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Discovery of disease biomarker based on untargeted metabolomics is informative for
pathological mechanism studies and facilitates disease early diagnosis. Numerous of
metabolomic strategies emerge due to different sample properties or experimental
purposes, thus, methodological evaluation before sample analysis is essential and
necessary. In this study, sample preparation, data processing procedure and
metabolite identification strategy were assessed aiming at the discovery of biomarker
of breast cancer. First, metabolite extraction by different solvents, as well as the necessity
of vacuum-dried and re-dissolution, was investigated. The extraction efficiency was
assessed based on the number of eligible components (components with MS/MS data
acquired), which was more reasonable for metabolite identification. In addition, a simplified
data processing procedure was proposed involving the OPLS-DA, primary screening for
eligible components, and secondary screening with constraints including VIP, fold change
and p value. Such procedure ensured that only differential candidates were subjected to
data interpretation, which greatly reduced the data volume for database search and
improved analysis efficiency. Furthermore, metabolite identification and annotation
confidence were enhanced by comprehensive consideration of mass and MS/MS
errors, isotope similarity, fragmentation match, and biological source confirmation. On
this basis, the optimized strategy was applied for the analysis of serum samples of breast
cancer, according to which the discovery of differential metabolites highly encouraged the
independent biomarkers/indicators used for disease diagnosis and chemotherapy
evaluation clinically. Therefore, the optimized strategy simplified the process of
differential metabolite exploration, which laid a foundation for biomarker discovery and
studies of disease mechanism.
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INTRODUCTION

Metabolites have been realized to play an important role in the onset of diseases, and are of great
significance for disease diagnosis and prevention. Metabolomics is attracting increasing attentions in
various areas, such as pathological mechanism studies, pathway analysis, and the exploration of
novel biomarkers for diseases, including cancers (Armitage and Southam, 2016; Kumar and Misra,
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2019; Liu et al., 2021; Long et al., 2021). According to different
research goals, there comes up with untargeted metabolomics and
targeted metabolomics (Jasbi et al., 2019; Casari et al., 2021; Baek
et al., 2022; Harrieder et al., 2022). Targeted metabolomics
concentrates more on the analysis of defined metabolites,
which has limited scope but achieves enhanced detection
sensitivity and enables the absolute quantification with the
application of standards (Roberts et al., 2012; Cai et al., 2015;
Zhou and Yin, 2016). Untargeted metabolomics, on the other
hand, has superiority in high-throughput detection, which offers
a comprehensive and in-depth insight of metabolome profiling
(Yuan et al., 2012; Heiles, 2021) and is regarded as the basis for
biomarker discovery.

Mass spectrometry (MS) has been regarded as a powerful
analytical technique owing to its high detection speed and
sensitivity. Its coupling with chromatographic separation, such
as gas chromatography and liquid chromatography (LC), has
been widely used for metabolomic analysis by providing both
molecular weight and structural information (Liu et al., 2013;
Alonso et al., 2015; Nash and Dunn, 2019; Hou et al., 2020;
Harrieder et al., 2022). Efforts have been done in method
development for sample preparation, chromatographic
separation and derivatization-based detection to improve the
metabolome coverage (Yuan et al., 2018; An et al., 2021; Meng
et al., 2021). Besides, computational approaches are also
dramatically developed to assist data interpretation and
metabolite global annotation (Bonini et al., 2020; Chen et al.,
2021; Duehrkop et al., 2021).

Breast cancer has become one of the leading causes threating
health in women and its incidence is increasing within recent
years. With the development of new therapeutic strategies, the
mortality of breast cancer has gradually reduced (DeSantis et al.,
2019). Metabolomics has been widely applied for metabolic
pathway analysis and biomarker discovery for breast cancer
based on the analysis of different biological samples, including
cell lines, plasma, serum, tissues, urine and saliva (Tsutsui et al.,
2013; Tenori et al., 2015; Zhong et al., 2016; Porto-Figueira et al.,
2018), which facilitates the early diagnosis, treatment target
exploration and mechanism studies of the disease (Günther,
2015; McCartney et al., 2018; Park et al., 2019; Silva et al.,
2019; Long et al., 2021). Methodologies with various sample
preparation steps, detection methods, data processing and
metabolite annotation procedures were developed, upon which
the evaluation is essential before sample analysis due to the
difference of sample property or experimental purpose.
Herein, sample preparation, data processing procedure, and
metabolite identification strategy of untargeted metabolomics
were evaluated and subsequently applied for the analysis of
serum samples of breast cancer. First, metabolite extraction by
different solvents was assessed and evaluation based on the
number of components with MS/MS data acquired (defined as
eligible components) was regarded to be more reasonable in
consideration of metabolite identification. In addition, a
simplified data processing procedure was proposed involving
orthogonal projections to latent structures discriminant
analysis (OPLS-DA) for all detected components, followed up
with a primary screening based on the availability of MS/MS data

