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Background: Routinely collected healthcare data such as administrative claims and
electronic health records (EHR) can complement clinical trials and spontaneous reports to
detect previously unknown risks of vaccines, but uncertainty remains about the behavior of
alternative epidemiologic designs to detect and declare a true risk early.

Methods: Using three claims and one EHR database, we evaluate several variants of the
case-control, comparative cohort, historical comparator, and self-controlled designs
against historical vaccinations using real negative control outcomes (outcomes with no
evidence to suggest that they could be caused by the vaccines) and simulated positive
control outcomes.

Results:Most methods show large type 1 error, often identifying false positive signals. The
cohort method appears either positively or negatively biased, depending on the choice of
comparator index date. Empirical calibration using effect-size estimates for negative
control outcomes can bring type 1 error closer to nominal, often at the cost of
increasing type 2 error. After calibration, the self-controlled case series (SCCS) design
most rapidly detects small true effect sizes, while the historical comparator performs well
for strong effects.

Conclusion: When applying any method for vaccine safety surveillance we recommend
considering the potential for systematic error, especially due to confounding, which for
many designs appears to be substantial. Adjusting for age and sex alone is likely not
sufficient to address differences between vaccinated and unvaccinated, and for the cohort
method the choice of index date is important for the comparability of the groups. Analysis
of negative control outcomes allows both quantification of the systematic error and, if
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desired, subsequent empirical calibration to restore type 1 error to its nominal value. In
order to detect weaker signals, one may have to accept a higher type 1 error.

Keywords: vaccine safety, routinely collected data, adverse event, surveillance, methods

INTRODUCTION

Vaccines are a critical part of the public health response to
communicable disease. Given the extensive rate of vaccination
among the general population, including otherwise healthy
individuals, considerable emphasis is placed on ensuring
vaccine safety. Post-marketing safety surveillance to quickly
and efficiently identify potential risks, is therefore critical to
ensure rare events not detectable in pre-market clinical trials
due to limited sample size are detected early to maintain public
confidence. Regulators frequently rely on spontaneous reports of
safety concerns with vaccines; however, these data are often
underreported (Rosenthal and Chen, 1995) and lack accurate
denominator information for calculation of population rates of
disease (Black et al., 2009). It is, therefore, of critical importance
that alternate data are used to implement rapid and rigorous
identification of safety signals associated with vaccines.

Routinely collected healthcare data such as administrative
claims and electronic health records (EHRs) may offer
information that is complementary to clinical trials and
spontaneous reports. Although these data were not collected
for the purpose of safety surveillance, several epidemiological
designs for analyzing longitudinal healthcare data to this end have
been proposed. Some of these methods were proposed as ‘signal
generation’ methods, while others have been considered for
‘signal confirmation’ (Mesfin et al., 2019), where the main
distinction seems to be the complexity of the method and its
ability to scale from a single vaccine-outcome pair to many.
However, recent developments in large-scale analytics such as
large-scale propensity scores (PS) (Tian et al., 2018), and open-
source analytics software like that developed by the Observational
Health Data Sciences and Informatics (OHDSI) (Hripcsak et al.,
2015), mean the distinction between signal generation and
confirmation has become blurred. It is, for example, perfectly
feasible to use propensity score adjustment on a large scale, and,
therefore, to use it efficiently for signal generation.

Given the current coronavirus disease 2019 (COVID-19)
pandemic and mass vaccination, there is great interest in how
best to monitor the safety of these vaccines and establish efficient
signal generation. Prior research has shown that the four most
commonly used epidemiological designs in vaccine safety
surveillance were cohort studies, case-control studies, self-
controlled case series (SCCS), and self-controlled risk-intervals
(SCRI) (Leite et al., 2016; Mesfin et al., 2019). One simulation
study comparing the four designs indicated cohort study designs
had the best performance in the sequential analysis of vaccine
safety surveillance for the purpose of early signal detection, with
the lowest false positive rate, highest empirical power, and
smallest risk estimate bias (McClure et al., 2008). The SCCS
and SCRI study designs were also efficient alternatives. This
study, however, did not account for the potential for

misclassification or confounders, such as age or seasonal
effects. Another simulation study, focusing more on effect size
estimation than signal detection, used the cohort design as a
benchmark, concluding that the estimates of the case-control,
SCCS and SCRI were within 5% of the true risk parameters
(Glanz et al., 2006). Of the four study designs, the case-control
estimates were biased by fixed confounding and less precise.
While the estimates of the SCCS may be biased by unadjusted
seasonal confounding, it was found to be an efficient alternative to
the cohort study design, with the additional ability to avoid
unmeasured between-person confounding by its self-controlled
nature.

