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Pharmacokinetic characterization plays a vital role in drug discovery and development.
Although involving numerous laboratory animals with error-prone, labor-intensive, and
time-consuming procedures, pharmacokinetic profiling is still irreplaceable in preclinical
studies. With physiologically based pharmacokinetic (PBPK) modeling, the in vivo profiles
of drug absorption, distribution, metabolism, and excretion can be predicted. To evaluate
the application of such an approach in preclinical investigations, the plasma
pharmacokinetic profiles of seven commonly used probe substrates of microsomal
enzymes, including phenacetin, tolbutamide, omeprazole, metoprolol, chlorzoxazone,
nifedipine, and baicalein, were predicted in rats using bottom-up PBPK models built
with in vitro data alone. The prediction’s reliability was assessed by comparison with in vivo
pharmacokinetic data reported in the literature. The overall predicted accuracy of PBPK
models was good with most fold errors within 2, and the coefficient of determination (R2)
between the predicted concentration data and the observed ones was more than 0.8.
Moreover, most of the observation dots were within the prediction span of the sensitivity
analysis. We conclude that PBPK modeling with acceptable accuracy may be
incorporated into preclinical studies to refine in vivo investigations, and PBPK modeling
is a feasible strategy to practice the principles of 3Rs.

Keywords: physiologically based pharmacokinetic modeling, 3Rs, preclinical studies, alternative for animal
experiments, bottom-up model

1 INTRODUCTION

The pharmacokinetics study, including examining absorption, distribution, metabolism, and
excretion (ADME) profiles of therapeutic agents, plays a vital role in drug discovery and
development (Prentis et al., 1988). Because of poor extrapolation from in vitro to in vivo
efficacy, pharmacokinetics profiling processes are routinely implemented in the pharmaceutical
industry for early preclinical optimization (Lin and Lu, 1997). However, such processes commonly
involve error-prone, labor-intensive, and time-consuming procedures. Not to mention ethics and the
welfare of laboratory animals. It was estimated that more than 100 million laboratory animals were
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sacrificed for biomedical research annually (Taylor and Alvarez,
2019). Therefore, William Russel and Rex Burch proposed the
3Rs principle (replacement, reduction, and refinement) in 1959
(Vitale et al., 2009; Wachsmuth et al., 2021), attempting to reduce
animal use. The 2010 EU Directive states that animals have
intrinsic values that need to be respected and that animal
experiments should be carefully evaluated in biomedical
research, with animal welfare considerations a top priority.
Currently, the 3Rs have evolved into basic requirements for
researchers to comply with based on animal welfare
legislation. Several non-animal testings, including in vitro and
in silico approaches describing the ADME properties, have also
been developed to achieve high-throughput screening in drug
development. However, unlike understanding the all-inclusive
fate of compounds in the body through animal experiments, these
conventional in vitro methods generally only cover a single-
ADME process (Pelkonen and Turpeinen, 2007; Cascone
et al., 2016). For example, the commonly used in vitro
methods for studying drug absorption (Irvine et al., 1999;
Verhoeckx et al., 2015; Dargó et al., 2019) or metabolism
(Raunio et al., 2004; Hariparsad et al., 2006; Pelkonen and
Turpeinen, 2007; van de Kerkhof et al., 2007), such as artificial
biofilm models, cell models, and microsomal experiments.
Similarly, in silico approaches, including the quantitative
structure–activity relationship construction model (QSAR),
were generally applied to predict the individual biological
activity of candidate compounds such as apparent permeability
(Papp), plasma protein binding rate, and apparent volume of
distribution (Vdss) in the early drug discovery process (Ekins
et al., 2000; Yamashita and Hashida, 2004; Lombardo et al., 2017).
Despite the abundant data sources, a key challenge remains in
correlating the in vitro results of ADME features to establish in
vivo models to reflect the overall disposal.

PBPK modeling was raised back in 1937 and initially applied
in predicting the distribution of environmental compounds in
mammalian tissues (Lindstrom et al., 1974), and further gradually
used for drug exposure prediction, dose extrapolation, and safety
assessment (Andersen et al., 1987; Haddad et al., 2001; Meek
et al., 2013; Li et al., 2021). PBPK modeling is a mathematical
method following the material balance principle to predict the
time course of xenobiotic levels in plasma and tissues based on the
physiochemical and pharmacokinetic parameters of compounds
(Nestorov, 2003). Tremendous progress has been made in PBPK
modeling during the past decade. In addition to the rapidly
gained industrial recognition (Rowland et al., 2011; Miller
et al., 2019), PBPK analysis has also become a routine for the
regulatory authorities, especially the United States Food andDrug
Administration (FDA), upon new drug applications since 2016
(Zhang et al., 2020).

Currently, the PBPK model has been widely used in various
stages of drug development (Chen et al., 2012; Huang et al., 2013),
such as evaluating interspecies differences, drug–drug
interactions (Jin et al., 2022), targeted tissue exposure, and
disease effect (Rostami-Hodjegan and Tucker, 2007; Clewell
and Clewell, 2008; Hans and Ursula, 2009; Rietjens et al.,
2010; Mielke et al., 2011; Ball et al., 2014). In addition to the
top–down modeling, many PBPK models have adopted in vitro

PK parameters for bottom–up modeling or experimental in vivo
parameters for “middle-out” approaches as preliminary
verification and model optimization (Rostami-Hodjegan and
Tucker, 2007; Rietjens et al., 2010; Kostewicz et al., 2014;
Templeton et al., 2018; Chang et al., 2019; Umehara et al.,
2019). Moreover, given some mechanistic reasons (such as
paracellular absorption, active absorption, and targeted
transport), many bottom–up PBPK models still require animal
data (Wagner, 1981; Clewell and Clewell, 2008). For example, the
distribution parameters used in many PBPK models are tissue
partition coefficients or steady state distribution parameters from
in vivo experiments (Harrison and Gibaldi, 1977; Igari et al., 1983;
S et al., 2007; T’jollyn et al., 2018). A few PBPK modelings are
wholly constructed from in vitro parameters without in vivo
parameters to be fitted and optimized, lacking universal
application (Cheng and Ng, 2017). Therefore, constructing a
universal PBPK model entirely only with in vitro data and the
issue of estimating the predicted accuracy in the absence of in vivo
PK data have caused widespread concern recently (Ellison, 2018;
Paini et al., 2019).