and underwent a secondary screening with criteria of VIP, fold
change (FC) and p value. Thus, only differential candidates were
subjected to database search, identification and annotation, which
greatly reduced the data volume and improved the analysis
efficiency. Furthermore, the confidence and accuracy of
metabolite identification were enhanced by comprehensively
considering mass and MS/MS errors, isotope similarity,
fragmentation match and biological source confirmation. On
this basis, the evaluated strategy was applied for the analysis
of serum samples of breast cancer, upon which the discovery of
potential biomarkers would be informative for early diagnosis
and chemotherapeutic evaluation of the disease.

MATERIALS AND METHODS

Chemicals and Reagents
Formic acid (FA) was purchased from Sigma-Aldrich (Saint
Louis, MO, United States). Ultra-pure H2O was prepared by a
Milli-Q PureWater System (Bedford, MA, United States). LC-MS
grade methanol (MeOH) and acetonitrile (ACN) were purchased
from Merck (Darmstadt, Germany).

Clinical Sample Collection and Sample
Preparation
Serum samples were collected from Huashan Hospital, Fudan
University and stored at −80°C before analysis. The research
protocol was approved by the Ethical Committee of Huashan
Hospital, Fudan University (KY2021-034), and written informed
consents were provided by all participants.

For sample preparation, 400 μl of designed solvent (pre-cooled
on ice) was mixed with 100 μl of serum sample and followed up
with a 2 min vortex for sufficient extraction and protein
precipitation. The obtained mixture was centrifuged at
15,000 g (5 min at 4°C) and directly stored at 4°C (1 h) to
ensure the complete protein precipitation. Supernatant (200 μl)
was transferred for an additional centrifugation (18,000 g for
5 min at 4°C). Vacuum-dried and re-dissolution by extraction
solvent was performed prior to MS analysis if necessary. Quality
control (QC) sample was prepared by pooling aliquots of each
serum sample investigated in this study, including 58 samples
from breast cancer vs. healthy control and 12 samples from breast
cancer patients before and after chemotherapy. The prepared QC
sample was applied for extraction evaluation and instrumental
performance monitoring.

UPLC-MS
Chromatographic separation was performed by a Waters
ACQUITY I-Class UPLC system equipped with an ACQUITY
UPLC HSS T3 column (2.1 × 100 mm, 1.8 μm, Waters).
Parameters were set as follows: column temperature 40°C; flow
rate of 0.4 ml/min; injection volume of 4 μl; mobile phase A was
H2O containing 0.1% FA and B was ACN. The gradient elution
condition was referenced by previous study (He et al., 2021):
0–1.00 min, 0% B; 1.01–4.00 min, 0–35% B; 4.01–15.50 min,
35–95% B; 15.51–18.00 min, maintaining at 95% B;
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18.01–23.00 min, back to 0% B.MS detection and data acquisition
were performed by a Q-TOF MS (Waters, Xevo, G2-XS QTof) in
both positive and negative ion modes. MS parameters were set as
follows: m/z range at 50–700 Da; capillary voltage at + 3.0 kV or
−2.5 kV for positive or negative ion mode respectively; sampling
cone at 40 V; source temperature at 110°C; desolvation
temperature at 450°C; cone gas at 50 L/h, desolvation gas at
600 L/h. MassLynx (version 4.1, Waters) was used for data
acquisition.