As described in full in our companion paper (Lai et al., 2022),
there is, however, a research gap on whether the findings from
these simulation studies would apply to real-world data and their
implications for speed of signal detection. To address this, we
used data from three insurance claims databases and one EHR
database from the United States to evaluate and compare a
selection of safety surveillance methods. We studied the
association between retrospective vaccinations and real
outcomes assumed not to be causally related to vaccines
(negative control outcomes), as well as imputed positive
controls (outcomes simulated to be caused by the vaccines) to
evaluate method performance. The study designs used differ in
their exact causal estimate, but are nevertheless used to
accomplish the same clinical goal, to provide credible evidence
of treatment adverse effects as rapidly as possible, and they can be
assessed using similar statistical metrics, such as type 1 and type 2
error rates. We therefore carried out our performance
comparison across these variable designs, in keeping with
previous studies from other groups (Glanz et al., 2006;
McClure et al., 2008).

MATERIALS AND METHODS

Vaccines of Interest
Our evaluation focuses on six existing (groups of) vaccines,
representing different scenarios, such as a response to a
pandemic, seasonal vaccinations, and continuous vaccination
programs. We follow each vaccine for specific time periods
(start date to end date), as shown in Table 1. For seasonal flu,
we included analyses for all vaccines used during that season
combined, as well as separate analyses for specific flu vaccines.
For some methods, a period prior to the vaccine study period
(historic start to historic end date) is used to estimate the historic
incidence rate. Codes to define each vaccine group can be found
in the Supplementary Materials. We did not apply any exclusion
or inclusion criteria on the vaccine groups, other than requiring
exposure to the vaccine, and restricting the vaccination date to the
periods listed in Table 1. All methods except the historical
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comparator design further required at least 365 of continuous
observation prior to vaccination.

The varicella-zoster and Human papillomavirus (HPV)
vaccines require two doses. In this paper, we do not stratify by
dose; anyone receiving a second dose is included in the analysis
twice, with separate index dates for the two vaccinations.

Negative Control Outcomes
Negative controls are outcomes for which there is no evidence to
suggest that they could be causally related to any of the vaccines,
and, therefore, ideally would not be flagged as a signal by a safety
surveillance system. A single set of negative control outcomes was
defined for all six vaccine groups. To identify negative control
outcomes that match the severity and prevalence of suspected
vaccine adverse effects, a candidate list of negative controls was
generated based on similarity of prevalence and percent of
diagnoses that were recorded in an inpatient setting (as a
proxy for severity). Manual review of this list by clinical
experts created the final list of 93 negative control outcomes
(see Supplementary Materials). Negative control outcomes are
defined as the first occurrence of the negative control concept or
any of its descendants.

Imputed Positive Control Outcomes
Positive controls are outcomes known to be caused by vaccines,
and ideally would be detected as signals by a safety surveillance
system as early as possible. However, real positive controls are
problematic for various reasons (Schuemie et al., 2018b). First,
vaccine adverse effects that are well established are rare. Second,
even when an effect is established, the magnitude is never known
with precision. Third, for well-established adverse effects, actions
are often taken to mitigate the risk, such as careful monitoring or
even restricting use of the vaccine, masking these effects in real-
world data. In our study, we therefore do not use real positive
controls. To still assess the type 2 error one could expect for a
given method, we instead use a simple simulation approach: for
every negative control effect-size estimate produced by a method
in a database, we impute three positive controls by multiplying
the estimated effect size by 1.5, 2, and 4 respectively. For example,
if for a negative control outcome (having true effect size = 1) a
case-control design produces an odds ratio of 1.1, we can impute a
positive control estimate (having true effect size = 1.5) for that
design as 1.1 * 1.5 = 1.65. This simulation approach makes strong
assumptions about the nature of the systematic error, most
importantly that systematic error does not change as a
function of true effect size.