To evaluate the feasibility of using PBPK modeling as an
alternative for animal experiments, we developed bottom–up
PBPK models solely with in vitro data using Simcyp®
(Sheffield, United Kingdom) to predict the systemic
disposition of seven commonly used liver microsomal enzyme
probe substrates in rats. The reliability of each prediction was
examined with sensitivity analysis. As a practice of 3Rs, this
proof-of-concept study will shed light on the refinement of
current drug development procedures and may reduce animal
usage in drug development.

2 MATERIALS AND METHODS

2.1 Model Inputs Collection
Typical probe substrates of cytochrome P450 (CYP) 1A2,
CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4/5, and UDP-
glucuronosyltransferase (UGT), namely, phenacetin,
tolbutamide, omeprazole, metoprolol, chlorzoxazone,
nifedipine, and baicalein were used as model drugs. The
in vitro parameters were divided into three categories. Physical
chemistry and blood binding-related parameters include
molecular weight (MW), neutral species octanol: water
partition coefficient (logPo:w), compound type (base/acid/
mono/diprotic/ampholyte), negative decadic logarithm of the
ionization constant of an acid (pKa), blood to plasma partition
ratio (B/P), and fraction unbound in plasma (fu). Distribution is
affected by the free fraction and the lipid solubility of the drug,
which is related to the physiological characteristics mentioned,
such as logPo:w, pKa, and fu. Parameters about absorption include
apparent permeability coefficients (Papp), polar surface area
(PSA), and hydrogen bond donors (HBD). In vivo elimination
can be extrapolated via a well-stirred liver model together with
the parallel tube model (Pang and Rowland, 1977) and the
dispersion model (Iwatsubo et al., 1997) using in vitro
metabolic data, including Michaelis–Menten constant for
metabolism (Km), maximum velocity for metabolism (Vmax),
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and intrinsic clearance (CLint). Various in vitro data of model
drugs collected from different literature and databases
(DrugBank, PubChem, HSDB, TOXNET, etc.) were compiled
in Supplementary Table S1, and the units of each parameter were
uniformly converted.

2.2 Physiologically Based Pharmacokinetic
Modeling
PBPK models were constructed with in vitro data alone using
Simcyp® (Simcyp Rat Version 16, Certara, Sheffield,
United Kingdom). The in vitro parameters used in the PBPK
model are described in Table 1. The first-order one-compartment
model was selected, and the gut was considered as a single
compartment in this model. The permeability-limited
basolateral membrane is assumed to mediate the absorption of
drugs from enterocyte to the intestinal interstitial fluid, and
effective permeability in rat (Peff) was calculated based on its
relationship with Peff in human (Cao et al., 2006), which can be
extrapolated from Papp, obtained from in vitro experiments (Sun
et al., 2002; Tchaparian et al., 2008) or predicted using the PSA
and HBD models (Winiwarter et al., 1998). Initially, our
absorption model adopted the PSA and HBD models. A
minimal PBPK model was selected to predict the volume of
distribution at steady state (Vss) with in vitro parameters of logPo:
w, compound type, and pKa using mechanistic model 2 (Poulin
and Theil, 2002; Berezhkovskiy, 2004; Rodgers et al., 2005;
Rodgers and Rowland, 2007), which is a preset model in
Simcyp. The tissue distribution was predicted using Kp scalar
(tissue: plasma partition coefficient) based on a perfusion-limited
model. The Kp scalar was selected as 1 by default in our model.
The whole organ metabolic clearance pane was selected in the

elimination screen. The liver or intestinal clearance was
extrapolated via in vitro metabolic data.

The drug plasma concentration–time profile and PK
parameters {areas under the concentration–time curve to last
time point [AUC(0–t)], peak plasma concentration (Cmax), and
time to reach Cmax (Tmax)} after orally administered single-dose
of model drugs were predicted. Meanwhile, the PK process of
some model drugs administrated with various doses was
simulated.

2.2.1 Physiologically Based Pharmacokinetic Model
for Phenacetin
The in vitro properties of phenacetin collected from various
literatures and databases are listed in Supplementary Table
S1. The reported fu values ranged from 0.145 to 0.5. The
metabolism of phenacetin by CYP1A2 is biphasic in
microsome experiments (Kahn et al., 1987). Since the hepatic
CLint collected from reported microsome experiments varied
widely (0.086–100 μl/min/mg protein), we selected the median
value of fu (0.3225) and hepatic CLint (27 μl/min/106 cells,
20.7–78 μl/min/106 cells) from hepatocyte experiments as
input values in our model. The in vitro data parameterized in
phenacetin PBPK model are tabulated in Table 2. The simulated
results of phenacetin after oral administration of 20, 10, and
5 mg/kg in rats were evaluated.

2.2.2 Physiologically Based Pharmacokinetic Model
for Tolbutamide
Tolbutamide is mainly eliminated by CYP2C9 in human liver,
and by CYP2C6 and CYP2C11 in rats to produce hydroxyl
tolbutamide. fu of tolbutamide varied from 0.0201 to 0.268
(listed in Supplementary Table S1), with the calculated

TABLE 1 | In vitro parameters used in each module of the PBPK model.