Data Processing
Data processing was performed by Progenesis QI (version 2.0,
Waters; denoted as QI), which mainly contained steps of:
creation of a new experiment; data import; review
alignment; experiment design setup; peak picking; review
deconvolution; compounds identification; review
compounds; and compound statistics. Notably, adduct ion
forms, such as [M + H]+, [M-H]−, [M + Na]+, [M + K]+,
[2M-H]−, and [M + FA-H]−, were all included. Different
adduct ion forms of a same metabolite were automatically
combined to provide an accurate identity. For metabolites
having different adduct ion forms, the one with the highest
MS intensity was selected to represent the abundance.
Databases for metabolite identification and annotation
included Human Metabolome Database (HMDB) (http://
www.hmdb.ca/), MoNA (http://mona.fiehnlab.ucdavis.edu/),
and METLIN (https://metlin. scripps.edu/). Parameters were
set as follows: 10 ppm for precursor ion match; 20 ppm for
fragment ion match; > 80% for the isotope similarity; ≥ 40
score of identification. The MS/MS spectra for potential
biomarkers were manually checked to confirm the assigned
identities. Relative quantification of selected metabolites by QI
was performed by integration of corresponding extracted ion
chromatograms (EICs) and normalized against the total ion
chromatogram (TIC). Manually check of EIC was required to
ensure the accurate peak picking and correct integration.

Statistical Analysis
Components detected were exported by QI and subjected to
EZinfo software (version 3.0, Waters) for OPLS-DA for
statistical difference confirmation. Components with variable
importance calculated based on S-plots (VIP) > 1, p value
<0.05 (student’s t-test) and FC > 1.5 were screened. Notably,
for the same substance detected under different ion modes, the
one with the smallest FC were adapted for further data analysis.
Bioinformatics analysis of assigned differential metabolites,
including pathway analysis and receiver operating
characteristic (ROC) curve, were performed on MetaboAnalyst
(version 5.0) (http://www.metaboanalyst.ca/).

RESULTS AND DISCUSSION

Evaluation of Untargeted Metabolomics
Sample preparation. Metabolite extraction and protein
precipitation by two commonly used solvents, MeOH and
ACN, as well as their mixture (50:50 by volume) were

evaluated. The option of 0.1% FA adoption was also
explored, as well as vacuum-dried concentration and re-
dissolution considering metabolites with low abundance.
The analysis of designed solvent-treated QC samples
resulted to over 800,000 ions in the positive ion mode,
among which ACN-extraction appeared to be the optimal
one. In the negative ion mode, at least 500,000 ions were
detected upon designed extraction conditions, and MeOH/
ACN mixture had a higher efficiency (Figure 1A).
Nevertheless, it was still hesitant to choose one appropriate
solvent while such comparison was rough and inappropriate.
Aiming at metabolite identification, evaluation based on
eligible components was proposed to be more reasonable.
Accordingly, eligible components obtained by designed
conditions were in the range of 1,000–1,700 in the positive
ion mode, among which MeOH-extraction was optimum with
1,659 components having MS/MS data. Similarly, extraction
by designed solvents resulted to eligible components ranging
from 700 to 1,200 in the negative ion mode, among which
MeOH also emerged by having 1,148 components detected
with MS/MS spectra (Figure 1B). Interestingly that no
significant improvement was observed after concentration,
which was probably due to the decomposition of unstable
compounds during the tedious vacuum-dried step. Thus,
MeOH extraction was applied for subsequent serum sample
preparation and the obtained mixture after protein
precipitation was directly subjected to MS analysis without
further treatment. Moreover, the number of components
varied with different extraction solvents further supported
the importance of evaluation before sample analysis.

Data processing procedure. Upon UPLC-MS analysis,
resulted components (considering MS1 data here)
underwent OPLS-DA to ensure the statistical difference
between tested groups. For routine procedure (Figure 2, in
grey dash line), components with MS/MS data were subjected
to database search, metabolite identification and differential
analysis. Such procedure involved annotation and
confirmation for every component, which was informative
for revealing the difference in metabolome profiles and
metabolomic pathways between tested samples. Aiming at
the discovery of biomarker, we proposed a simplified data
processing procedure with improved analysis efficiency. As
shown in Figure 2 (in black solid line), OPLS-DA was applied
for multivariate analysis. Primary screening was performed to
select eligible components, among which differential ones were
further isolated by secondary screening with criteria of p value
<0.05, VIP >1 and FC > 1.5. Thus, instead of massive
identification, only differential candidates were allowed to
subsequent database search and identification, which greatly
narrowed down the data volume for interpretation.

