
PDB structure are also reported.
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However, the probability value changes as the corresponding
geometry (and presence or absence of hydrogen atoms) changes,
leading to a way higher value for pocket B. Therefore, from one side,
what is judged druggable remains druggable. However, inside the
druggable set, conformational changes of the same pocket have a
non-trivial role in shifting the probability value. This confirms that it
is crucial to consider dynamical aspects, particularly the probability
of a given site conformation (and hence its free energy), in order to
obtain a complete picture of the overall druggability of a site, which
may be dealt with as a physical observable value.

Overall, this analysis shows that the dataset definition can
create non-trivial biases, including biases due to labeling and the
presence or absence of hydrogen atoms, which can induce local
changes. One-class learning can mitigate the first bias because it
only uses the druggable class during training. In the next section,
we discuss other possible sources of bias and further evaluate the
accuracy on a wider and curated dataset, also considering the
initial processing of the structures (hydrogen addition).

3.4 PDTD Subset Validation
In this analysis, we used the 100-protein dataset, which is our
curated subset of the PDTD. Here, we again evaluated the
accuracy of classification and also searched for other possible
sources of biases. It is well-known that the volume value has a
crucial role in determining the druggability of a site. Among
others, in Nayal and Honig (2006), the authors used SCREEN
(Surface Cavity Recognition and Evaluation) to locate and
analyze pockets in the NRDLD dataset. They observed that
just picking the pocket with the highest volume value had a
success rate of 64%. However, just looking at the volume value
may create further biases, some intrinsic, some operational, and
some technical. An overly large volume could be erroneously
ascribed to the main site just because a small fraction contains the
true binding site. This can happen in dependence of the pocket
detection engine (e.g., for the percolation effect). Fortunately, this
can be evaluated well via overlapping volume metrics or by the

Jaccard index. Here, we performed this analysis by considering
this issue. We compared our performance with that obtained by
considering a simple descending ranking of the pocket volumes.
Figure 9 and Table 2 show the results for the situations with and
without hydrogen atoms. Using a simple ranking of the volume,
we obtained a better performance at top 5, with an accuracy of
97%. This decreased to 89%when hydrogen atoms were added. In
contrast, IVDD identified 90% of the orthosteric pockets in the
top 5 highest probability pockets, which increased to 92% when
hydrogen atoms were added. This shows that IVDD is more
stable, although lower in accuracy in absolute terms.

It is important to consider the quality of the pockets identified
in both cases. The presence of hydrogen atoms sometimes allows
the fragmentation of some of the overly large pockets. This not
only increases the accuracy in terms of the main pocket
druggability estimation but also affects the overall shape,
which often becomes too tight. This is a NanoShaper-
dependent effect, which is documented in Figures 10 and 11.
In Figure 11, we reported the cumulative scores, namely J, Jint, Jor,
for the volume and the IVDD ranking for the top 1 pockets,
ordered respectively by volume and by probability. The trend
shows a systematically higher value for all three scores for IVDD
without hydrogen atoms and almost indistinguishable scores with
hydrogen atoms. Interestingly, without hydrogen atoms, IVDD
has a lower accuracy than that in the simple volume. This is

FIGURE 9 | Enrichment analysis on the 100-protein experiment. (A) Solution without hydrogen atoms. For the 10% of pockets (for each protein) with the highest
probability (on average 5.28 pockets), the orthosteric site is found in 90% of cases with IVDD and in 97% of cases with the descending ranking of the pocket volumes. (B)
Solution with hydrogen atoms. For the 10% of the pockets (for each protein) with the highest probability (on average 4.43 pockets), the orthosteric site is found in 87% of
cases with IVDD and in 86% of cases with the descending ranking of pocket volumes.

TABLE 2 | Results obtained on the PDTD subset (with and without hydrogen
atoms) with the IVDD method and by a simple descending ranking of the
pocket volumes. All results are referred to the orthosteric/main sites.

Description IVDD Volume IVDD + H Volume + H

Top 1 50 60 50 50
Top 2 67 76 69 65
Top 3 81 87 81 79
Top 5 89 97 92 89
Top 10% 90 97 87 86
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unsurprising since an overly percolating volume allows easier
main pocket detection. However, when quality is considered,
even if some pockets are lost with IVDD, the remaining pockets
have significantly higher scores. Again, we can mitigate a bias by

not overfitting the volume-induced ranking. In the paradoxical
case where one has a volume percolating throughout the protein,
one would get a completely useless top 1 with 100% accuracy by
using a pure volume ranking.

