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The SARS-CoV2 pandemic has highlighted the importance of efficient and effective
methods for identification of therapeutic drugs, and in particular has laid bare the need
for methods that allow exploration of the full diversity of synthesizable small molecules.
While classical high-throughput screening methods may consider up to millions of
molecules, virtual screening methods hold the promise of enabling appraisal of billions
of candidate molecules, thus expanding the search space while concurrently reducing
costs and speeding discovery. Here, we describe a new screening pipeline, called
drugsniffer, that is capable of rapidly exploring drug candidates from a library of billions
of molecules, and is designed to support distributed computation on cluster and cloud
resources. As an example of performance, our pipeline required ~40,000 total compute
hours to screen for potential drugs targeting three SARS-CoV2 proteins among a library of
~3.7 billion candidate molecules.
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1 INTRODUCTION

The war against viruses is largely fought using vaccines and therapeutic drugs. As of December
2021, there are 55 FDA-approved vaccines against 19 human viruses (FDA, 2021), while only
three viruses are targeted by approved antiviral drugs (FDA, 2020b). This disparity is
particularly visible in the context of the ongoing SARS-CoV2 pandemic, in which vaccines
were produced at a remarkable speed and with excellent effectiveness (FDA, 2020a; Wouters
et al., 2021), while effective antiviral agents (Mahase, 2021; Jayk Bernal et al., 2022) only
arrived 2 years into the pandemic, and with very limited availability. Despite vaccine success,
there remains a vital need for development of effective antiviral drugs due to a combination of
vaccine hesitancy, incomplete vaccine availability, breakthrough infection risk, and the
continued emergence of viral variants (Kaplan and Milstein, 2021). Beyond SARS-CoV2,
the cost and limited exploratory scope of current drug discovery pipelines will hamper efforts
to quickly respond to future pandemic needs, and are an obstacle to development of
antiviral drugs for viruses primarily afflicting relatively poor populations (Adamson et al.,
2021).
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Modern drug development efforts rely on high-throughput
screening (HTS) analysis, which involves automated physical
evaluation of activity across a library of thousands to millions
of candidate small-molecule drugs (Berdigaliyev and Aljofan,
2020). HTS can be complemented by computer-aided drug
design (CADD) and virtual screening (VS), in which
interactions between small-molecules and a targets are
estimated using computational models. In particular,
computational analysis holds the promise of enabling
expansion of the number of considered molecules from
millions to billions.

VS strategies are traditionally divided into two categories:
ligand-based (LBVS) and structure-based (SBVS) methods. In
LBVS methods, a known active ligand is used as the basis for a
search for chemically and structurally similar molecules
(Ripphausen et al., 2011), with no consideration of the target
protein. In SBVS approaches, small molecules are
computationally docked into target binding sites to estimate
their activities (Maia et al., 2020); this approach depends on
availability of structural information, and is computationally
intensive. The two methods can be integrated either by
combining results (Wilson and Lill, 2011; Wang et al., 2020),
or by using LBVS methods to quickly establish a set of candidates
subjected to subsequent SBVS docking analysis (Drwal and
Griffith, 2013).

Table 1 provides a list of various open access VS tools. For
large scale virtual screening of compound libraries, software
pipelines such as VSpipe Álvarez-Carretero et al. (2018),
VirtualFlow Gorgulla et al. (2020, 2021), AMIDEDarme
et al. (2021) have been used. Many of these approaches
make use of SBVS and facilitate the use of a variety of
docking Bender et al. (2021) programs with significant
emphasis on scaling the calculations. Recent GPU
acceleration of docking (Santos-Martins et al., 2021) has

improved throughput, but resource requirements are still
exceedingly high. For example, an effort to performing one
billion docking assays was reported to require 664K GPU
hours and 4.64M core hours for a single VS analysis (Acharya
et al., 2020). With the aim of automating hit-selection
protocols and minimizing human intervention, artificial
intelligence-driven VS. pipeline have also been introduced
Gentile et al. (2020), Gentile et al. (2021); Yaacoub et al.
(2021).