Application module In vitro parameter Unit Acquisition method

Physical chemistry and blood binding MW g/mol Calculation
logPo:w — In vitro measurement
Compound type Base/acid/mono/diprotic/ampholyte Physicocheistry property
pKa — In vitro measurementa

B/P — In vitro measurement
fu — In vitro measurement

Absorption Papp 10−6 cm/s In vitro experimentationb

PSA Å2 Calculation or prediction
HBD — Calculation or prediction

Elimination CLint (liver) μl/min/mg protein In vitro experimentationc

CLint (liver) μl/min/106 cells In vitro experimentationd

Vmax, Km, and fuinc (liver) pmol/min/mg protein, μM In vitro experimentationc

Vmax, Km, and fu,inc (liver) pmol/min/106 cells, μM In vitro experimentationd

CLint (intestine) μl/min/mg protein In vitro experimentatione

CLint (intestine) μl/min/g intestine In vitro experimentationf

Vmax, Km, and fu,inc (intestine) pmol/min/mg protein, μM In vitro experimentatione

Vmax, Km, and fu,inc (intestine) pmol/min/g intestine, μM In vitro experimentationf

In vitro measurement of
aIonization equilibrium constant.
bInclude Caco-2 cell permeability experiment, MDCK II cell permeability experiment, and PAMPA (parallel artificial membrane permeability assay) experiment.
cLiver microsome or liver S9 fraction (a post mitochondrial supernatant model containing both the microsomal enzymes and cytosolic fractions of the cell).
dHepatocyte experimentation.
eIntestinal microsome or intestinal S9 fraction.
fIntestinal slice.
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median value to be 0.048. The CLint ranged between 2.72 and
8.10 μl/min/mg protein from various literatures and the median
of 4.7 μl/min/mg protein was applied in the PBPK model. The
same process was performed for other parameters in Table 2. The
PK parameters of tolbutamide at 50 mg/kg in rats were predicted.

2.2.3 Physiologically Based Pharmacokinetic Model
for Omeprazole
As shown in Supplementary Table S1, various in vitro data were
collected and the deviation of the reported in vitro parameters
from different sources was slight. Omeprazole is rapidly absorbed
in rats and the elimination is almost entirely through hepatic and
intestinal metabolism via CYP2C19 (Regårdh et al., 1985; Paul,
1991). The penetration of omeprazole into the red cells is low with
the value of B/P at 0.6~0.8 and the fu is about 15% in rat plasma.
Similarly, the median values of parameters were calculated for
model construction (Table 2). Plasma concentration over time in
rats following oral administration of omeprazole at 10, 20, and
40 mg/kg was predicted, respectively.

2.2.4 Physiologically Based Pharmacokinetic Model
for Metoprolol
The elimination of metoprolol in vivo is mainly through liver
CYP2D6 in human, leading to extensive first-pass effect and low
bioavailability. In addition to CYP2D6, CYP3A also participates
in the metoprolol metabolism in rats. As shown in
Supplementary Table S1, fu ranged from 0.8 to 0.925, the
range of CLint [liver microsomes (LM)] was 17.1–59.9 μl/min/
mg protein and the range of CLint [intestine microsomes (IM)]
was 7.37–14.7 μl/min/mg protein. The median value of varied
parameters was calculated as input parameters in Table 2. The
disposition process of metoprolol in rats after oral administration
of 2.5, 5, and 20 mg/kg was predicted.

2.2.5 Physiologically Based Pharmacokinetic Model
for Chlorzoxazone
Chlorzoxazone is the probe substrate of CYP2E1. As shown in
Supplementary Table S1, the value of fu ranged from 0.046 to
0.373 and the CLint was from 5.00 to 38.8 μl/min/mg protein. The

value of other parameters collected from different sources was
relatively consistent. Similarly, the median value was taken as the
input value in Table 2. Since a dose of 50 mg/kg was frequently
used in the PK studies of chlorzoxazone in rats, the PK
parameters of chlorzoxazone following oral administration of
50 mg/kg were predicted.

2.2.6 Physiologically Based Pharmacokinetic Model
for Nifedipine
Nifedipine is mainly metabolized by CYP 3A1/2 in human and
CYP 3A4/5 in rats. As shown in Supplementary Table S1, the
value of fu was 0.01–0.08, and the median value was calculated for
input. The clearance of nifedipine was found related to
concentration (Iwao et al., 2002). The CLint in the liver was
159 μl/min/mg protein when the concentration was 1–5 μM,
which was reduced to 119 μl/min/mg protein when the
concentration ranged from 5 to 100 μM and eventually
dropped to 10 μl/min/mg protein with concentration higher
than 100 μM. The value of CLint of small intestinal metabolism
was estimated at 6.4 μl/min/mg protein when the concentration
was lower than 5 μM and reduced to 2.8 μl/min/mg protein as the
concentration was increased to 100 μM. Since the concentration
in the liver was unlikely to be higher than 100 μM, the median of
hepatic CLint was calculated to be 139 μl/min/mg protein with the
ignorance of the lowest value at 10 μl/min/mg protein. The
median of CLint of small intestinal metabolism was also
calculated for the PBPK model (Table 2). The PK parameters
of nifedipine in rats after oral administration of 3, 5, and 6 mg/kg
were predicted.

2.2.7 Physiologically Based Pharmacokinetic Model
for Baicalein
Baicalein, a bioactive flavonoid presented in the root of Scutellaria
baicalensis, is isolated from traditional Chinese medicine “Huang
Qin.” Baicalein was reported to be subjected to extensive first-
pass metabolism due to the conjugated process by UGT in the
liver and intestine. Few in vitro data were reported (listed in
Supplementary Table S1), and the median value was calculated
for model construction (shown in Table 2). The PK parameters of

TABLE 2 | Input parameters in the PBPK models.

