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Coronavirus disease 2019 (COVID-19) can disrupt the gut microbiota balance, and
patients usually have intestinal disorders. The intestine is the largest immune organ of
the human body, and gut microbes can affect the immune function of the lungs through the
gut-lung axis. Many lines of evidence support the role of beneficial bacteria in enhancing
human immunity, preventing pathogen colonization, and thereby reducing the incidence
and severity of infection. In this article, we review the possible approach of modulating
microbiota to help prevent and treat respiratory tract infections, including COVID-19, and
discuss the possibility of using probiotics and prebiotics for this purpose. We also discuss
the mechanism by which intestinal micro-flora regulate immunity and the effects of
probiotics on the intestinal micro-ecological balance. Based on this understanding, we
propose the use of probiotics and prebiotics to modulate gut microbiota for the prevention
or alleviation of COVID-19 through the gut-lung axis.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) continues to spread worldwide, seriously threatening human
health and profoundly impacting the global economy. Through the tremendous efforts of scientists
around the world, the vaccines are available now. But with the constant emergence of variants of
SARS-CoV-2, there is still a long way to go for the prevention and control of COVID-19. Many
patients with COVID-19 showed dysbiosis in the intestinal tract, with a decrease in beneficial
bacteria such as Bifidobacteria, suggesting the need to evaluate the patients’ gastrointestinal function
(Chen and Vitetta, 2021; Livanos et al., 2021). It is known that the dysbiosis of the human gut
microbiota is associated with various health conditions, including respiratory tract infections (RTI)
via the gut-lung axis (Li et al., 2020). Therefore, the use of nutritional support and probiotics are
recommended in patients with COVID-19 to regulate the balance of intestinal microbiota and reduce
the risk of secondary infection (Badi et al., 2021; Sajdel-Sulkowska, 2021).

The immune system depends on adequate diet and nutrition to prevent infection. For instance,
adequate protein intake is essential for optimal antibody production (Verduci and Köglmeier, 2021).
Insufficiencies of micronutrients such as vitamin D and vitamin C are associated with an increased
risk of infection (Jabczyk et al., 2021). Many recent meta-analyses have found that there is a positive
correlation between vitamin D deficiency and the severity of COVID-19, and vitamin D
supplementation can be used to prevent or reduce the severity of the disease (Meltzer, et al.,
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2020; Hadizadeh, 2021; Ma, et al., 2021). Intestinal malnutrition
affects the local mucosa and indirectly decreases the immune
response on the surface of the lung mucosa, increasing
susceptibility to systemic inflammation (Rytter et al., 2014).
Therefore, improving the nutritional status of patients and
enhancing the body’s immunity through modulating
microbiota is of significance for the treatment of new
coronavirus pneumonia. To date, several clinical trials have
successfully managed COVID-19 with probiotics as adjunctive
therapy (Baindara et al., 2021; Pawar et al., 2021; Wu et al., 2021).
In this article, we discuss the possible use of probiotics and
prebiotics in the prevention of viral infection. In addition, the
mechanism of action of probiotics against COVID-19 is discussed
from the perspective of the gut-lung axis.

MECHANISM OF INTERACTION OF
GUT-LUNG AXIS

Gut Microbiota
A person has about 104 microorganisms in the gut, including
bacteria, fungi, and viruses (Barko et al., 2018). Intestinal micro-
organisms play an important role in the digestion and absorption
of nutrients and promote the establishment of the immune
system (Kolodziejczyk et al., 2019). A host with no gut
microbiome cannot develop a functioning immune system,
and the intestinal flora plays an essential role in maintaining
the health of the body (Lerner et al., 2017). The host depends on
the intestinal microflora to produce different metabolites through
anaerobic fermentation (Jang et al., 2020). The monolayer of
epithelial cells in the mucosa allows the passage of microbial
metabolites and this interaction between microbes and the host
cells affects the immune response and disease development (Nasr
et al., 2020).

The mammalian gastrointestinal tract is not only the largest
food digestion, absorption andmetabolism organ in the body, but
also the largest immunity organ. There is a large and relatively
stable microbial community in the mammalian intestine (Le et al.,
2020). The intestinal microflora starts to establish in the early life
and affect the physiological function of the host (Bernardeau
et al., 2017). After the outbreak of COVID-19, it was observed
that critical COVID-19 patients with intestinal flora disorders
were more susceptible to secondary infection and death
(Spagnolello et al., 2021). Whether manipulating intestinal
microflora can prevent and alleviate COVID-19 is an
important topic for investigation.