Herein, we describe our development and release of an open
source, massively-scalable LBVS-filtered SBVS pipeline, called
drugsniffer, that is designed to achieve the goal of virtually
screening bioactive drugs from datasets of billions of probably-
synthesizable small molecules in a much-reduced time budget.
Drugsniffer is easy to install and manages the distribution of
computation across cluster or cloud resources. It reduces the
computational burden to 10s of thousands of compute hours for
search across a library of billions of candidate molecules, and
provides a framework in which future methodological advances
can be incorporated and evaluated. Using an early iteration of
drugsniffer, we assessed ~3.7B molecules for binding potential
against 3 SARS-CoV2 proteins (22 binding pockets), with total
computational investment of ~40 K compute hours. The results
of our analysis were accepted as a finalist in Joint European
Disruptive Initiative (JEDI) “billionmolecules against COVID19”
challenge (Le et al., 2021).

2 METHODS

Drugsniffer consists of the following phases (see Figure 1): 1)
select the protein target and determine its structure, 2) identify
binding pockets, 3) design de novo ligands for each pocket, 4) use
these as seeds to identify similar molecules in a large composite

TABLE 1 | Several open access software tools for virtual screening. In a number of the tools, such as dockECR and VirtualFlow, multiple docking programs are used to
predict scores between a single target or multiple targets (merging and shrinking approach) and a library of compounds. The AMIDE software carries out large-scale
chemical ligand docking over a large dataset of proteins with the aim of identifying potential side effects of new drugs. iDrug, Pharmit (for structure-based pharmacophore
modeling), iStar, e-LEA3D, USR-VS (3D shape-based similarity), MTiOpenScreen and ChemicalToolbox are web-based platforms for computer-aided drug design.
ChemicalToolbox allows for integration with other tools and workflows (molecular dynamics) that are part of the Galaxy software framework (https://galaxyproject.org/).
e-LEA3D uses a de novo drug design strategy in which fragments or combination of fragments that fit a QSARmodel or the binding site of a protein are identified. * iDrug
uses a pocket structure to define the pharmacophore descriptors needed for LBVS. However, they do not explicitly calculate the interaction between a ligand and the
pocket, such as docking. In our opinion, they are marginally SBVS.

Software LBVS SBVS ADMET

dockECR Ochoa et al. (2021) 7 ✓ 7

MolAr Maia et al. (2020) 7 ✓ 7

iDrug Wang et al. (2014) ✓ ✓* 7

ChemicalToolbox Bray et al. (2020) 7 ✓ ✓
VirtualFlow Gorgulla et al. (2020), Gorgulla et al. (2021) 7 ✓ ✓
AMIDE Darme et al. (2021) 7 ✓ 7

VSPipe Álvarez-Carretero et al. (2018) 7 ✓ 7

DockBlaster Irwin et al. (2009) 7 ✓ 7

e-LEA3D Douguet (2010) 7 ✓ 7

Pharmit Sunseri and Koes (2016) ✓ 7 7

iStar Li et al. (2014) 7 ✓ 7

USR-VS Li et al. (2016) ✓ 7 7

MTiOpenScreen Labbé et al. (2015) 7 ✓ 7

DrugSniffer ✓ ✓ ✓
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database of synthesizable small molecules, 5) perform in silico
docking assays on these candidates, 6) apply a new neural
network model to predict and rank binding affinity based on
features of the docked poses, 7) identify potential toxicity of
compounds using a custom ADMET filter. In this section, we
describe these stages in detail, then discuss our application of an
early implementation of the pipeline to the JEDI COVID19
Grand Challenge.