Data Sources
This study uses data from each of the following four US
observational healthcare databases:

The IBM MarketScan Commercial Claims and Encounters
(CCAE) database contains adjudicated health insurance claims
(e.g., inpatient, outpatient, and outpatient pharmacy) from large
employers and health plans who provide private healthcare
coverage to employees, their spouses and dependents.

The IBM MarketScan Medicare Supplemental Database
(MDCR) database contains adjudicated health insurance
claims of retirees with primary or Medicare supplemental
coverage through privately insured fee-for-service, point-of-
service or capitated health plans.

The IBM MarketScan Multi-State Medicaid Database
(MDCD) database contains adjudicated health insurance
claims for Medicaid enrollees from multiple states and
includes hospital discharge diagnoses, outpatient diagnoses
and procedures, and outpatient pharmacy claims.

The Optum® de-identified Electronic Health Record dataset
(Optum EHR) contains clinical information, prescriptions, lab
results, vital signs, bodymeasurements, diagnoses and procedures
derived from clinical notes from both inpatient and outpatient
environments using natural language processing.

More details are provided in the supplementary materials.
All data were converted to the Observational Medical
Outcomes Partnership (OMOP) Common Data Model
v5.3.1. Data quality was assessed using the Data Quality
Dashboard (Blacketer et al., 2021). These four data sources
have been used in hundreds of published studies. The
MarketScan databases were found to be of high quality in a
specific area of interest (Kulaylat et al., 2019).

Evaluated Method Variations
The following method variations were evaluated, each using a
time-at-risk (TaR) window of 1–28 days relative to the date of
vaccination (both first and second dose, where applicable). For
more details, see the Supplementary Materials.

- Case-control: The case-control design compares cases
(those with the outcome) to controls (those that do not
have the outcome on or before the index date), and looks
back in time for exposures to a vaccine. We select up to four
controls per case. We evaluate two variations:
○ Age and sex matched controls, with the index date of

controls set to the date of the outcome of the case to which
they are matched.

TABLE 1 | Exposures of interest.

Exposure Name Start Date End Date History Start Date History End Date

H1N1pdm vaccination 01-09-2009 31-05-2010 01-09-2008 31-05-2009
Seasonal flu vaccination (Fluvirin) 01-09-2017 31-05-2018 01-09-2016 31-05-2017
Seasonal flu vaccination (Fluzone) 01-09-2017 31-05-2018 01-09-2016 31-05-2017
Seasonal flu vaccination (All) 01-09-2017 31-05-2018 01-09-2016 31-05-2017
Zoster vaccination (Shingrix) 01-01-2018 31-12-2018 01-01-2017 31-12-2017
HPV vaccination (Gardasil 9) 01-01-2018 31-12-2018 01-01-2017 31-12-2017
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○ Age and sex adjusted, using random controls, with the
index dates of the controls sampled from the distribution
of outcome dates of the cases.

- (Concurrent) Cohort method: A comparative cohort study
most closely emulates a randomized clinical trial, comparing
the target cohort (those vaccinated) to some comparator
(non-vaccinated) cohort. We define two types of
comparator cohorts: one having an outpatient visit on the
index date and another having a random date as the index
date. Both types of comparator cohorts were restricted to the
study periods defined in Table 1, and for each simulated
look at the data we only sampled from data before that look.
For unadjusted analyses we sample a comparator cohort of
equal size to the vaccinated cohort, for adjusted comparisons
we sample cohorts of four times the size of the vaccinated
cohort (two times for H1N1pdm) to account for loss of
power due to adjustment. We exclude subjects from the
comparator cohort who had a vaccination for the same
disease as the target vaccine within the vaccine study period,
on or before the index date. We do not exclude subjects with
a diagnose of the disease targeted by the vaccine. Propensity
models use a large generic set of covariates, including
demographics and covariates per drug, condition,
procedure, measurement, etc., and are fitted using large-
scale regularized regression as described previously (Tian
et al., 2018). Per-month PS matching uses only the
vaccinated during that month and their comparators to
create a PS and perform matching, and this matching is
preserved in subsequent months. We evaluate 10 variations:
○ Unadjusted, outpatient visits as comparator index.
○ PS matching, outpatient visits as comparator index.
○ Unadjusted, random days as comparator index.
○ PS matching, random days as comparator index.
○ PS stratification, outpatient visits as comparator index.
○ PS stratification, random days as comparator index.
○ PS weighting, outpatient visits as comparator index.
○ PS weighting, random days as comparator index.
○ Per-month PS matching, outpatient visits as

comparator index.
○ Per-month PS matching, random days as

comparator index.