FIGURE 10 | NanoShaper score distribution with and without hydrogen atoms.

FIGURE 11 | Cumulative scores (J, Jor and Jint) for IVDD and volume ranking. Here, the orthosteric sites identified by IVDD and the volume ranking in top 1 are
considered and ranked according to the probability score and the volume, respectively. Both the rankings are in descending order. Inset (A) is results without hydrogen
atoms and inset (B) is with hydrogen atoms.
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Within the IVDD results, it is also relevant to compare what
happens with and without hydrogen atoms. Examining the
structures that did not land in the top 5 positions with and
without hydrogen atoms, one can conclude that most (e.g.,
1vkg, 1qpb, and 1ht8) are large pockets with low or
intermediate Jaccard index or with very low Jor value. In
some cases, there are shallow pockets (e.g., 1gp6 and 1i7g)
characterized by very high values of Jor. Some of those
structures improve in the presence of hydrogen atoms,
reducing the number of targets that fall outside the top five
from 11 to 8. Some shared structures (e.g., 1ht8, 1h9u, and
1v8b) do not change the shape of the orthosteric pocket,
leading to not significant changes in the probability.

We can compare the proposed solution to the many others in
the literature. We have shown that by avoiding some of the
possible biases (chiefly the labels) and considering the model
without hydrogen atoms, we can obtain 81% detection accuracy
in top 3 and 89% in top 5. We have also shown that a non-
negligible fraction of the missed detections in top 5 can be
ascribed to NanoShaper’s behavior. In comparison, Volkamer
et al. (2012a) obtained 88% accuracy in correctly assigning to the
druggable or non-druggable class in the NRDLD dataset with
DoGSiteScorer, where the support vector machine is used as
machine learning backend. In contrast, DrugPred (Krasowski
et al., 2011) obtained 91% accuracy for NRDLD. A widely used
method is fpocket from Le Guilloux et al. (2009), which correctly
identified 83% of ligandable pockets in top 3 of all analyzed
proteins. Overall, we achieved an accuracy that is similar to that of
several existing methods but with some ab initio safeguards such
as avoiding biases due to labels and volume.

To further investigate the IVDD results, we identified how
much each single feature affects the IVDD prediction. IVDD
does not embed a feature selection method, so we used an ex
post labeling strategy. We first estimated the probability
obtained, on average, for each orthosteric site in the dataset,
obtaining 0.852 and 0.877, respectively, without and with
hydrogen atoms. These values represent two thresholds and
allow a labeling for each binding site, which is 0 when its
probability is lower than the threshold value, otherwise 1. This
ex post labeling allows us to fit a classifier (here, we chose a
random forest classifier (Breiman, 2001) with 100 estimators
and the Gini index as criteria for the split) and to estimate the
features importance. Figure 12 shows the results of this
additional experiment. Volume (Vol) is a major impacting
feature, followed by area of the pocket surface (Area_b),
hydrophobic surface area, hydrogen-bond acceptor surface
area (asa_t), hydrogen-bond donor surface area (dsa_t),
binding site compactness (cness), and entrance (mouth)
surface area (Area_e). Similar results can be obtained with
different classifiers and can be found in Supplementary
Material Section S3.

To further check these results, we ran this experiment by
normalizing data. We found that hydrophobic surface, polar
surface, and volume still dominate the model. This means that
IVDD is influenced by the volume, but it also considers other
chemical aspects in predicting probability. Of less relevance is the
fact that hydrophobic residues (LEU, PHE, MET, and GLY) and
some charged residues (HIS, GLU) rank slightly higher. The
presence of hydrophobic residues and volume as key factors is
largely consistent with chemical intuition.