2.1 Selecting Target Proteins and
Determining Structure
The first step in the drug screening process is the selection of the
target protein–the user must provide a structural model for the
selected protein. Drugsniffer is agnostic about the source of the
structural model, and will work with experimentally-validated or
computationally-predicted structures. Though protein structures
may be retrieved from a variety of sources, we have had good
experiences with ChimeraX (Pettersen et al., 2021), which, for
example, supports retrieval of structures from the Protein Data
Bank (Berman et al., 2000)) or prediction using AlphaFold2
(Jumper et al., 2021). AlphaFold2 achieved remarkable
accuracy in the CASP14 competition; for example, in 92.5% of
predictions, all side chain atoms are predicted with error ≤ 5 Å
(Pereira et al., 2021). This accuracy is unprecedented for

computational models, and these models may provide insight
into the diversity of conformations that extend beyond the single
conformer of a crystal-based structure. Even so, a substantial
fraction of the predicted atoms, primarily from the flexible parts
of the proteins, may not be modeled correctly by AlphaFold2. We
encourage users to evaluate the overall (IDDT) and residue-
specific (pLDDT) scores to evaluate the predicted accuracy of
the overall and pocket regions of an AlphaFold2 model.

2.2 Identifying Pockets
In addition to a target protein structure, drugsniffer must be
provided with at least one pocket descriptor, as well as a preferred
pocket box size. The most reliable way of detecting a ligand-
binding pocket is a user’s prior knowledge about the binding
pocket from experience, experimental evidence, and literature
search. Computational identification of a pocket-like region is
challenging and an active area of research (Zhao et al., 2020). The
drugsniffer pipeline includes a copy of the cavity detection
software Fpocket (Le Guilloux et al., 2009) only because it is a
stand-alone free program. We encourage users to use multiple
pocket search algorithms, such as FTMAP Kozakov et al. (2015),
POCASA Yu et al. (2010), and molecular dynamics simulations,
and use their judgment to define a pocket-like region in the
protein. The current implementation of the drugsniffer pipeline
produces an FPOCKET output that includes all predicted

FIGURE 1 |Outline of the drugsniffer virtual screening pipeline. The stages include (1) model the targets (e.g., using AlphaFold or crystal structure where available),
(2) identify possible binding sites/pockets (e.g., using FPocket), (3) design multiple de novo ligands for the target pockets using AutoGrow, (4) use the designed
molecules as seeds to identify similar compounds from small-molecule libraries (using ECFP4 fingerprints as found in RDKit), (5) dock the molecules (using AutoDock
Vina) identified by the similarity search and calculate the interaction energy between the target and the docked poses, (6) re-score the best-docked poses of all the
molecules using our new scoring function (terms for the function are provided by SMINA and DLIGAND2), (7) identify potentially toxic compounds using our fast ADMET
analyzer (using FP-ADMET).
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pockets; the user is tasked with manually reviewing these and
identifying the subset for which the downstream drug discovery
stages should be performed, e.g., using ChimeraX or PyMol
(Oliveira et al., 2014). Pocket descriptors identified outside of
the drugsniffer pipeline may be provided as an alternative or
supplementary source of predicted pockets. Box size must be
determined for each pocket; we recommend basing this on the
scheme proposed by (Feinstein and Brylinski, 2015).

2.3 De Novo Ligand Design
Following manual pocket identification, drugsniffer accepts as
input the set of targeted pockets, and proceeds in an automatic
fashion through the remaining stages. In the first stage, a large
number of candidate ligand molecules are designed from scratch
using the software AutoGrow4 (Spiegel and Durrant, 2020), which
employs a genetic algorithm to evolve ligands from building blocks
obtained from the ZINC library (Sterling and Irwin, 2015).
AutoGrow4 utilizes a diversity score that acts as a secondary
fitness metric and is used to select seed compounds that are
structurally unique from previous generations. The molecules
are subsequently docked into the pockets of the specified target
protein using QuickVina (Alhossary et al., 2015) which is a faster
version of Autodock Vina. Docked results are ranked based on the
Vina docking score of the top ranking pose. A Lipinski RO5 filter is
used to exclude candidate structures that do not satisfy drug-like
criteria. The NIH filter (Jadhav et al., 2010) is also included to
screen against compounds containing undesirable functional
groups. AutoGrow4 performs in silico chemical reactions
(Durrant and McCammon, 2012) derived from a set of robust
organic reactions (Hartenfeller et al., 2011) to generate new child
compounds from a parent molecule. These reaction-based
structural transformations are used to increase the likelihood of
the designed molecules being synthetically accessible. However, a
drawback of using pre-defined reaction schemes is that they may
match reaction handles and fail to consider the presence of
competing functionalities that can compromise the reaction
outcome (Ghiandoni et al., 2020; Meyers et al., 2021). By
default, the pipeline runs AutoGrow4 for 10 generations, and