The per-month PS matching variations were only executed for
the H1N1 vaccines for computational reasons.

- Historical comparator cohort design: Traditionally,
vaccine surveillance methods compute an expected count
based on the incidence rate estimated during some historic
time period, for example in the years prior to the initiation of
the surveillance study. We use the historic period indicated
in Table 1. Because this method proved sensitive to changes
in coding practice over time, we defined variants marked as
‘filtered’ below where we filtered outcomes where the change
in overall incidence rate was greater than 50% when
comparing the historic period to the surveillance period
so far. In total, we evaluate eight variations:
Unadjusted, using the entire historic period.

Age and sex adjusted, using the entire historic period.
Unadjusted, using the TaR after a random outpatient visit
during the historic period
Age and sex adjusted, using the TaR after a random
outpatient visit during the historic period
Unadjusted, using the entire historic period, filtered.
Age and sex adjusted, using the entire historic period,
filtered.
Unadjusted, using the TaR after a random outpatient visit
during the historic period, filtered
Age and sex adjusted, using the TaR after a random
outpatient visit during the historic period, filtered

- Self-Controlled Case Series (SCCS)/Self-Controlled Risk
Interval (SCRI): The SCCS and SCRI designs are self-
controlled, comparing the TaR (the time shortly following
the vaccination) to some other time in the same patient’s
record. The SCCS design uses all available patient time in the
vaccine study period when not at risk as the control time
(Whitaker et al., 2006). To account for the fact that people
are less likely to be vaccinated directly after a serious health
outcome, the 30 days prior to vaccination are removed from
the analysis. Adjustment for age and season uses 5-knot
bicubic splines. The SCRI design uses a pre-specified control
interval relative to the vaccination date as the control time
(Leite et al., 2016; Mesfin et al., 2019). This unexposed time
can be either before or after the TaR. We evaluate five
variations:
○ Unadjusted SCCS excluding a 30-days pre-vaccination

window
○ Age and season adjusted SCCS excluding a pre-

vaccination window
○ SCRI with a control interval of 43 to 15 days prior to

vaccination
○ SCRI with a control interval of 43–71 days after to

vaccination
○ Unadjusted SCCS excluding all pre-vaccination time, so

including all time after day 28 (the end of the TaR) as
control time.

Adjustments for Multiple Testing and
Systematic Error
We evaluate the aforementioned method variants in two
approaches with respect to accumulated data: The first uses all
data collected in the entire study periods mentioned in Table 1.
The second evaluates methods at each calendar month in those
periods, where for each month the data collected in that month
and those preceding it are used to compute estimates. In the
second approach, to adjust for multiple testing when testing the
same hypothesis sequentially we apply maximum sequential
probability ratio testing (MaxSPRT) to all methods by
computing the log likelihood ratio (LLR) as well as a critical
value for the observed power and alpha of 0.05 (Kulldorff et al.,
2011). Critical values were computed using the “Sequential” R
package version 3.3.1, using the Poisson model for the historical
comparator design, and the binomial model for all other designs
(Silva and Kulldorff, 2021).
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To adjust for systematic error, we apply an empirical
calibration procedure described elsewhere (Schuemie et al.,
2014; Schuemie et al., 2018a) that attempts to restore p-values
and LLRs to nominal (e.g. ensuring that after calibration
approximately 5% of negative controls have p < 0.05). In
short, this procedure first estimates the distribution of
systematic error, assumed to be Gaussian, using the
observed estimates for negative controls. Using the
estimated distribution, we then generate calibrated p-values
and LLRs considering both random and systematic error.
Typically, but not necessarily, the calibrated p is higher
than the nominal p, reflecting the problems unaccounted
for in the standard procedure (such as unmeasured
confounding, selection bias, and measurement error) but
accounted for in the calibration. For the purpose of this
evaluation, we apply a leave-one-out approach, calibrating
the estimate for a control outcome using the systematic
error distribution fitted on all control outcomes except the
one being calibrated.