Lung Microbiota
The respiratory tract microbiota, similar to the intestinal
microbes, mainly include Bacteroides, Firmicutes, and
Proteobacteria, but their relative abundance is much lower,
and the species diversity is also lower (Magryś, 2021). The
microbial flora in the lungs migrated from the oral cavity, and
spread along the mucosa most commonly by micro-aspiration of
stomach contents (Ryck et al., 2014). The number and
composition of the microbiota are affected by mucus-ciliary
clearance or host defense mechanisms, temperature, oxygen

tension, pH, nutrient availability, inflammatory cell activation,
and bacterial competition (Yang et al., 2019). Airway microbiota
were altered in patients with burns and inhalation injury, and the
abundance of Streptococcaceae and Enterobacteriaceae increased
by 30% in hypoxemia patients compared to patients with the
partial pressure of arterial oxygen/fraction of inspired oxygen
(PaO2/FiO2) ratio of more than 300; among the patients with
PaO2/FiO2 ratio ≤300, Prevotella melaninogenica and
Corynebacterium genus-level were significantly enriched
(Walsh et al., 2017; Walton et al., 2021). Furthermore, PaO2/
FiO2 < 274 mmHg is considered to be a reliable prognostic
biomarker for COVID-19 patients (Sinatti et al., 2021). In a
recent study in mice, it was found that after a respiratory
infection, the relative abundance of Bacteroides increased and
Firmicutes decreased (Groves et al., 2018). Changes in the lung
microbiomemay cause specific host immune responses and affect
the prognosis of disease (Sommariva et al., 2020; Zhou et al.,
2021).

The lung and airway microbiome directly affect immunity to
disease and can change local immunity/inflammation during
disease progression (Healy et al., 2021). RTI virus infection
can directly cause immune damage to the respiratory tract and
intestinal mucosa (Gautier et al., 2021). Lactobacillus rhamnosus
GG (LGG) can maintain intestinal barrier homeostasis by
enhancing intestinal mucin expression/barrier formation,
reducing cell apoptosis and improving cell proliferation
(Khailova et al., 2017). These may be the mechanisms for the
protective effect of LGG on pneumonia in patients. Whether LGG
has a protective effect on the intestines in COVID-19 patients
remains to be determined.

The Gut-Lung Axis
In recent years, hypotheses, such as “gut-liver” axis, “gut-brain”
axis, “gut-heart” axis and “gut-kidney” axis, have been proposed
(Galdeano et al., 2019). The “gut-lung” axis has been proposed to
explain the relationship between intestinal flora and lung diseases
(Standen et al., 2015). The intestinal micro-ecology can affect not
only intestinal immunity but also extraintestinal immunity
(Taghinezhad-S et al., 2021).

T-helper (Th)17 cells provide protection in barrier tissues but
may also contribute to immune pathology (Bacher et al., 2019).
Intestinal segmented filamentous bacteria can stimulate the body
to produce Th17 immune cells and reduce the infection rate and
mortality of Streptococcus pneumonia (Tanabe, 2013; Gauguet
et al., 2015). In patients with respiratory disease, increased Th17
cytokine levels correlate with exaggerated inflammation and lung
damage (Iwanaga and Kolls, 2019). Mice inoculated with
Lactobacillus johnsonii can significantly reduce the lungs Th2
type inflammatory response (Segal et al., 2016), and Bacteroides
can increase the number of regulatory T (Treg) cells and reduce
the occurrence of inflammation (Samuelson et al., 2015). In
addition, it has been reported that immunity cells can migrate
through the blood to the lungs and intestines, forming another
mechanism for the connection between the lungs and the
intestines (Reibman et al., 2008).