Parameter/Compound Phenacetin Tolbutamide Omeprazole Metoprolol Chlorzoxazone Nifedipine Baicalein

MW (g/mol) 179.2 270.35 345.42 267.4 169.56 346.3 270.24
logPo:w 1.58 2.34 2.23 2.06 1.6 2.2 1.7
Compound type Neutral Monoprotic acid Ampholyte Monoprotic base Monoprotic acid Monoprotic base Monoprotic acid
pKa1 / 5.16 8.8 9.7 8.3 2.82 5.4
pKa2 / / 4.2 / / / /
B/P 1 1.33 0.66 1 1.22 0.59 1.27
fu 0.32 0.048 0.19 0.86 0.27 0.038 0.054
PSA (Å2) 38.33 80.65 86.7 50.7 38.3 110 87
HBD 1 2 1 2 1 1 3
CLint (LM) (µl/min/mg protein) 27 (μl/min/106 cells) 4.7 158 32 14.9 139 436
CLint (IM) (µl/min/mg protein) / / / 10.5 / 6.4 298
Vmax (IM) (pmol/min/mg) 0.25 / 780 / / / /
Km (IM) (µM) 56.7 / 6.97 / / / /
fu inc (IM) 1 / 1 / / / /

“/” means no input value exists.
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baicalein in rats after oral administration of 121 mg/kg were
predicted.

2.3 Pharmacokinetic Data
PK parameters (AUC(0–t), Cmax, and Tmax) of model drugs in
rats orally administrated with a different single-dose of the
drugs were assembled from the literature. The AUC(0–t), Cmax,
and Tmax units were unified as μg·h/ml, μg/ml, and h,
respectively. The observed drug plasma concentration–time
data were extracted from concentration–time course curves
using the GetData software (version 2.24, http://getdata-
graph-digitizer.com). Multiple records of PK parameters of
model drugs were summarized in Supplementary Table S2,
showing significant variations on PK parameters, with those of
reasonable trend from different doses selected to validate
prediction accuracy. For example, it was found that the PK
parameters of tolbutamide from the literature varied
considerably. Interestingly, the values of Cmax and AUC(0–t)

at high doses were lower than low doses for some records (Cmax:
91.1–151 μg/ml at 20 mg/kg vs. 40.46 μg/ml at 30 mg/kg,
AUC(0–t): 761.7217–1,393 μg·h/ml at 20 mg/kg vs. 183.
88 μg·h/ml at 20 mg/kg), and Tmax also varied greatly (0.

89–7.1 h). The relatively consistent PK value at a 50 mg/kg
dose was finally selected for the tolbutamide PBPK model
accuracy evaluation. Meanwhile, it is difficult to detect
baicalein’s plasma concentration because of the complicated
in vivo disposition, poor bioavailability, and extensive
metabolism, leading to a considerable variation among the
PK parameters. The ones after oral administration of
121 mg/kg were selected due to relatively consistent values
(shown in Supplementary Table S2). Moreover, it was found
to be partly due to the species, age, and gender differences of the
rats and formulations. For example, it was reported that the
AUC(0–t) and Cmax of metoprolol were 5–7 times higher and
2 times higher in DA (Dark Agouti) rats and Sprague–Dawley
rats, respectively, than those in Wistar rats after oral
administration of 5 mg/kg (Belpaire et al., 1990; Komura and
Iwaki, 2005; Wang et al., 2014; Ma et al., 2015; Sun et al., 2017).
The AUC(0–t) of baicalein was 11.7 times higher after oral
administration of baicalein–nicotinamide nano-cocrystals
than coarse powder, 7.1 times higher than that of baicalein
nanocrystals, and 1.8 times higher than that of
baicalein–nicotinamide cocrystals (Pi et al., 2019). As a
result, our PBPK model was constructed using male

FIGURE 1 | Influence of fu and CLint (hepatocytes) on the predicted Tmax (A), AUC(0–t) (B), Cmax (C), and plasma concentration–time profile (D) of the phenacetin
PBPK model. Each color in the 3D plots in (A–C) represents a prediction range.
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Sprague–Dawley rats as the model animal with coarse powder
form selected.

2.4 Sensitivity Analysis
As shown in Supplementary Table S1, physical chemistry
properties such as logPo:w, compound type, pKa, and B/P and the
predicted or calculated properties (MW, PSA, and HBD) were
commonly consistent, while the fu and CLint (LM or hepatocytes)
values obtained from the literature varied. To further explore the
reliability of the PBPK model, the effect of fu and CLint (LM or
hepatocytes) was investigated. The sensitivity analysis of fu and CLint
(LM or hepatocytes) was determined via comparing the predicted
results of PBPK models, which were constructed using the range
values of fu and CLint (LM or hepatocytes) with all the other factors
maintained constant. The uncertainty range of the PBPKmodel was
defined as the predicted range of the PK parameters in the sensitivity
analysis. The sensitivity results were plotted via Simcyp and showed
in Figures 1–7. In order tomake the 3D plots in A–C in Figures 1–7
more clearly distinguished, the predicted values were divided into
5–8 range values at the same interval, and each range was displayed
as a color. Since the colors are numerous and have no special
meaning, they are not specifically listed in the figures.

2.5 Model Validation
To verify the prediction accuracy of the PBPK model, we
compared the predicted parameters with the experimental
data, and fold error was introduced to measure the deviation.
The fold error is the ratio between the predicted PK parameters
and the corresponding observed values (shown in Eqs. 1, 2). The
accuracy of the prediction results increases as the fold error
decreases. The simulation is considered acceptable with a fold
error of less than 2 (De Buck et al., 2007; Yamazaki et al., 2011).

fold error � observed parameter

predicted parameter
; if observed value>predicted value

(1)
fold error � predicted parameter

observed parameter
; if predicted value> observed value.