captures 150 de novo molecules from each of the final three
generations. Drugsniffer can optionally forgo this AutoGrow4
step, and instead accept a collection of ligands provided by the
user–these may be sourced from some prior de novo computation,
or from a collection of co-crystallized protein-ligand complexes.

2.4 Molecular Similarity Search
Themotivation for employing de novo ligand design is to produce
drug-like compounds that can mimic known inhibitors or
potentially active ligands with a diversity of chemical
structures. While the molecules produced by AutoGrow4 are
predicted to be synthesizable, factors such as establishing
synthetic routes, material procurement, costs and time
involved are difficult to predict. We therefore sought to build
on the value of these designed molecules through an LBVS search
strategy in which the de novomolecules serve as seeds in a search
for similar compounds within a massive library of molecules.

We compiled a collection of molecules from various small-
molecule libraries, with the aim of capturing a large diversity of
molecules that either already exist, or are likely-synthesizable and
can be made to order (see Table 2). The Enamine collection
includes more than 1 billion compounds that comply with
Lipinski’s rule of five (RO5) criteria and are expected to be
realized in 1–3 synthesis steps. The Synthetically Accessible
Virtual Inventory (SAVI) (Patel et al., 2020) contains over 1
billion reliably-synthesizable compounds generated through
expert-system rules. GDB-13 (Blum and Reymond, 2009) also
contains over 1 billion compounds (containing up to 13 atoms of
C, N, O, S, and Cl = , generated according to chemical stability
and synthetic feasibility rules. PubChem (Kim et al., 2020), ZINC
(Sterling and Irwin, 2015), and Molport are curated collections of
commercially-available molecules. SweetLead (Novick et al.,
2013) and DrugBank (Wishart et al., 2017) contain drugs that
are in use or in clinical trials, and may therefore facilitate
repurposing of established drugs. We removed molecules
containing salts, because downstream docking methods fail in
the face the apparent disjoint molecules. The full de-duplicated
collection contains ~3.7 billion unique molecules.

To identify library-sourced compounds similar to the de novo
seeds produced by AutoGrow4, 1024-bit ECFP4 fingerprints
(O’Boyle and Sayle, 2016) are computed for all ~3.7 billion
library compounds. The ECFP4 fingerpint is a 1024-element
binary vector that encodes structural and chemical features.
Though a multitude of fingerprint strategies exist, ECFP4 has
been reported to effectively rank diverse structures by similarity
(O’Boyle and Sayle, 2016). Future releases of drugsniffer will
enable selection of other fingerprints, or related similarity
measures. ECFP4 fingerprints are computed using RDKIT
(https://www.rdkit.org), then stored as a sequence of 1,024 bit
vectors, so that a library of 3.7 billion molecules is represented by
a ~475 Gbyte fingerprint database. Fingerprints are similarly
computed for all seeds. A measure of similarity between two
molecules is computed by comparing the 1024-bit fingerprints of
each molecule, using the Tanimoto coefficient (aka Jacaard
index): the ratio of the intersecting set (number of bits set to
one in both fingerprints) to the union set (number of bits set to
one in at least one of the two fingerprints) (Bajusz et al., 2015).

TABLE 2 | The small molecule databases searched as part of the VS protocol.