Microbial invasion is the most common cause of RTI (Dickson
et al., 2014). The respiratory tract has the physiological function
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of exchanging gas with the outside world and is exposed to the
external environment. When microorganisms break through the
respiratory defense, it would cause host respiratory infection
(Turck et al., 2019). RTI can cause changes in the intestinal
flora and intestinal functions (He et al., 2017). The intestine can
alleviate the symptoms of RTI via recovering the microbiota,
increasing the production of short-chain fatty acids (SCFAs), and
improving the immunity (Liu et al., 2018). In addition to the main
symptoms of cough, fever, chest tightness and fatigue, patients
with COVID-19 (especially severe patients) may also have
gastrointestinal symptoms (diarrhea, nausea, vomiting, etc.)
(Yeoh et al., 2021). Therefore, a health gut micro-ecology
plays an important role for COVID-19 prevention.

THE RELATIONSHIP BETWEEN COVID-19
AND GUT-LUNG AXIS

RTI is a disease with high morbidity and mortality (Wu et al.,
2015). Studies have shown that lung damage during influenza
virus infection is accompanied by gut damage, which is not
directly caused by enteroviruses (Xu et al., 2021).

Changes of Intestinal Microflora After
Respiratory Virus Infection
The lung is an organ constantly exposed to micro-organisms
through inhalation or subclinical micro-aspiration (Santacroce
et al., 2020). Influenza infection can affect the composition of
the intestinal flora, and the dysbiosis of intestinal flora may
reduce the host’s antiviral immune response, thereby aggravating
the lung damage caused by the infection (Marsland et al., 2015). For
example, changes in the number of actinomycetes due to gut
environment may aggravate the damage in inflammatory bowel
disease (Lin et al., 2017). The gut microbiota plays a vital role in the
response of the lung to bacterial infections (Sundararaman et al.,
2020). P. aeruginosa, K. pneumoniae, and S. pneumoniae are
associated with increased morbidity and mortality during the
acute pulmonary infection (Brown et al., 2017). Gut-lung
interaction affects the role of bacteria in respiratory diseases, and
the immune dialogue is a two-way process (Darbandi et al., 2021).

In a recent cross-sectional prospective study on 30 COVID-19
patients with 10 healthy volunteers as a control group, it was found
that the increase of intestinal Proteobacteria and the decrease of
Firmicute, and these changes may have triggered an abnormal
mucosal immune response (Khan et al., 2021). The imbalance of
the intestinal microbiota is an important predisposing factor of the
severity of COVID-19 disease and the depletion of B. plebeians and
F. prausnitzii in the guts further aggravates the situation by causing
cytokine overproduction and dysregulated inflammation (Khan
et al., 2021). In addition, three bacterial members from the
Firmicutes phylum, the genus Coprobacillus, the species
Clostridium ramosum and C. hathewayi, were positively
associated with COVID-19 disease severity (Zuo et al., 2020). In
many COVID-19 patients, the abundance of fecal Bacteroides
dorei, Bacteroides thetaiotaomicron, Bacteroides massiliensis, and
Bacteroides ovatus, were inversely correlated with SARS-CoV-2

load in fecal samples in many patients (Zuo et al., 2021). These
studies illustrate the intestinal microflora changes can be caused by
respiratory virus infection, and some intestinal microflora may
affect SARS-CoV-2 infection (Goossens et al., 2020).

SARS-COV-2 virus enters the cell using angiotensin-converting
enzyme 2 (ACE2) as a receptor, which is abundantly expressed on
the cell surface of glandular epithelial cilia and gastric and intestinal
epithelial cells (Liang et al., 2020; Shang et al., 2020). The high
expression of ACE2 in the epithelial cells of the small intestinemakes
them highly susceptible to SARS-CoV-2 infection (Yeung et al.,
2012). SARS-CoV-2 may disrupt the function of ACE2, leading to
intestinal malabsorption, secretion imbalance, stimulation of the
enteric nervous system, and diarrhea (Wong et al., 2020).
Meanwhile, cytokines are exaggeratedly released, promoting the
recruitment of other cells, and leading to a huge inflammatory
response (Lee et al., 2020). ACE2 also modulates innate immunity
and influences the composition of the gut microbiota (Hashimoto
et al., 2012; Penninger et al., 2021). Viral RNA was detected in fecal
samples from 50% of COVID-19 patients, reflecting gastrointestinal
infection (Cheung et al., 2020). The different changes of gut-lung axis
after SARS-CoV-2 infection are illustrated in Figure 1.