Performance Metrics
To evaluate timeliness, we use the results where estimates are
computed at each calendar month, using the data up to and
including that month. For each database—vaccine
group—outcome—method—period combination we
compute the uncalibrated and calibrated effect-size estimate
(odds ratio, hazard ratio or incidence ratio) with 95%
confidence interval (CI) and one-sided p-value, as well the
LLR and MaxSPRT critical value.

Based on these statistics, for each database—vaccine
group—method, we derive the systematic error distribution
for negative controls (Schuemie et al., 2014), type 1 error (how
often the null is rejected when the null is true), type 2 error
(how often the null is not rejected when the null is not true),
and time (months) to 50% sensitivity (i.e., 50% of positive
controls flagged as statistically significant) stratified by true
effect size. Note that we changed this metric from the initially
intended 80% sensitivity, which corresponds to a more
common target, to 50% sensitivity, because almost no
method and database achieved 80% sensitivity in the study
period. Plots showing time to 80% sensitivity are included in
the Supplementary Materials.

Open Science
The protocol as well as the analytic source code used to execute
this study are available at https://github.com/ohdsi-studies/
Eumaeus. The protocol has also been registered at ENCEPP
with registration number EUPAS40259.

RESULTS

Where feasible, we execute all 25 method variations on all six
vaccine groups, negative and positive controls, and time periods
against the four databases, briefly characterized in Table 2, thus
producing a total of 1,380,672 effect size estimates. From these we
derive a large set of performance metrics, which vary depending
on choices of which control outcomes and data to include in the
evaluation. Below we present several examples of our results,
starting with a single control, single database and two analysis
variants, and gradually increasing the complexity. However, it is
infeasible to cover the full set of results, and instead we refer the
reader to the Supplementary Materials, as well as our prior paper
specifically on the results for the historical comparator design (Li
et al., 2021).

An Example Control Outcome for One
Vaccine
We illustrate our experiment with a single negative control
outcome: H1N1pdm vaccines and contusion of toe. We study
this relationship in the Optum EHR database, using all 9 months
of data in our study period (September 2009 toMay 2010), during
which we observe 156,467 vaccinations. Our TaR is 1–28 days
relative to the date of vaccination.

We can estimate the effect size using an unadjusted historical
comparator design, using the entire historic period (September
2008 to May 2009) to estimate the background rate. During this
historic period, the observed incidence rate (IR) in the Optum
EHR database is 0.29 per 1,000 patient years. Based on the
number of H1N1pdm vaccinations and TaR, this generates an
expected count of 3.4. We observe 14 cases during TaR, leading to
an incidence rate ratio (IRR) of 4.08 (95% CI: 2.30-6.62) and a
LLR of 9.12, which exceeds the critical value of 1.73 computed for
this analysis.

TABLE 2 | Database characteristics and vaccination counts during the vaccination study period

Characteristic CCAE MDCD MDCR Optum EHR

Total Number of Subjects 156,628,301 31,355,646 10,180,158 97,936,862
Fraction female 51.10% 56.20% 55.30% 53.60%
Fraction male 48.90% 43.80% 44.70% 46.40%
H1N1pdm vaccinations 753,592 206,865 12,913 156,974
Seasonal flu vaccinations (Fluvirin) 119,242 15,288 822 14,829
Seasonal flu vaccinations (Fluzone) 957 3,358 34,414 355,593
Seasonal flu vaccinations (All) 3,517,021 1,237,934 264,636 2,617,230
1st HPV vaccinations (Gardasil 9) 376,795 237,008 8 244,664
2nd HPV vaccinations (Gardasil 9) 49,543 15,156 0 29,579
1st Zoster vaccinations (Shingrix) 148,541 11,431 52,877 221,938
2nd Zoster vaccinations (Shingrix) 72,518 5,405 30,364 64,187
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FIGURE 1 | Effect size estimates, 95% CI, and LLRs for one example control. We use each analysis variation to estimate the causal effect size of H1N1pdm
vaccination on the risk of “contusion of toe” in the Optum EHR database, using the data across all 9 months. The true effect size is 1, as indicated by the dashed line. ‘*’
and filled dots indicates the LLR exceeds the critical value. CI = Confidence Interval, LLR = Log Likelihood Ratio, TaR = Time-at-Risk.