Database Number of ligands

Sweetlead ≈4,000
Drugbank ≈10,000
MOLPROT ≈7,600,000
PUBCHEM ≈103,000,000
ZINC15 ≈417,000,000
GDB ≈1,003,000,000
SAVI ≈1,009,000,000
ENAMINE ≈1,200,000,000
Total ≈3,700,000,000

https://simtk.org/projects/sweetlead
https://www.drugbank.ca/releases/latest
https://www.molport.com/shop/libraries-collections
http://ftp.ncbi.nlm.nih.gov/pubchem/Compound/
http://files.docking.org/catalogs/
http://gdb.unibe.ch/downloads/
https://cactus.nci.nih.gov/download/savi_download/
https://enamine.net/library-synthesis/real-compounds/real-database
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Similar (“neighbor”) molecules are identified by computing the
Tanimoto coefficient for each seed against each molecule in the
fingerprint database using SIMD vectorized bit-level comparison
over 1,024 representative bits per molecule. By default, neighbors
with Tanimoto similarity > 0.5 to at least one seed are captured
for later docking estimates. This threshold is selected based on
experience, with the aim of balancing stringency (reducing the
computational burden of later stages) with permissiveness
(expanding the pool of candidates that reach the next stage); it
can be altered at run time.

2.5 Protein-Ligand Docking
For the seed-neighbor molecules identified by the similarity
search, initial 3D coordinates are generated from the SMILES
representations using OpenBabel (O’Boyle et al., 2011a). Diverse
low-energy conformers for the molecules are generated using the
Confab (O’Boyle et al., 2011b), then the lowest energy
conformation is retained. These optimized structures of
neighbors are docked into their respective targets using
AutoDock Vina (Trott and Olson, 2010). The number of
docking poses produced and the exhaustiveness parameter for
the search for each ligand are parameterized by the user; the
default values are 9 and 4, respectively.

2.6 Re-Scoring Docked Ligands, to
Estimate Binding Affinity
AutoDock Vina reports a set of molecular poses within the pocket,
along with a value representing a prediction of the quality of each
docked pose. Because this prediction is only a loose estimate of actual
binding affinity, a variety of post hoc re-scoring methods have been

devised [e.g., see (Koes et al., 2013a; Chen et al., 2019; McNutt et al.,
2021)]. Drugsniffer can report either the Autodock Vina score, the
SMINA (Koes et al., 2013b) rescoring value, or the result of a new
neural network re-scoring strategy that we have produced for this
workflow (dock2bind, which is the default). Drugsniffer supports
retraining of this model with domain-specific binding affinity data,
and also will accept an alternate re-scoring function that is injected
by the user into the drugsniffer wokflow by providing a Docker
container meeting a simple documented API.

For each docked pose, our dock2bind receives 16 pose
descriptors calculated by SMINA, along with the DFIRE
estimate of protein–ligand potential (Chen et al., 2019), and
computes a new affinity estimate for the pose. This estimate is
a value between 0 and 1 and can be thought of as the model’s
confidence that the molecule binds to the pocket, constrained by
the specific pose. See Figure 2 for model details. Ligand-protein
pairs were taken from the DUD-E benchmark (Mysinger et al.,
2012) and LIT-PCBA (Tran-Nguyen et al., 2020). To train the
model, docked poses were generated for ~14,000 ligand-protein
pairs from the DUD-E dataset, along with ~800,000 decoy ZINC-
sourced compounds docked to the same protein partners. These
were supplemented with an additional ~4,000 ligand-protein
complexes from LIT-PCBA, and ~121,000 decoys docked to
the same proteins. The active:decoy ratio is intended to reflect
the large actual classification imbalance (most molecules are
inactive for any specific target). For each target, 9 docked
poses were produced, and the pose with the best SMINA score
was provided to the dock2bind model for training.

2.7 ADMET Analysis
Drugsniffer includes a suite of models to predict properties tied to
bioavailability and safety. Owing to their ease of computation,
molecular fingerprints have been frequently used to predict these
properties (Kim and Nam, 2017; Ai et al., 2018; Yang et al., 2019).
Fingerprint-based classification models were trained on
experimental data available [see (Venkatraman, 2021)] for
solubility in dimethyl sulfoxide (DMSO), blood brain barrier
permeability, human intestinal absorption (HIA), AMES
mutagenicity, HERG cardiotoxicity, drug induced liver injury
(DILI), Cytochrome p450 interaction (CYP3A4 and CYP2C9
isoforms), metabolic stability and acute LD50 toxicity based on
the criteria defined by the Environmetal Protection Agency (EPA).
For each property, various fingerprints (Hinselmann et al., 2011)
(substructure and extended/functional connectivity fingerprints)
were evaluated for their discriminant ability and the fingerprint
model [using random forests (Breiman, 2001)] yielding the best
balanced accuracy (Brodersen et al., 2010; Venkatraman, 2021) was
retained. The drugsniffer pipeline applies these models to the list of
candidates produced by previous stages, and appends the resultant
vector of properties to the affinity prediction results. The models
can be accessed at https://gitlab.com/vishsoft/fpadmet.