The Role of Gut-Lung Axis Microbiota in
Immune System Regulation
Changes in the intestinal microbiome often alter in the
respiratory tract immune response and homeostasis (Selwal
et al., 2021). Microbes can regulate the lungs’ immune
response by producing bacterial ligands and metabolites and
affect the final composition of the lung flora (Budden et al.,
2017). SCFAs-producing gut microbiota can deliver SCFAs to the
lungs, thereby facilitating the generation of signals that initiate
lung immunity (Liu et al., 2021). Specific gut microbes (such as
Staphylococcus, Streptococcus, Lactobacillus, and Bifidobacterium)
can affect respiratory diseases such as asthma, chronic obstructive
pulmonary disease, and influenza virus infection (Chung, 2017).
For example, Lactobacillus paracasei consumption can allow an
early activation of pro-inflammatory cytokines (IL-1α, IL-1β) and
a massive recruitment of immune cells in the lungs, mice fed
Lactobacillus paracasei showed reduced susceptibility to influenza
infection (Belkacem et al., 2017). Critically ill patients with
COVID-19 disease can cause overall changes in the intestinal
mucus layer (decreased thickness, reduced lumen coverage, poor
adhesion) and intestinal barrier function (El-Sayed et al., 2021).
Under the immunosuppressive environment, activation of the
Th1 and Th17 cell immune responses by muramyl dipeptide and
tuftsin fusion protein (MT) could result in the better suppression
of Treg cells among CD4+T cells, Th17 cells generated following
the MT induction enhanced the specific immune response at the
mucosal surface (Jiang et al., 2014). Interleukin (IL)-17 plays an
important role in mediating host defense against viruses and
chronic lung disease (Gurczynski and Moore, 2018). IL-17 can
lead to a significant increase in neutrophil and promote
pulmonary fibrosis (Gasse et al., 2011). γδ T cells are tissue-
resident cells that produce IL-17, and the microbiota-derived
metabolites (particularly propionate) that inhibit intestinal γδ
T cell production of IL-17 and IL-22 (Dupraz et al., 2021). In
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COVID-19 patients, the increase of IL-17 was positively
correlated with the increase of lung injury, which suggested
that IL-17 could be used as a biomarker of disease severity
(Pacha et al., 2020). Therefore, targeting IL-17 is an effective
strategy to prevent COVID-19 and alleviate the damage of SARS-
CoV-2 in immunology.

The gut has long been thought to be the driving force behind
multiple organ dysfunction syndromes (Klingensmith and
Coopersmith, 2016). The balance of gut microbes plays a crucial
role in the body’s immune system, and if this balance is upset, the
immune system may collapse or spin out of control (Thirumdas
et al., 2021). Intestinal microbiota disorders are associated with RTI,
and the health of the microbiota is related to the conditions of other
organs or tissues, including the lungs (Tao et al., 2020). SCFAs
produced by the intestinal microbial fiber fermentation, support
immune function by serving as signaling molecules on resident
antigen-presenting cells to attenuate the inflammatory response
(Wang et al., 2019). Intestinal microbes also induce immune
tolerance by inhibiting unnecessary inflammatory reaction

mechanisms through host adaptive immune evolution (Simčič
et al., 2019; Hamzelou, 2020). Recent investigations showed that
gut-mucosal immunity and gut flora play a role in the pathogenesis
of HIV infection. Probiotics have been shown as a novel strategy to
attenuate or prevent gastrointestinal involvement and to improve
gut-mucosal immunity in HIV-infected subjects (Ceccarelli et al.,
2019). A stable and nutritious intestinal micro-environment is a key
factor in maintaining a healthy gut-lung axis. However, the blind use
of conventional probiotics for COVID-19 is not recommended until
we have further understanding of the pathogenesis of SARS-CoV-2
and its effect on gut microbiota, as the rationale for using probiotics
in COVID-19 is derived from indirect evidence (Mak et al., 2020).