(2)

2.6 Model Performance
R2, mean absolute error (MAE), and root mean squared error
(RMSE) were applied to evaluate the overall performance of the
PBPKmodel. The equations are presented as follows (Eqs. 3–5). The
lower the value of MAE and RMSE and the closer of R2 to 1, the

FIGURE 2 | Influence of fu and CLint (LM) on the predicted Tmax (A), AUC(0–t) (B), and Cmax (C) and plasma concentration–time profile (D) of tolbutamide. Each color
in the 3D plots in (A–C) represents a prediction range.
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better the performance of the PBPK model. The performance of the
models was plotted using the GraphPad Prism software (version 6).

R2 � 1 − ∑i(x i − yi)2∑i(xi − �x)2 , (3)

MAE � ∑N
1

∣∣∣∣xi − yi

∣∣∣∣
N

, (4)

RMSE �
�����������∑N

1 (xi − yi)2
N

√
. (5)

xi and yi are the observed and the predicted concentrations,
respectively, ‾x is the average of the observed values, and ‾N is the
number of data points.

3 RESULTS

3.1 Physiologically Based Pharmacokinetic
Model-Predicted Results
PBPK models for probe drugs (phenacetin, tolbutamide,
omeprazole, metoprolol, chlorzoxazone, nifedipine, and baicalein)

were constructed using in vitro parameters (MW, logPo:w,
compound type, pKa, B/P, fu, PSA, HBD, CLint, Vmax, Km, and
fu,inc). The predicted results of each drug were presented later, and
the PK curves are displayed in Supplementary Figures S1–S7.

3.1.1 Phenacetin
The predicted results of the phenacetin PBPKmodel are shown in
Table 3. Although the predicted Cmax was slightly higher than the
observed one with the fold error of 1.93 at 5 mg/kg, the fold error
values were all within the threshold of 2, indicating good
simulation performance. Meanwhile, the predicted data were
slightly higher than the observed ones at 5 mg/kg, while other
observed points were around the predicted values at 10 and
20 mg/kg (Supplementary Figure S1). It could be concluded that
the experimental CLint value used in the model was
underestimated at 5 mg/kg.

3.1.2 Tolbutamide
The prediction results are listed in Table 4. The fold error values
were all less than 2 with the observed data around the predicted
curve (Supplementary Figure S2), suggesting acceptable
prediction accuracy.

FIGURE 3 | Influence of fu and CLint (LM) on the predicted Tmax (A), AUC(0–t) (B), and Cmax (C) and plasma concentration-time profile (D) of the omeprazole PBPK
model. Each color in the 3D plots in (A–C) represents a prediction range.

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8955567

Yuan et al. Practice the Principles of 3Rs

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


3.1.3 Omeprazole
The predicted PK parameters of the omeprazole PBPK model
were compared with the multiple records of experimental
parameters (shown in Table 5). Although a few predicted
values were slightly lower than the observed ones, most fold
errors fell within 2, indicating good predicted accuracy.
Supplementary Figure S3 showed that most of the predicted
points were around the observed concentration–time profile.

3.1.4 Metoprolol
The fold errors of the predicted parameters of the metoprolol
PBPK model are evaluated in Table 6. The values of fold error in
the 10 mg/kg group were less than 2, and the trend of the observed
data coordinated the predicted profile (Supplementary Figure S4),
indicating good simulation performance. Overall, all predicted
concentration curves were slightly higher than the observation
points, which is contributed by underestimating distribution and
elimination.

3.1.5 Chlorzoxazone
The predicted results of the chlorzoxazone PBPK model are
tabulated in Table 7. Most fold errors of predicted parameters

were larger than 2. The predicted curve was higher and deviated
from the observed data (Supplementary Figure S5), which could
be related to the underestimation of distribution and elimination.
The influence of the two characteristics on the PBPK model will
be further explored in the sensitivity analysis.

3.1.6 Nifedipine
The predicted results of the nifedipine PBPK model are shown in
Table 8. The fold error of Cmax and AUC(0–t) mainly were within
2, indicating acceptable prediction performance. Although the
difference between predicted Tmax and the observed values was
more than 2 times (2.16 times), with a significant individual
variation between the measured values of Tmax (0.08–1.5 h), the
fold errors of Cmax and AUC(0–t) were within 2, indicating good
prediction accuracy. As shown in Supplementary Figure S6, the
predicted concentration curve was slightly shifted due to the
difference in Tmax at 5 mg/kg, while the observed dots were close
to the predicted ones at 3 and 6 mg/kg.

3.1.7 Baicalein
The simulation results are shown in Table 9. The predicted curve
is shown in Supplementary Figure S7. Although the predicted

FIGURE 4 | Influence of fu and CLint (LM) on the predicted Tmax (A), AUC(0–t) (B), Cmax (C), and plasma concentration–time profile (D) of themetoprolol PBPKmodel.
Each color in the 3D plots in (A–C) represents a prediction range.
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Cmax was slightly lower than the observed one, the fold errors
were within 2. The observed PK data spread around the predicted
profile, suggesting good prediction performance.

3.2 Sensitivity Analysis
The sensitivity analysis of fu and CLint (LM or hepatocytes) was
evaluated with other factors maintained constant. The variation
spans of fu and CLint (LM or hepatocytes) from various literatures
are listed in Table 10. The uncertainty of the PBPK model-
predicted results was estimated based on the range of fu and CLint
(LM or hepatocytes) obtained from various literatures.