2.8 Software and Data
Drugsniffer is implemented as a Nextflow workflow (Di
Tommaso et al., 2017) that orchestrates the activity of a
curated set of open source tools, and supports analysis in
cluster (SLURM) and cloud (AWS) environments. Table 3

FIGURE 2 | Affinity prediction model. The model consists of three
separate paths from input to output, each composed of five sequential fully-
connected layers. Each path uses a separate set of activation functions,
allowing the network to learn diverse representations of the input. The
outputs of the three paths are concatenated and passed through a final fully-
connected (FC) layer that emits a prediction of binding or non-binding. Fully-
connected (FC) layers are represented with blue blocks. The number of nodes
in each FC layer is indicated below the block. Activation functions applied to
the output of the FC layers are shown in circles. The model was trained for
2000 epochs and batch size 8,192 with the Adam (Diederik and Ba, 2014)
optimizer using default β1,2 parameters and a learning rate of 0.001. Dropout
(Srivastava et al., 2014) with p = 0.5 was applied after each fully connected
layer during training, and also during validation.
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lists the different software tools that are used in the workflow. The
workflow depends on a collection of Docker containers and
runner scripts wrapping each of our own tools as well as the
external open source tools included in the analysis pipeline. This
organizing principle makes it possible for the user to configure
and run drugsniffer without concern for dependencies. Docker
container files, NextFlow scripts, and tool code are all available
via GitHub (https://github.com/TravisWheelerLab/drug-sniffer).
Versioned Docker container images are published in the GitHub
containiner registry, and the full library of ~3.7 billion molecules
(with pre-computed fingerprints) is housed in a persistent OSF
repository (Soderberg, 2018) and. Instructions for download and
use are found at http://drugsniffer.org.

2.9 Application of Drugsniffer to JEDI
COVID19 Grand Challenge
In May 2020, the Joint European Disruptive Initiative (JEDI)
launched a “Grand Challenge” competition intended to motivate
development of methods capable of searching a library of billions
of molecules for those with potentially good binding affinity for
target SARS CoV2 proteins. We developed drugsniffer to meet
these goals, and submitted candidate molecules identified with an
early version of the piepeline. Our submissions have reached the
finalist stage, and are currently under experimental review. Here,
we describe how our pipeline was used to prepare our submission,
and document the differences between the version of the pipeline
used for our JEDI submission and its current released form.

To begin, we selected three target proteins: RNA dependent RNA
polymerase (Non-structural Protein 12, akaNSP12), 3C like protease
(3CLPro), and Nucleocapsid protein (N). At the time of the analysis,
no whole-protein experimental structure was available for any of the
targets and AlphaFold2 was not yet released. We therefore
downloaded models created by I-TASSER (Yang et al., 2015),
and added hydrogen atoms with CHARMM (Brooks et al., 2009).

Candidate binding pockets for the three selected targets were
identified using a combination of literature search and results

from the tools FTMAP (Kozakov et al., 2015) and POCASA (Yu
et al., 2010) (drugsniffer incorporates Fpocket in lieu of these,
because its license allows redistribution). Seven pocket-like
regions were identified: 2 each for N and 3CLpro, and 3 for
NSP12. Some of the pocket-like regions were too large to be
occupied by a typical-sized ligand. Consequently, the larger
pocket-like regions were subdivided into smaller pockets. A
total of 22 pockets were finalized as targets: 8 each for N and
NSP12 and 6 for 3CLPro. We searched the literature to identify
any glycosylation sites for the three selected targets and did not
find any. We also used N-GlyDe (Pitti et al., 2019) to identify any
potential sites for N-linked glycans. Our predicted glycosylation
sites are residue 269 of N and residues 767 and 911 of NSP12. As
none of the glycosylation sites were near any of the predicted
binding pockets, we did not consider glycosylation for our later
docking exercises.