PROBIOTICS AND COVID-19

The “gut-lung axis” concept can be explored for the prevention
and treatment of COVID-19 with probiotics. Treatment of
respiratory virus infection involves antagonism of respiratory

FIGURE 1 |Different changes in the “gut-lung axis” after infection with COVID-19. Respiratory tract infection increases the production of cytokines and chemokines
and causes changes in the microbial composition of microflora. Changes in the lung microbiome may cause specific host immune responses. The high expression of
ACE2 in the small intestine makes small intestinal epithelial cells highly sensitive to SARS-CoV-2, and the viral infection leads to intestinal malabsorption, secretion
imbalance, and diarrhea. SARS-CoV-2 RNA has been detected in fecal sample of COVID-19 patients.
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viruses and regulation of cellular immunity and humoral
immunity (Zelaya et al., 2020). In addition, probiotics may
also be used to help regulate and maintain the balance of
intestinal micro-ecology, thereby reducing the incidence of
secondary bacterial infections.

Application of Probiotics for the Prevention
and Treatment of Respiratory Diseases
Beneficial bacteria interact with the mucosal surface to stimulate the
immune response and reject pathogens from the intestinal
epithelium through competitive rejection (Littman and Pamer,
2011). In addition, after oral administration of probiotics, the
probiotics are believed to affect the relationship between
commensal microorganisms and mucosal immunity, changing
the basic and induced inflammatory balance in response to viral
infections (Hardy et al., 2013). In a recent clinical trial of 70 COVID-
19 patients, 42 received standard medical treatment, and 28 received
additional oral beneficial bacterial treatment (including Streptococcus
thermophilus DSM 32345, Lactobacillus acidophilus DSM 32241,
Lactobacillus brevis DSM 27961, and other bacteria). The results
showed that the estimated risk of respiratory failure in patients
receiving oral bacterial treatment was 8 times lower. Among patients
who did not receive oral bacterial treatment, the prevalence and
mortality of patients transferred to the intensive care unit were
higher (d’Ettorre et al., 2020).

In some COVID-19 patients, the intestinal Bifidobacteria and
Lactobacilli were significantly reduced, this is could be an indicator
of their weak immunity (Walton et al., 2021). In a meta-analysis of
20 randomized controlled trials, the effects of probiotics (especially
Lactobacillus and Bifidobacterium strains) on the duration of acute
RTI in otherwise healthy children and adults were analyzed. These
results showed that the consumption of probiotics significantly
reduced the duration of RTI disease onset, the number of days each
person was ill, and the number of days absent/work/school.
Children treated with probiotics had a lower risk of requiring
antibiotic prescriptions than children who were not treated (King
et al., 2014). In addition, on a total of 58 patients hospitalized with
COVID-19, 24 received oral probiotic therapy (including
Bifidobacterium, Lactobacillus, and Streptococcus) during
hospitalization, while 34 received only standard care (no
supplementation with oral bacteria). The results showed that
patients taking probiotics had increased serum arginine,
asparagine, and lactate levels, which could prevent the
development of chronic fatigue by better-utilizing glucose and
energy pathways (Santinelli et al., 2022). As secondary infections
may be a serious issue in COVID-19, in addition to anti-
inflammatory regimens, treatment with probiotics may be an
adjuvant or alternative modality. However, the specific types
and dosage of probiotics needs to be studied in future clinical trials.

Probiotics Enhance Intestinal Immunity and
Prevent Viral Immune Injury
Probiotics can be used to treat a variety of diseases, including viral
infections (Kanauchi et al., 2018). The use of probiotics can also
suppress inflammatory cytokines and help clear viral infections to

minimize lung damage (Schiavi et al., 2016). Beneficial bacteria
from probiotic supplements can stick to the surface of the
epithelium, block the attachment of viruses by their spatial
position, cover receptor sites in a nonspecific way, or compete
for specific receptors (Etienne-Mesmin et al., 2019).

Bifidobacteria is mainly used to prevent and treat human
intestinal diseases, because it can be colonized in the intestines
(Salminen and Isolauri, 2006). Adhesion to the intestinal mucosa
is the prerequisite for Bifidobacteria colonization and persistence
in the gastrointestinal tract (Zhang et al., 2020). The attachment
of Bifidobacteria, causes secretion of Bifidobacteria adhesin,
which may bind to the receptor proteins of intestinal epithelial
cells, and inhibit the colonization of pathogenic microorganisms
(Westermann et al., 2016). A review of a total of 33 clinical trials
related to viral respiratory infections found that beneficial
bacteria from probiotic treatment also induced mucosal
regeneration and intestinal mucins binding to viruses, lowered
viral adhesion to epithelial cells and viral replication, and reduced
the risk or duration of respiratory tract infection (Lehtoranta
et al., 2014). In another study, among COVID-19 patients who
received oral Bifidobacteria treatment, the interleukin-6 levels
decreased and the mortality rate was decreased to 5% (from as
25%) (Bozkurt and Bilen, 2021). This approach should be further
explored for treatment of hospitalized patients with moderate/
severe COVID-19.