Metabolite identification strategy. For metabolite
identification and annotation, parameters including m/z
error, fragment error, isotope similarity, and fragmentation
match were mainly concerned. Fragmentation match was
performed based on databases including METLIN, MoNA
and HMDB. The former two contained MS/MS spectra that
experimentally collected, while HMDB offered theoretical
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fragmentation based on molecular structures. Metabolite
identification was relied on the Score value from QI, which
comprehensively evaluated the match degree of all above

mentioned parameters. Based on previous study (Hou et al.,
2020), the annotation accuracy and confidence were enhanced
by setting a threshold of Score ≥40 for acceptance, which was

FIGURE 1 | (A) Total number of components (consideringMS1 data) detected with designed conditions; and (B) total number of eligible components detected with
designed conditions. Pos: positive ion mode; neg: negative ion mode.

FIGURE 2 | Data processing procedures. Grey dash line referred to a routine data processing procedure; black solid line referred to the proposed simplified
procedure.
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higher than the one commonly used (≥35). Moreover,
biological source information provided complementary
information for further confirmation, upon which the
structural and biological information was integrated for
identification and annotation. Notably that it was possible
to exclude a small portion of potential biomarkers based on
such data processing procedure and identification strategy,
especially for those with MS1 data only or those were not
included in the databases we used. However, it was known that
the identification of such components was challenge due to
limited information provided, which would decrease the
annotation confidence and reliability. Thus, such potential

biomarkers would not be considered in this study as the
identification and annotation with high confidence and
accuracy were taken as the primary standard and purpose.

Exploration of Potential Biomarker of Breast
Cancer
Following the optimized strategy, 58 serum samples containing
29 from healthy control and 29 from breast cancer patients were
investigated. The instrumental stability and reproducibility were
assessed by QC sample based on five successive injections prior to
sample analysis and interval injections during sample run

FIGURE 3 | (A) OPLS-DA score plots derived from the serum metabolomics datasets collected from healthy control and breast cancer group; (B) number of
components after designed screening steps; (C) heatmap of differential metabolites; (D) ROC analysis; and (E) selected differential metabolites between healthy control
and breast cancer group. BC: breast cancer.
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(Supplementary Figure S1A). Upon UPLC-MS analysis, total
8,399 components (considering MS1 data only) were detected in
the positive and negative ion modes. According to OPLS-DA,
healthy control and breast cancer group exhibited distinguish
metabolome profiles and were completely separated with R2Y of
96.4% and Q2 of 83.3% (Figure 3A). Following the proposed
simplified procedure, primary screening resulted to 2,310 eligible
components with qualified MS/MS data and only 126 differential
candidates were remained after secondary screening for
subsequent database search (Figure 3B), which greatly
reduced the data volume and saved efforts for data
interpretation. The identification by QI further narrowed
down the number of metabolites to 46 with Score value ≥40.
Upon biological source confirmation, a total of 14 endogenous
metabolites were finally emerged (details found in
Supplementary Table S1; Supplementary Figure S2).

Heatmap analysis in Figure 3C also confirmed that they had
quantitatively difference between healthy control and breast
cancer group, according to which a considerable number of
metabolites were observed down-regulated in breast cancer
group. ROC curve analysis was applied to verify the
representative of annotated metabolites and AUC of 0.942 in
Figure 3D confirmed the reliability of identified metabolites,
which implied them as potential biomarkers for clinical diagnosis
of breast cancer. Differential metabolites mainly belonged to
lipids, fatty acid, and fatty amide, some of which were also
reported previously (Long et al., 2021) (Figure 3E). Lipids
accounted for the majority of differential metabolites,
including two phosphorylcholines (PCs), five
lysophosphatidylcholines (LPCs) and three
lysophosphatidylinositol (LPIs), which were also reported to be
closely related to the occurrence of breast cancer (Cala et al., 2018;

FIGURE 4 | (A) Number of components after designed screening steps; (B) heatmap of differential metabolites; (C) pathway analysis; (D) selected differential
metabolites before and after chemotherapy.
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Song et al., 2020; Long et al., 2021). Besides, linoleic acid, down-
regulated in breast cancer group, was reported to be closely
related to the regulation of breast cancer involved miRNA
expression (Elieh Ali Komi et al., 2021). Pregnanolone sulfate,
significantly up-regulated in breast cancer group based on our
results, suggested a possible relationship between breast cancer
and steroids. (Bicikova et al., 2001). It was worth to mention that
the sample size enrolled in this study was limited, which might
lead to insufficient discovery and miss other potential
biomarkers. A larger sample population or detailed
classification in subtypes, disease progression or treatment
would be more expected.