FIGURE 2 |Negative control outcome effect size estimates and fitted systematic error distributions for four example method variations. In the top row, dots indicate
the estimated effect size (x-axis) and corresponding standard error (y-axis), which is linearly related to the width of the confidence interval. Estimates below the red
dashed line have a one-sided p-value < 0.05, and filled dots indicate the LLR exceeds the CV. The bottom row shows the systematic error distributions fitted using the
negative control estimates above, for the maximum likelihood estimates of the parameters (red area), and the 95% credible interval (pink area). The historical
comparator variant adjusts for age and sex, and uses the TaR after a historic outpatient visits to estimate the background rate. The case-control design matches up to 4
controls per case on age and sex. The cohort method design uses PS weighting and outpatient visits as comparator index date. The SCCS design adjusts for age and
season and excludes a pre-vaccination window of 30 days from analysis. CV = Critical Value, LLR = Log Likelihood Ratio, SCCS = Self-Controlled Case Series, SD =
Standard Deviation, PS = Propensity Score.
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Alternatively, we could estimate the effect size using the SCCS
design, adjusting for age and season, and excluding a pre-
vaccination window from analysis. The total number of cases
observed during the study period is 2,770. For cases that were
vaccinated, 116 experienced the outcome outside the TaR, and 14
experienced the outcome during the TaR, leading to an IRR of
1.07 (95% CI: 0.59-1.81) and LLR of 0.03, which does not exceed
the critical value of 1.73.

These results demonstrate that using different methods to
answer the same question with the same data can lead to
heterogeneous estimates, and potentially to different regulatory
decisions. This is further illustrated in Figure 1, showing the
effect size estimates of all method variations for our example
negative control outcome (i.e. true effect size is assumed to be 1).
Note that some methods were unable to produce an estimate, for
various reasons. For example, the unadjusted cohort method
design using a random-day comparator found no occurrences
of the outcome during the TaR in the comparator.

Extending the Example to all Negative
Control Outcomes for One Vaccine
This process was repeated for all negative control outcomes. The
top row in Figure 2 shows a compact representation of the effect
size estimates of four example method variations for the negative
controls, where the true effect size is assumed to be 1.

Figure 2 shows that some methods tend to overestimate the
effect size, rejecting the null when the null is assumed true more
often than expected by chance alone (5% at an alpha of 0.05).
Because we have a large collection of negative controls, we can use
these to fit a systematic error distribution as shown in the bottom
row of Figure 2. One way to think of this distribution is that it is
the distribution needed to explain the difference between the

observed spread of the negative control estimates and expected
spread based on random error alone. If the spread can be
completely explained by random error as quantified by each
method’s standard error, the systematic error distribution will
have a mean and standard deviation of 0. Another way to think of
this distribution is that for a future study using the same method
and data, but a new outcome, the systematic error in that study
will draw from this systematic error distribution.

Systematic Error Based on Control
Outcomes Across Vaccines and Methods
Applying this procedure to all method variations and vaccines in
the Optum EHR database produces Figure 3. For the other
databases please see the Supplementary Materials. As
illustrated by the plot, case-control methods and historical
comparator analyses tend to be positively biased, with many
negative control outcomes identified as potential safety signals in
most scenarios before calibration. The cohort method appears
either positively or negatively biased, depending on the choice of
comparator index date. SCCS/SCRI seem less biased, with
systematic error more evenly and more narrowly distributed
around the null.

Type 1 and 2 Error Tradeoffs
In addition to the systematic error inherent to a method applied to a
database for a particular exposure, we consider the randomerror, or in
other words the statistical power of a method. The estimates
computed for our imputed positive control outcomes allow us to
evaluate how often the null is rejected when the null is false, and thus
compute type 2 error. Both type 1 and 2 error are shown in Figure 4.

Comparing type 1 and 2 error of different method variations
can be complicated when both vary. Moreover, type 1 and 2 error

FIGURE 3 | Fitted systematic error distributions. For each method variation and vaccine group, the systematic error distribution fitted on the negative control
estimates in the Optum EHR database are shown. The red area indicates the maximum likelihood estimates of the distribution parameters. The pink area indicates the
95% credible interval. HPV = Human papillomavirus, PS = Propensity Score, SCCS = Self-Controlled Case Series, SCRI = Self-Controlled Risk Interval, TaR = Time-at-
Risk.
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FIGURE 4 | Type 1 and 2 error before and after empirical calibration. For each method variation and vaccine group, the type 1 and 2 error before and after empirical
calibration in the Optum EHR database are shown. The x-axis indicates the type 1 error (higher values to the left) and type 2 error (higher values to the right), based on the
(calibrated) one-sided p-value. The dashed line indicates nominal type 1 error of 5%. HPV = Human papillomavirus, PS = Propensity Score, SCCS = Self-Controlled Case
Series, SCRI = Self-Controlled Risk Interval, TaR = Time-at-Risk.