Peptides produced by some beneficial bacteria (such as
Lactobacillus and Paenibacillus) have been shown to bind to
ACE2 in vitro, and may block the binding of SARS-CoV-2 to
target cells (Minato et al., 2020). Beneficial bacteria have also been
shown to trigger antiviral immunity to promote the elimination
of viruses (Din et al., 2021). Intranasal pre- and post-treatment of
neonatal mice with LGG significantly improved mice survival
after influenza virus infection (Kumova et al., 2019). LGG
pretreatment was shown to improve immune gene
transcriptional responses during early infection. Recent studies
indicated that Lactobacillus gassier could be used as an auxiliary
nutritional therapy in purine management, to reduce virus
replication and help the treatment of COVID-19 (Morais
et al., 2020). Figure 2 illustrates that beneficial bacteria
originated from oral probiotics may block the binding of
SARS-CoV-2 to the host cells, reduce virus replication, and
increase the host’s immunity to the virus.

Overall, probiotics can improve the immune response to
infections and this activity may also apply to SARS-CoV-2
infection. The effects of probiotics have a high degree of strain
specificity. The transfer of sufficient numbers of bacteria to the
effect site in the intestine is crucial for the successful treatment of
COVID-19 patients. More laboratory and clinical studies are
needed in this area.

Proper Use of Probiotics
Although probiotics are known to be safety, they should be used
with caution in patients with severely impaired immune function
and premature infants (Sabina, 2014). LGG has been shown to
cause bacteremia in some immunocompromised patients (Gupta
and Garg, 2009). The dose-effect of Lactobacillus Acidophilus
NCFM strain on the T cell immune response of rotavirus
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vaccination in a sterile pig model showed that probiotics may be
ineffective or even harmful if not used in the proper dose (Wen
et al., 2012). For patients critically ill, at risk of fungal infection or
with central venous catheters the use of Saccharomyces boulardii
should be avoided (Boyanova and Mitov, 2012). It has also been
reported that LGG causes sepsis in cardiac surgery patients
(Kochan et al., 2011).

The long-term effects of probiotic use are unknown and need
to be studied in randomized controlled trials. Individualized and
specific probiotic administration methods may be necessary,
because empirical supplementation of probiotics may not
produce uniform and lasting effects on the mucosa (Celiberto
et al., 2018). Probiotic dietary supplements are usually made by
preservation of bacterial strains, mainly through lyophilization or
microencapsulation, andmarketed in the form of tablets, capsules
and freeze-dried formulations (Salehi et al., 2020). SARS-CoV-2
infected patients may present lesions in the lungs compromising
their gas exchange capability. In vitro data suggested that the
probiotic formulation SLAB51 can reduce nitric oxide synthesis
in intestinal cells (Ceccarelli et al., 2021). Studies have shown that
108–109 CFU/g is an ideal probiotic dose for health benefits
(Gurram et al., 2021). Certain strains of lactic acid bacteria
modulate both innate and acquired immunity when

administered at an adjusted dose of 109 colony forming units
(CFU)/day (Roobab et al., 2020). A study has proposed that the
number of probiotics required must be consumed in a sufficient
amount (>7 log CFU) to protect and treat respiratory infections,
including COVID-19 (Olaimat et al., 2020). For patients with
COVID-19, probiotics can be used to maintain the intestinal
microecological balance and prevent secondary bacterial
infections (Oliveira et al., 2021). More research is required
into these types of bacteria to determine their effectiveness as
probiotic formulations.

Probiotics can alter the composition of intestinal flora, improve
the immune function, and subside intestinal inflammatory response
(Plaza-Diaz et al., 2019). To date, no published studies have reported
the use of probiotics as an add-on therapy for the treatment of
COVID-19. Scientists and clinicians around the world are also
studying the relationship between the gut microbiome and
susceptibility to COVID-19 and evaluating the effects of various
probiotic strains in reducing viral load through different
mechanisms. The application of oral probiotics in the clinical
treatment of COVID-19 still needs to be studied further in large-
scale randomized clinical trials. In addition to clinical data, eating
patterns, genetic associations, and environmental exposure should
also be considered.