3.2.1 Phenacetin
The sensitivity analysis of fu (0.145–0.5) and CLint (hepatocytes:
20.7–78 μl/min/106 cells) for the phenacetin PBPK model was
performed at 10 mg/kg (shown in Figure 1). The predicted value
of Tmax, Cmax, and AUC(0–t) ranged from 0.18 to 0.28 h, 1.93 to
15.74 μg/ml, and 1.10 to 14.25 μg·h/ml, respectively. Most
concentration points are within the uncertainty range.

3.2.2 Tolbutamide
The sensitivity analysis of fu (0.0201–0.268) and CLint (LM:
2.72–8.1 μl/min/mg protein) was investigated for the
tolbutamide PBPK model at 50 mg/ml (shown in
Figure 2). As a result, the predicted Tmax, Cmax, and
AUC(0–t) ranged from 0.32 to 0.71 h, 152.72 to 260.15 μg/
ml, and 231.67 to 4,587.60 μg·h/ml, respectively. The
observed points were in the area between the median
prediction curve and the lowest prediction curve (CLint =
8.1 μl/min/mg protein, fu = 0.27).

3.2.3 Omeprazole
The range of fu (0.105–0.232) and CLint (LM: 119–188 μl/min/mg
protein) was applied for the sensitivity analysis of the omeprazole
PBPK model at 10 mg/kg (shown in Figure 3). The results
showed that the predicted Tmax, Cmax, and AUC(0–t) ranged
from 0.38 to 0.46 h, 0.21 to 0.77 μg/ml, and 0.26 to 0.98 μg·h/
ml, respectively. As shown in Figure 3D, most observation dots
were in the sensitivity prediction range.

FIGURE 5 | Influence of fu and CLint (LM) on the predicted Tmax (A), AUC(0–t) (B), Cmax (C), and plasma concentration–time profile (D) of the chlorzoxazone PBPK
model. Each color in the 3D plots in (A–C) represents a prediction range.
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3.2.4 Metoprolol
The sensitivity analysis of fu (0.80–0.925) and CLint (LM:
17.1–59.9 μl/min/mg protein) was determined for the
metoprolol PBPK model at 2.5 mg/kg in Figure 4. The
predicted range of Tmax, Cmax, and AUC(0–t) were 0.54–0.79 h,
0.15–0.28 μg/ml, and 0.25–1.02 μg·h/ml, respectively. It is
illustrated in Figure 4D that the observation data were close
to the lowest predicted curve.

3.2.5 Chlorzoxazone
Sensitivity analysis of the chlorzoxazone PBPK model was
performed at 50 mg/kg with the fu ranging from 0.046 to
0.373 and CLint (LM) from 5 to 38.8 μl/min/mg protein
(shown in Figure 5). The results showed the predicted Tmax,
Cmax, and AUC(0–t) ranged from 0.29 to 0.70 h, 37.69 to
199.27 μg/ml, and 34.69 to 1970.18 μg·h/ml, respectively. The
observation dots were around the lowest prediction curve
(Prediction_Minimum limitation curve), as shown in Figure 5D.

3.2.6 Nifedipine
The sensitivity analysis of fu (0.01–0.08) and CLint (LM:
35.18–402 μl/min/mg protein) was investigated for the
nifedipine PBPK model at 3 mg/kg (shown in Figure 6). The
predicted Tmax, Cmax, and AUC(0–t) ranged from 0.36 to 1.20 h,
0.51 to 7.40 μg/ml, and 0.52 to 47.27 μg·h/ml, respectively. The
observation points were centered on the median prediction curve,
as shown in Figure 6D.

3.2.7 Baicalein
The sensitivity analysis of fu and CLint (LM) was performed
with the range from 0.029 to 0.0791 and 338.9 to 574.11 μl/
min/mg protein for the baicalein PBPK model at 121 mg/kg
(shown in Figure 7). The results showed the predicted Tmax,
Cmax, and AUC(0–t) ranged from 0.19 to 0.36 h, 0.59 to 2.08 μg/
ml, and 0.51 to 2.36 μg·h/ml, respectively. As illustrated in
Figure 7D, observation dots were within the sensitivity
prediction range.

FIGURE 6 | Influence of fu and CLint (LM) on the predicted Tmax (A), AUC(0–t) (B), Cmax (C), and plasma concentration–time profile (D) of the nifedipine PBPKmodel.
Each color in the 3D plots in (A–C) represents a prediction range.
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3.3 Physiologically Based Pharmacokinetic
Model Performance
The fold errors are summarized in Figure 8. Furthermore, to
evaluate the overall performance of the PBPK model, we
compared the prediction concentration data with the observed
ones (n = 390, shown in Figure 9). Moreover, the prediction

performance of the PBPK model with absorption module using
PSA and HBD was compared with that using Papp from in vitro
experiments (Caco-2 experimentation). The input of Papp was
also applied to the median data of the various values. As shown in
Table 11, the model performance using PSA and HBD, with a
lower value of MAE and RMSE and higher value of R2, was better

FIGURE 7 | Influence of fu and CLint (LM) on the predicted Tmax (A), AUC(0–t) (B), Cmax (C), and plasma concentration–time profile (D) of the baicalein PBPK model.
Each color in the 3D plots in (A–C) represents a prediction range.

TABLE 3 | Comparison between the predicted and the observed PK parameters of the phenacetin PBPK model.