FIGURE 5 | Time to 50% sensitivity after calibration. For eachmethod variation and vaccine group, the number of months of data needed to achieve 50% sensitivity
based on the calibrated MaxSPRT in the Optum EHR database are shown, stratified by true effect size of the positive controls. HPV = Human papillomavirus, PS =
Propensity Score, SCCS = Self-Controlled Case Series, SCRI = Self-Controlled Risk Interval, TaR = Time-at-Risk.
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are interchangeable, for example by changing the alpha threshold,
presenting a moving target. To facilitate the comparison of
methods, we apply empirical calibration, a process that uses
the fitted systematic error distribution to restore the type 1
error to its nominal value (of 5% at an alpha of 0.05)
(Schuemie et al., 2014). This typically increases type 2 error,
depending on howmuch systematic error needs to be adjusted for
in the calibration. Figure 4 shows the type 1 and 2 error both
before and after empirical calibration of the p-value. Overall,
SCCS/SCRI and cohort methods provide the best combination of
type 1 + type 2 error, whilst historical comparison and case-
control lead to much higher type 1 error in most scenarios.

Timeliness
To evaluate timeliness, we divided our study periods into 1-
month intervals. For each month we executed the method
variations on the data up to and including that month. We
used MaxSPRT to account for the multiple testing of the same
hypotheses each the month (Kulldorff et al., 2011). To facilitate
comparison between methods we applied empirical calibration to
restore type 1 error to nominal, and evaluate how many months
must pass before type 2 error drops below 50%, in other words
until 50% of the positive controls exceed our alpha threshold of
0.05. Figure 5 depicts the results of our timeliness analyses.
Overall, the SCCS analyses were the most timely methods in
most scenarios. Historical comparison methods were most timely
in some cases, e.g. seasonal flu vaccination, and for larger true
effect sizes.

DISCUSSION

Key Results
Most methods show large type 1 error, often rejecting the null
when the null is true. This is likely due to the systematic error
inherent to observational research; probably not all confounding
has been adequately adjusted for, and there may be measurement
error in both exposures and outcomes as well as selection biases.
When using negative controls to quantify this systematic error,
we found it to be substantial in the case-control, historical
comparator, and unadjusted cohort method designs, but much
less in the other method variations. We hypothesize that the main
reason for the systematic error may be due to uncontrolled
confounding, caused by important differences in the
comparator group versus the vaccinated group and therefore
the underlying risk of the outcomes. Many of the positively
biased analyses were unadjusted or only adjusted for age and
sex. It appears these analyses missed important differences in
which the vaccinated group is more vulnerable to disease
outcomes of any kind, including outcomes potentially not
caused by the vaccine (i.e. negative control outcomes). This
would explain why self-controlled designs, such as the SCCS
and SCRI, are less biased, because these are less vulnerable to
between-person confounding.

The cohort method appears either positively or negatively
biased, depending on the choice of comparator index date. If
the index date is required to have an outpatient visit, the bias

is negative, probably because the comparator group at index
date is sicker or at least actively participating in the health
care system and being captured in the database. In contrast,
when using a random day as comparator index date the bias
tends to be positive, possibly because the comparator group is
healthier or may not seek health care in a way captured in the
data. Also interesting is the fact that the cohort method
appears to remain biased even when using PS that includes
not only age and sex but all other variables available in the
data, suggesting important confounders are completely
missing from the data.