The next several pipeline stages were run as in the current
release of the pipeline, including de novo ligand design, molecular
similarity search, and protein-ligand docking. AutoGrow4 was
run for 25 generations, over five independant runs. In total,
31,962 seed molecules were identified by AutoGrow4 (12,227 for
nsp12 pockets, 14,334 for N pockets, and 5,401 for 3CLPro
pockets). Molecular similarity search identified ~97,000 library
compounds with Tanimoto similarity > 0.6 to some seed, and
another ~955,000 with Tanimoto similarities of 0.5–0.6. Among
the 97,000 closest neighbours: ~43,000 were identified for nsp12,
~34,000 for N, ~20,000 for 3CLPro. For each pocket, all seed
neighbor molecules were docked (AutoDock Vina) to the pocket,
and poses were re-scored using dock2bind, using the top re-
scored pose for each molecule as its predicted affinity. The top-
scoring 30,000 candidates (10,000 per protein) were analyzed for
ADMET and predicted synthetic complexity [SCSCORE (Coley
et al., 2018)] of the target molecule. Candidates with no ADMET
contraindications, and with an expected number of synthesis
steps ≤5 were submitted to the JEDI challenge; 18 compounds
passed JEDI criteria for the final evaluation, and are being
synthesized and evaluated.

TABLE 3 | Software used in the VS pipeline.

Software Comments

RDKit Routines for ECFP4 fingerprint generation
Chemistry Development Kit logP estimation routines
OpenBabel interconvert chemical file formats
MGLTools interconvert chemical file formats
AutoDock Vina Protein-ligand docking
DLigand2 statistical potential term for protein-ligand binding affinity prediction
SMINA scoring terms for protein-ligand binding affinity prediction
AUTOGROW4 de novo ligand design using docking
FP-ADMET Prediction of ADMET properties

https://www.rdkit.org
https://cdk.github.io/
http://openbabel.org/wiki/Main_Page
https://ccsb.scripps.edu/mgltools/downloads/
https://github.com/ccsb-scripps/AutoDock-Vina
https://github.com/sysu-yanglab/DLIGAND2
https://github.com/mwojcikowski/smina
https://git.durrantlab.pitt.edu/jdurrant/autogrow4
https://gitlab.com/vishsoft/fpadmet
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3 RESULTS

Here, we have described the stages and availability of a new
pipeline for exploring a pre-built library of billions of likely-
synthesizable molecules for a small set of candidate molecules
that are expected to show good binding affinity to a user-
provided protein structure and pocket descriptor. As a proof
of principle, we used a variant of this pipeline to identify drug
candidates from our library of ~3.7 billion molecules,
targeting 22 pockets in 3 proteins associated with SARS-
CoV2, resulting in a list of ~30,000 candidate compounds.
This collection was submitted for analysis to the JEDI “Grand
Challenge,” and were advanced to “finalist” status;
experimental review of a subset of these molecules is
underway. Compute time for the total search for candidate
molecules for all 22 pockets was ~40,000 CPU hours. By
distributing workload across a cluster, the analysis required
only a few days. In addition to these run time results, we
explored the efficacy of our custom docking re-scoring model,
as well as the outcomes of ADMET and synthesizability
analysis.

3.1 Performance of the Deep Learning
Re-Scoring Model
To quantitatively evaluate our model, a test set was developed
from DUD-E and LIT-PCBA, consisting of complexes involving
proteins not found in the training set. A total of ~3000 DUD-E
ligand-protein pairs, ~186,000 decoys for DUD-E proteins,
~900 LIT-PCBA ligand-protein pairs, and ~27,000 decoys for
LIT-PCBA. No hyperparameter tuning was performed on any of
the models so a validation set was unnecessary. To test the

efficacy of our method of ranking potential binders, we
compared our method to a variety of open-source
implementations of affinity-predicting methods, including
Vina’s default method, the SMINA default score, and the
NNScore and RF-score (version 3) from the Open Drug
Discovery Toolkit (Wójcikowski et al., 2015) (ODDT).
Figure 3 shows the performance of the model architecture
trained on different subsets of the data.