Dose Tmax (h) Cmax (μg/ml) AUC(0–t) (μg•h/ml) Reference

5 mg/kg Prediction 0.25 3.34 2.47 —

Observation 0.33–0.50 1.73 1.52 Zhou et al. (2014)
Fold error 1.31–2.00 1.93 1.62 —

10 mg/kg Prediction 0.25 6.69 4.95 —

Observation 1 0.50 6.28 ± 1.94 9.79 ± 3.58 Ma et al. (2015)
Fold error 1.98 1.07 1.98 —

Observation 2 — 3.94 ± 0.81 4.69 ± 0.86 Sun et al. (2017)
Fold error — 1.70 1.06 —

20 mg/kg Prediction 0.25 13.37 9.90 —

Observation 0.25 9.00 13.12 Welch et al. (1976)
Fold error 1.01 1.49 1.33 —
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than using Papp from Caco-2 experimentation. As displayed in
Figure 9B, prediction 1 was closer to the correlation line with
most dots within the ±20% of the observed concentration,
indicating the overall good performance of PBPK model
construction using the PSA and HBD methods.

4 DISCUSSION

While collecting in vitro parameters, we noticed the fu and CLint
from different sources varied; therefore, the median values were
applied to construct the model. A sensitivity analysis was performed
to further explore the impact of these two parameters on the model
prediction accuracy. The overall predicted accuracy of PBPKmodels
using the median value was good with most fold errors within 2, and
the R2 between the predicted concentration data and the observed

data was more than 0.8 (Figures 8, 9). However, there was an
exception that the chlorzoxazone PBPK model using median data
was not satisfying with the prediction results, which is 2 times higher
than the observed ones. It could be related to the underestimated
distribution and clearance. In terms of the sensitivity analysis, the
observed points were closest to the lowest prediction curve with the
highest CLint (38.8 μl/min/mg protein) and fu 0.373 (Moon et al.,
2003; Baek et al., 2006). The lowest prediction parameters of Tmax,
Cmax, and AUC(0–t) were 0.29 h, 37.69 μg/ml, and 34.69 μg·h/ml,
respectively. Moreover, most of the fold errors were within 2
(observation 1–3), indicating good prediction accuracy. Similarly,
the prediction result of metoprolol using the median PBPK model
was also slightly higher at 2.5 mg/kg, and the observed data was close
to the lowest predicted curve. The prediction Tmax, Cmax, and
AUC(0–t) of the metoprolol PBPK model using highest
experimental CLint (59.9 μl/min/mg) and fu (0.93) at 2.5 mg/kg

TABLE 4 | Comparison between the predicted PK parameters of the tolbutamide PBPK model and the observed PK parameters at 50 mg/kg.

50 mg/kg p.o. Tmax (h) Cmax (μg/ml) AUC(0–t) (μg•h/ml) Reference

Prediction 1.38 206.74 1965.99 —

Observation 1 0.91 ± 0.37 232.00 ± 35.00 1,309.00 ± 40.00 Nishimura et al. (1999)
Fold error 1.51 1.12 1.50 —

Observation 2 1.42 ± 0.56 176.00 ± 37.20 1,228.00 ± 153.00 Nishimura et al. (1998)
Fold error 1.03 1.17 1.60 —

TABLE 5 | Comparison between the predicted PK parameters of the omeprazole PBPK model and the observed PK parameters.

Dose Tmax (h) Cmax (μg/ml) AUC(0–t) (μg•h/ml) Reference

10 mg/kg Prediction 0.42 0.31 0.38 —

Observation 1 0.36 ± 0.22 0.44 ± 0.12 0.59 ± 0.14 Jia et al. (2006)
Fold error 1.16 1.40 1.55 —

Observation 2 0.10 ± 0.10 0.33 ± 0.01 0.47 ± 0.13 Ma et al. (2015)
Fold error 4.20 1.07 1.24 —

Observation 3 0.21 ± 0.02 0.50 ± 0.12 0.29 ± 0.07 Kazuhide et al. (1994)
Fold error 2.00 1.60 1.32 —

Observation 4 1.13 ± 0.18 1.13 ± 0.16 Sun et al. (2017)
Fold error 3.60 2.97 —

20 mg/kg Prediction 0.40 0.81 0.96 —

Observation 1 0.25 ± 0.02 1.43 ± 0.38 0.86 ± 0.15 Kazuhide et al. (1994)
Fold error 1.58 1.77 1.11 —

Observation 2 0.25 ± 0.00 1.01 ± 0.17 0.73 ± 0.06 Watanabe et al. (2002)
Fold error 1.58 1.25 1.31 —

Observation 3 0.50 ± 0.00 2.01 ± 0.14 1.50 ± 0.08 Singh and Asad (2010)
Fold error 1.26 2.49 1.57 —

40 mg/kg Prediction 0.37 2.88 3.26 —

Observation 1 0.29 ± 0.22 2.11 ± 0.99 1.57 ± 0.54 Lee et al. (2009)
Fold error 1.27 1.36 2.08 —

Observation 2 0.17 ± 0.09 2.61 ± 0.55 2.10 ± 0.93 Young et al. (2007)
Fold error 2.23 1.10 1.55 —

Observation 3 0.68 ± 0.82 2.66 ± 2.00 3.08 ± 1.44 Lee et al. (2007b)
Fold error 1.82 1.08 1.06 —

Observation 4 0.35 ± 0.39 3.30 ± 1.65 2.27 ± 1.07 Lee et al. (2006)
Fold error 1.06 1.15 1.44 —

Observation 5 0.27 ± 0.02 2.44 ± 0.63 2.26 ± 0.52 Kazuhide et al. (1994)
Fold error 1.38 1.18 1.44 —

Observation 6 0.10 ± 0.06 4.89 ± 1.33 1.98 ± 0.60 Lee et al. (2007c)
Fold error 3.58 1.70 1.64 —

Observation 7 0.35 ± 0.32 2.43 ± 1.17 1.92 ± 0.88 Lee et al. (2007a)
Fold error 1.05 1.18 1.70 —
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were 0.53 h, 0.15 μg/ml, and 0.25 μg·h/ml, respectively and the fold
errors were within 2 (Belpaire et al., 1989; Yoon et al., 2011). These
results suggest that applying the PBPK model using in vitro

parameters in the early screening of candidate compounds is
feasible and helpful, and the prediction accuracy of the model is
related to the in vitro parameters, especially fu and CLint. It is worth

TABLE 6 | Comparison between the predicted PK parameters of metoprolol PBPK models and the observed PK parameters at different doses.