The varying levels of type 1 error hinder the ability to compare
methods. Amethod showing low type 2 error, flaggingmost positive
controls as signals, may be of limited interest if it also has high type 1
error, flaggingmost negative controls as signals. One way to facilitate
comparison is by applying empirical calibration. Empirical
calibration uses the systematic error distribution inferred from
the negative control estimates to restore type 1 error to its
nominal value. Depending on the amount of observed systematic
error, this generally leads to increased type 2 error. After applying
empirical calibration, results are mixed. For large effect sizes (e.g.,
incidence rate ratio = 4), the historical comparator method is
quickest to detect all positive controls, where this method’s
efficient design appears to compensate for and overcome its
inherent systematic error. Smaller effect sizes can only be
detected using methods that were already fairly unbiased to begin
with, such as the SCCS design. Even in large databases such as
Optum EHR and CCAE, nomethod was clearly capable of detecting
positive controls with very small outcomes at an alpha of 0.05. To
allow detection of signals with such weak causal association in these
databases will therefore require accepting a larger type 1 error. Larger
databases or combinations of databases may lead to better detection
performance, achieving shorter time to detection at lower type 1
error rates. Similarly, data with more complete information on
important confounders, or data of a population where less
confounding exists to begin with would improve performance,
although it is unclear what type of data would meet these
criteria. The four databases evaluated here showed comparable
systematic error (see Supplementary Materials).

The results of our evaluation using real-world data agree to
some extent to those in prior simulation studies, where SCCS was
also observed to be both efficient and mostly unbiased (Glanz
et al., 2006; McClure et al., 2008). Although these prior studies
indicated their unadjusted SCCS analysis was vulnerable to bias
due to seasonal effects, in our study, SCCS analyses that did and
did not adjust for seasonality both showed similar good
performance. In contrast to the prior studies, we found the
cohort method to be biased, leading to high false positive
rates, possibly due to real data containing more unmeasured
confounding than was simulated in those prior studies.

Strengths and Limitations of This Study
One of the main strengths of this study is the use of real-world
data in addition to simulation of limited aspects (of positive
controls), allowing the evaluation of methods in realistic
scenarios. By using several different healthcare databases, we
further improve the generalizability of our results.
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Another strength is the inclusion ofmanydifferent analysis variants,
many of which have been used or proposed to be used for real vaccine
safety surveillance studies. This includes more advanced designs,
including SCCS adjusting for age and season using splines, and
comparative cohort analyses using large-scale propensity scores.

This research is limited to routinely collected health data in the
form of electronic medical records or health claims, but does not
necessarily apply to spontaneous reports and similar
databases.Whereas our negative control outcomes reflect real
confounding, both measured and unmeasured, as well as
measurement error, our positive controls simply assume that
the same systematic error also applies when the true effect size is
greater than 1. In reality some forms of bias may change as a
function of the true effect size, and this is not reflected in our
imputed positive controls and therefore our type 2 error
estimates. For example, if the TaR used in a method does not
match the time when the risk of the outcome is increased by the
vaccine, this can lead to bias towards the null, which is not
reflected in our positive controls.

One final limitation of our study is that it included only
vaccines for certain diseases in the past, and our results may
not generalize to future vaccines for different diseases. For
example, there are key features that are different between the
situation surrounding the vaccines used as examples in this study
and COVID-19 vaccines, such as the effects of nation-wide
lockdowns, constraints in supply leading to highly targeted
vaccinations, and decrease in regular patient care. For many
vaccines, but especially for COVID-19 vaccines, vaccinations
may take place outside of regular healthcare and may
therefore not be completely captured in the data.

CONCLUSION

When applying any method for vaccine safety surveillance we
recommend considering the potential for systematic error,
especially due to confounding, which for many designs
appears to be substantial. Potential bias is important as the
implications for time to detection are not immediately
obvious, which is why systematic assessment is important.
Adjusting for age and sex alone is likely not sufficient to
address the differences between vaccinated and unvaccinated,
and the choice of index date plays an important role in the
comparability of the groups. Inclusion of negative control
outcomes allows both quantification of the systematic error
and, if so desired, subsequent empirical calibration to restore
type 1 error to its nominal value. To detect weaker signals, one
may have to accept a higher type 1 error, either by not calibrating
(in which case type 1 error will be higher than nominal but
unknown), or by calibrating and raising the alpha threshold.

What levels of type 1 and 2 error are acceptable when aiming
for early but confident detection will depend on many factors. A
large number of false positives may erode societal confidence in a
vaccine’s safety without due cause, and exceed the downstream
capacity of scientific and regulatory bodies to distinguish true
positives from false positives. But false negatives, missing
important safety signals, could have significant human cost.
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