3.2 ADMET and Synthesizability Analysis
Figure 4 shows the distribution of the ADMET properties for the
~30,000 compounds that were submitted to the JEDI
competition. For the most part, the shortlisted compounds
were predicted to have favourable ADMET properties. Our
ML model for DILI (Venkatraman, 2021) predicts a majority
(~85%) of the compounds to be hepatotoxic. The DILI model
however only provides a binary (yes/no) prediction and does not
indicate the level of the underlying DILI severity. A strict
application of the models (i.e., selecting only those compounds
that are deemed to be favourable across all calculated properties)
yielded a set of 1,635 compounds. Many ADMET properties are
affected by the dosage, route and frequency. For better assessment
of ADMET, knowledge of the underlying mechanisms is
required. Given that it is far from trivial to prioritize one
property over the other (leading to varying application of the
filter), we have used the model predictions as a guide rather than a
filter. With respect to synthesizability, ~79% of molecules
identified by the pipeline were predicted to require three or
fewer predicted reaction steps.

4 DISCUSSION

Virtual screening has seen a recent rise in prominence, supported
by improved computational methods across the range of analyses
represented in the drugsniffer pipeline. The ongoing pandemic
has highlighted the need for improved speed and increased
exploratory scope of virtual screening methods. Relatedly, the
development of low-cost virtual screening methods holds the
promise of improving opportunities for development of drugs
targeting diseases prevalent in low-income regions, for which
economic incentives discourage expensive high-throughput
screening assays. We developed drugsniffer as a preliminary
tool to meet this need, exploring billions of candidate
molecules for a target protein pocket in a few thousand
compute hours–relatively modest resources available to most
HPC infrastructures. Even with its development, each of the
stages of the drugsniffer pipeline will be well-served by
methodological advances. We highlight a few such areas of
opportunity here, and observe that drugsniffer can easily adapt
to incorporate advances along these lines, due to its modular
nature.

With the development and release of AlphaFold2 and similar
structure prediction methods, structure prediction is perhaps no
longer a general bottleneck in the drug discovery problem,
though some protein types still suffer from relatively
uncertain predictions. Pocket identification remains a

FIGURE 3 | Test data consisting of 3,900 ligand-protein pairs and
213,000 decoy-protein pairs was analyzed with the tools listed in the legend,
with the relevant tool producing a binding affinity estimate for each pair. Default
parameters were used for all tools; our model was trained as described
in the text. A ROC curve was produced for each tool, based on the sorted list
of predicted affinity.
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challenge, and most current techniques can detect pockets only
with ~60% accuracy (Zhao et al., 2020). Advances in this field
will reduce the dependency on expert manual analysis of
structures and pockets.

4.1 Future Advances
Drugsniffer will also be improved by development of advances
in de novo molecule production (where limitations include
wall clock run time and molecule synthesizability and utility),
molecular similarity search (where current molecule-centric
approaches fail to account for pocket-specific interaction
profiles), and docking-based affinity prediction (where re-
scoring methods produce only modestly enrichment for
actives vs. decoys (see Figure 3) and may not generalize
well to structures that are not represented in the training
set). Drugsniffer will be expanded by including molecular
dynamics simulations to consider multiple conformations of
a pocket region and refining binding energy estimation of
shortlisted ligands. It should be emphasized that the scope of
the drugsniffer pipeline is to identify possible ligands with high
enrichment factors. Users should carry out such MD or QM
studies on the possible ligands predicted by the drugsniffer for
a more accurate prediction of binding affinity or to investigate
the effect of protonation states in binding. Due to their
approximate nature, docking forcefields are insensitive to
such details.
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