FIGURE 2 | Immunoregulatory effects of probiotics on cells after SARS-CoV-2 infection. Beneficial bacteria from oral probiotics can block the binding of
SARS-CoV-2 to the host cells, and helps improve gut dysbiosis caused by SARS-CoV-2 and hastens recovery in patients. The use of probiotics can suppress
inflammatory-cytokines and help clear viral infections.
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POTENTIAL APPLICATION OF PREBIOTICS
FOR THE PREVENTION OF COVID-19

The definition of prebiotics has been revised several times. The
International Scientific Association for Probiotics and Prebiotics
(ISAPP) proposed in 2017 that the definition be revised to “a
substrate that is selectively utilized by host microorganisms
conferring a health benefit” (Gibson, et al., 2017). Prebiotics
can alter the composition of the intestinal flora, and provide
energy for the growth of beneficial bacteria (Calatayud et al.,
2021). In addition, prebiotics can improve the function of the
intestinal barrier and stimulate the production of metabolites
beneficial to the host (Davani-Davari et al., 2019). Foods
containing prebiotics, such as fiber, oligosaccharides, and
polyphenols, can enhance the growth of beneficial bacteria
(Parnell and Reimer, 2012; Lordan et al., 2020; Wiciński et al.,
2020). For example, inulin-enriched diet stimulated the growth of
Bifidobacterium and Bacteroides (Trompette et al., 2018); and
whole grain cereals can modify bacterial profiles increasing
relative quantities of Bifidobacterium and Lactobacilli (Tuohy
et al., 2012). In principle, prebiotics should reduce the risk of a
person to contract COVID-19 or alleviate the syndromes (Gasmi
et al., 2020; Batista et al., 2021). However, more laboratory and
human studies are needed to test this hypothesis.

Fermentable dietary fiber can promote the production of
SCFAs (Koh et al., 2016), which enhance intestinal barrier
function (Makki et al., 2018). Improving gut barrier function
reduces the entry of harmful microorganisms and their
metabolites into the host circulatory system (Knudsen et al.,
2018; Loo et al., 2020). Fermentable dietary fiber has been
shown to alter the number of gut bacteria in rodents and the
concentration of SCFAs in their fecal (Cui et al., 2019). Dietary
fermentable fiber and SCFAs could balance innate and adaptive
immunity, thereby promoting resolution of influenza virus
infection (Trompette et al., 2018). Mice fed a high-fiber diet
and butyrate exhibited reduced neutrophil infiltration, enhanced
T cell bioenergetics, relieved lung inflammation, and facilitated
influenza virus clearance (Visan, 2018).

Oligosaccharides can fight against pathogenic viruses by the
direct interaction with the virus (negative charge on the surface
of viruses), inhibiting the invasion and adsorption of viruses,
and also hindering the obstruction of the viral transcription and
replication via direct interference (Iravani and Varma, 2021). A
recent study investigated the antiviral effects of resveratrol
oligosaccharides for SARS-CoV-2. Human MRC5 lung cells
infected with SARS-CoV-2 were incubated with various
concentrations of resveratrol oligosaccharides. This result
indicated that resveratrol oligosaccharides at 5 and 10%
effectively decreased the infection of the MRC5 cells by
SARS-CoV-2 (Hamada et al., 2021). Dietary intervention
with fructans and galactooligosaccharide (GOS), leads to a
higher abundance of Bifidobacterium and Lactobacillus (So
et al., 2018). GOS cannot be digested by humans but can be
fermented by commensal bacteria in the intestines (Wilson and
Whelan, 2017). GOS has shown to be a substrate of commensal
bacteria Lactobacilli and increase the abundance of Lactobacilli
and Bifidobacteria (Gonai et al., 2017). In a human study, three