Chemotherapy is one of major treatments for breast cancer,
thus, the discovery of potential indicators is also essential for
monitoring the process or effect of chemotherapy. Herein, total
12 serum samples collected from six breast cancer patients were
investigated, including six samples before chemotherapeutic
treatment and six samples after chemotherapeutic treatment.
Upon UPLC-MS analysis, total 6,130 components (considering
MS1 data only) were detected and based OPLS-DA
(Supplementary Figure S3A), two groups were statistically
different by receiving a R2Y of 99.8% and Q2 of 77.8%. With
the simplified data processing procedure, 1,261 eligible
components with qualified MS/MS data were isolated, while
140 of them met the criteria of secondary screening and were
remained as differential candidates for database search. Based on
QI identification, 66 components received Score value ≥40, and
25 of them were finally emerged as potential biomarkers
according to biological source confirmation (Figure 4A, details
found in Supplementary Table S2 and Supplementary Figure
S4). In addition, heatmap analysis illustrated significant
quantitative difference among two groups, including 11
metabolites were down-regulated and 14 were up-regulated in
chemotherapeutic group (Figure 4B and Supplementary Table
S2). ROC analysis in Supplementary Figure S3B confirmed them
as representative and potential indicators for monitoring the
process or treatment of chemotherapy by achieving AUC of
1.00. Notably that the AUC value of 1.00 was not common,
which was probably due to the indeed significant difference of
potential metabolites before and after chemotherapeutic
treatment. Besides, it was also because of limited sample size,
which resulted to overfitting during ROC analysis. The identified
potential indicators mainly distributed in biosynthesis of
unsaturated fatty acids, aminoacyl-tRNA biosynthesis,
nicotinate and nicotinamide metabolism, as well as
phenylalanine, tyrosine and tryptophan biosynthesis
(Figure 4C), some of which had also been reported previously
as biomarkers for breast cancer diagnosis (Long et al., 2021).
Among differential metabolites included eight carnitine species,
suggesting the possible dysregulation of carnitine metabolism and
fatty acid β-oxidation process. Phenylalanine and tryptophan
were reported previously to be dysregulated and were highly
expressed in breast cancer based on tissue or cell investigation
(Du et al., 2019; Long et al., 2021). Similarly, indole was also
considered as one of biomarkers for breast cancer and discovered
to be up-regulated based on plasma analysis (Jasbi et al., 2019).
They were observed down-regulated after chemotherapy

according to results in Figure 4D and Supplementary Table
S2, suggesting them as potential indicators to track
chemotherapeutic treatment and disease recovery. Notably that
differential metabolites identified in this study had overlap but
not identical with previous studies, which could be attributed to
the difference in sample types (tissue, serum or cultured cells). In
addition, the differential metabolites identified for
chemotherapeutic samples were different from that of breast
cancer vs. healthy group, suggesting the possibility that the
potential biomarkers for breast cancer diagnosis and
chemotherapeutic monitoring were independent. It also
implied that for clinical applications, the same potential
biomarkers for breast cancer diagnosis were not sufficient for
evaluation of chemotherapy, as separated metabolic pathways
were probably affected. Thus, the discovery of indicators specified
for the evaluation of chemotherapy were highly encouraged and
large sample size would be more expected, especially for samples
collected from the same subtype, progression of the disease or
treatment.

CONCLUSION

In this study, sample preparation, data processing procedure and
metabolite identification strategy of untargeted metabolomics were
evaluated. Metabolite extraction by different solvents was
investigated and reasonable assessment based on the number of
eligible components was proposed. A simplified data processing
procedure was proposed, involving OPLS-DA for statistical
difference confirmation, primary screening based on MS/MS
data availability and secondary screening according to criteria
including FC, VIP and p value. Such procedure allowed database
search for differential components only, which greatly narrowed
down the data volume, improved the analysis efficiency and
facilitated to reduce false identification results. For identification
and annotation, mass error, MS/MS error, isotope similarity and
fragmentation match were comprehensively considered and Score
≥40 was set to enhance the identification confidence and accuracy.
The evaluated strategy was applied for the analysis of serum samples
of breast cancer and the discovery of distinguished metabolites
highly encouraged the exploration of independent biomarkers for
disease diagnosis and treatment clinically. Therefore, the evaluated
strategy was beneficial for the discovery of potential biomarker with
the simplified procedure and unambiguous annotation.
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