FIGURE 12 |Random Forest features importance in the descending order by assigning ex post labels to the IVDD predictions. Results shown are without hydrogen
atoms; similar results are obtained with hydrogen atoms.
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The correlation between IVDD prediction and volume can
be seen in Figure 13, in which we have plotted each binding
site as a point in the 2D space, where the coordinates are the
probability predicted by IVDD and the volume itself. In the
presence (see Figure 13) and absence (data not shown) of
hydrogen atoms, the samples with the highest probability
have a volume between 500 and 2,000 Å3. The orthosteric sites
and the training samples are condensed on the right side of
the figure, meaning that they obtained high probability scores
in most cases. Non-orthosteric binding sites are condensed in
the bottom left of the figure since they are mostly small
pockets and obtain low probability scores. However, both
figures contain some non-orthosteric pockets with a volume
between 1,000 and 2,000 Å3 and lower probability scores. In
such cases, the IVDD decision has been influenced by factors
other than volume.

4 DISCUSSION AND CONCLUSIONS

In this study, we presented an unsupervised one-class
approach to build a druggability estimation model. We
defined a pipeline to obtain all the pockets of a protein
(NanoShaper), their corresponding descriptors, and
druggability prediction. The method achieved 89%
accuracy in top 5, in line with other methods. Although
the method was less accurate than a trivial volume-based
ranking by NanoShaper, it favors well-shaped pockets with
higher J, Jor, and Jint scores. This has practical relevance since
a relatively tight and well-shaped pocket reduces the
ambiguity and difficulty of the subsequent virtual
screening and docking campaigns. Crucially, the proposed
method does not aim to distinguish between druggable and

less druggable pockets (binary classification). Rather, a
probability for pocket is given, which is easily interpretable
and comparable across different proteins. In contrast to a
score, the probability estimation does not need a posteriori
calibration. Rather, the logistic model of the hypersphere
naturally delivers this information. Again, a probability
allows the computational medicinal chemist to easily
identify the most eligible pocket for subsequent drug
discovery steps, without wondering if the score value is high
or low in absolute terms. This is because any probability very
close to one is inevitably a strong indicator. Most importantly,
this approach does not need to define a less druggable or non-
druggable class. This potentially ambiguous concept is
bypassed by the one-class approach. The results show that
druggability prediction is best considered as a concept learning
problem, rather than a classification problem. This approach
allows de-biasing from the start of the learning process, which
is clear in the results from the less druggable dataset. We also
found that the presence or absence of hydrogen atoms can
change the overall modeling attempt in ways that are not
always obvious. This is because the effects of NanoShaper are
overimposed on the IVDD learning model. Our proposal to
mitigate and reduce various biases, even at the cost of lower
accuracy, is indebted to the fair machine learning field (Jiang
and Nachum, 2019). While fairness concepts are usually
applied to social aspects (e.g., demographic parity), we draw
on this way of thinking to focus on certain label
information only.

Together with explicit structural biases, technical aspects
also have an important role. We tested several different values
for the small and large NanoShaper probes (data not shown) to
identify the pockets. The small probe was easy because there is
no reason not to choose the water molecule–like size of 1.4 Å.
For the large probe, there is no immediate physically driven
quantity, with the convex hull being the extreme solution. We
found that a value of 3.5 Å performed better than 3 Å in
detecting relatively shallow pockets together with the more
prototypical buried ones. Larger values generally led to poorer
results in terms of shape, with a systematic decrease in Jaccard
index values.

In terms of future developments, we envision several
improvements of our methodology. A volume segmentation ad
hoc algorithm could improve the accuracy, particularly when
selecting the value of the large probe. Such a tool could provide
more freedom of choice for this parameter. The work of Aggarwal
et al. (2021), among others, has shown that many pieces of
software for pocket identification tend to identify large pockets
without segmentation techniques. Segmentation could be used to
find subpockets that are better suited to virtual screening and
docking. Another development would be a web server to easily
access the tool. Finally, we plan to combine this method with the
Pocketron method (La Sala et al., 2017) to not only track the
pocket volume and residues over time but also to provide a
dynamic druggability score that explicitly considers the
probability of the conformation ultimately delivering a
Boltzmann weighted estimator.

FIGURE 13 | IVDD probability scores vs. volume. Each sample
represents a pocket (colored according to the corresponding dataset). The
x-axis represents the probability that a pocket is druggable, while the y-axis
represents the volume of each pocket. The plot is referred to the solution
with hydrogen atoms. Similar results are obtained without hydrogen atoms.
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