dose levels of fructo-oligosaccharides (FOS) (2.5, 5, and 10 g/
day) or placebo (maltodextrin 10 g/day) were given to 80
participants. The results showed that the consumption of
FOS increased the relative abundance of Bifidobacteria and
Lactobacilli (Tandon et al., 2019). After 8 weeks of prebiotic
(oligofructose) treatment to mice under physiological stress
(high-fat diet), the modulation of the taxa and functional gut
microbiota was found to be associated with the beneficial effects
on obesity and related metabolic disorders such as a decrease in
inflammation, a decrease in plasma leptin levels and an
improvement of glucose homeostasis (Everard et al., 2014).
In a recent randomized controlled trial on overweight or
obese children, compared to children given placebo, those
received prebiotic oligofructose-enriched inulin lost 3.1% of
weight. The species of Bifidobacterium increased significantly,
while the number of Bacteroides vulgaris decreased significantly
(Nicolucci et al., 2017).

Polyphenols, found in many foods and beverages are known to
affect gut microbiota in favor of the growth of beneficial bacteria
(Jayabalan et al., 2014; Singh et al., 2019; Ma and Chen, 2020;
Plamada and Vodnar, 2021). Many studies have shown tea
polyphenols can improve the intestinal microecology by
regulating the diversity and quantity of intestinal flora (Chen
and Yang, 2019; Yan et al., 2020; Sun et al., 2021). Herein, some of
these studies are used as examples to illustrate the prebiotic
activities of polyphenols. (-)-Epigallocatechin gallate (EGCG),
the most abundant and biologically active catechin in green tea,
has been shown to significantly increase the production of SCFAs
and the population of the Bifidobacterium (Zhang et al., 2013).
Oral administration of green tea extract (equivalent to EGCG
doses of 300–400 mg/kg) in drinking water to mice, almost
completely prevented interstitial and peribronchial fibrosis
(Donà et al., 2003). EGCG has shown anti-viral activities
including the inhibition of SARS-CoV-2 infection (Ohgitani
et al., 2021; Tallei et al., 2021). For example, following the
infection of H9N2 swine influenza virus in mice, daily
administration of EGCG (10 mg/kg, i. g.) for 5 days
significantly prolongs mouse survival and reduces the death
rate from 65 to 35% (Xu et al., 2017). With demonstrated
activities in alleviating pulmonary fibrosis in rodent models
and humans, EGCG and green tea extract may be useful for
the prevention and treatment of pulmonary fibrosis in COVID-
19 patients (Zhang et al., 2021).

Many epidemiological studies have shown that tea
consumption is associated with lower incidence of obesity,
metabolic syndrome, and related diseases (Yang and Zhang,
2019). Similar beneficial activity has also been shown for
dietary fiber and oligosaccharides (Shoaib et al., 2016;
Holscher, 2017; Myhrstad et al., 2020). High body mass index
has been recognized as an important risk factor for COVID-19
developing into a critical state, especially abdominal obesity
(Földi et al., 2021), and obesity is associated with an increase
in Th17 and IL-17 (Tarantino et al., 2014). Therefore, weight loss
and improved metabolic health may help better cope with
COVID-19, whether regular drinking tea (and the required
amount) can reduce the risk of COVID-19 infection and
related syndromes needs to be further investigated.
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CONCLUSION

In this article, we illustrate the importance of gut microbiota in
the body’s immune system and anti-viral functions. The gut
microbiome also affects lung health through the gut-lung axis.
Viral infection, such as SARS-CoV-2 infections in the lung, can
also cause intestinal microbiota dysbiosis. Therefore, maintaining
a healthy intestinal microbiota with a healthy diet is important.
The use of probiotics and prebiotics to enhance the development
of healthy microbiota is a promising approach to prevent and
alleviate viral infection. This includes the prevention and
treatment of COVID-19, to alleviate associated symptoms and
prevent secondary infections. Some published successful
examples and mechanisms of action in this area are discussed;
however, more studies are needed to substantiate this approach. It
is also important to determine the specific probiotics or prebiotics
and the optimal dosage to be used for the purpose of prevention
and for adjuvant therapy in COVID-19 patients. In a practical
sense, studies on the effects of probiotics and prebiotics on
common influenza virus caused respiratory diseases are easier

and may have a broader application. Such studies may also help
us to deal with COVID-19. During SARS-CoV-2 infection in the
respiratory tract and gastrointestinal mucosa, many disorders
occur. Detailed multi-omics studies may be needed to analyze the
changes in the gut and lung during and after the infection.
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