Dose Tmax (h) Cmax (μg/ml) AUC(0–t) (μg•h/ml) Reference

2.5 mg/kg Prediction 0.65 0.21 0.51 —

Observation 1 0.50 ± 0.00 0.16 ± 0.00 0.21 ± 0.02 Nandi et al. (2013)
Fold error 1.30 1.27 2.39 —

Observation 2 0.47 ± 0.07 0.16 ± 0.01 0.22 ± 0.02 Nandi et al. (2015)
Fold error 1.37 1.29 2.28 —

5 mg/kg Prediction 0.65 0.41 1.01 —

Observation 0.50 0.40 0.45 Komura and Iwaki (2005)
Fold error 1.30 1.04 2.25 —

10 mg/kg Prediction 0.65 0.83 2.02 —

Observation 1 0.60 ± 0.30 0.57 ± 0.25 1.66 ± 0.58 Ma et al. (2015)
Fold error 1.08 1.45 1.22 —

Observation 2 0.70 ± 0.50 0.81 ± 0.28 1.35 ± 0.59 Wang et al. (2014)
Fold error 1.08 1.02 1.50 —

Observation 3 — 0.53 ± 0.066 1.49 ± 0.39 Sun et al. (2017)
Fold error — 1.56 1.35 —

TABLE 7 | Comparison between the predicted PK parameters of the chlorzoxazone PBPK model and the observed PK parameters at 50 mg/kg.

50 mg/kg p.o. Tmax (h) Cmax (μg/ml) AUC(0–t) (μg•h/ml) Reference

Prediction 0.40 68.66 124.78 —

Observation 1 0.25 (0.25–0.50) 23.10 ± 8.59 41.67 ± 8.48 Ahn et al. (2008)
Fold error 1.58 2.97 2.99 —

Observation 2 0.14 ± 0.08 31.80 ± 13.10 46.83 ± 16.00 Baek et al. (2006)
Fold error 2.85 2.16 2.66 —

Observation 3 0.10 ± 0.06 30.50 ± 8.17 39.83 ± 4.08 Baek et al. (2006)
Fold error 3.81 2.25 3.13 —

TABLE 8 | Comparison between the predicted PK parameters of nifedipine PBPK models and the observed PK parameters at different doses.

Dose Tmax (h) Cmax (μg/ml) AUC(0–t) (μg•h/ml) Reference

3 mg/kg Prediction 0.54 2.13 3.18 —

Observation 1 0.25 (0.08–0.50) 2.00 ± 0.68 2.23 ± 0.42 Choi and Lee (2012)
Fold error 2.16 1.07 1.42 —

Observation 2 0.47 ± 0.03 2.46 ± 0.29 4.30 ± 0.45 He et al. (2014)
Fold error 1.14 1.15 1.35 —

Observation 3 0.25 1.48 ± 0.38 2.84 ± 0.19 Kim et al. (1997)
Fold error 2.16 1.44 1.12 —

Observation 4 0.58 ± 0.13 1.68 ± 0.58 3.38 ± 0.60 Wang et al. (2011)
Fold error 1.07 1.27 1.06 —

5 mg/kg Prediction 0.54 3.56 5.30 —

Observation 1 0.38 ± 0.06 1.76 ± 0.20 2.72 ± 0.34 Mutsunobu et al. (2004)
Fold error 1.42 2.02 1.95 —

Observation 2 0.25 (0.12–0.50) 1.95 ± 0.26 2.73 ± 0.40 Ikehata et al. (2008)
Fold error 2.16 1.82 1.94 —

Observation 3 0.25 (0.12–1.50) 1.96 ± 0.23 3.75 ± 0.63 Ikehata et al. (2008)
Fold error 2.16 1.81 1.41 —

Observation 4 0.25 (0.12–1.00) 2.56 ± 0.23 4.38 ± 0.29 Ikehata et al. (2008)
Fold error 2.16 1.39 1.21 —

6 mg/kg Prediction 0.54 4.27 6.36 —

Observation 1 0.38 (0.20–0.57) 5.23 (4.55–6.01) 5.75 (4.72–6.98) Grundy et al. (1998)
Fold error 1.41 1.23 1.11 —

Observation 2 0.28 (0.16–0.40) 5.88 (3.33 ± 10.40) 5.90 (4.73–7.35) Grundy et al. (1997)
Fold error 1.94 1.38 1.08 —
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noting that there is a potential correlation between fu andCLint under
physiological conditions, which likewise may unnaturally increase
the variability in predicted values. Furthermore, since the effect of fu
on CLint might be poorly investigated and difficult to obtain from
previous studies, the impact of such correlation on the variability of
predicted values remains to be further explored.

In the sensitivity analysis, we summarized the variation span of
the experimental in vitro parameters and prediction PK parameters
in Table 10. Except for nifedipine (fold error of the observed Tmax

was 3.3), the variation of prediction Tmax in the sensitivity analysis of
other drugs was slight, meaning that the experimental difference of fu

and CLint had little impact on Tmax compared with Cmax and
AUC(0–t). Compared with phenacetin, omeprazole, metoprolol,
and baicalein, the experimental variation of fu or CLint of
nifedipine, chlorzoxazone, and tolbutamide is relatively large (fold
errors of fu or CLint > 8), which led to a large variation span in the
sensitivity analysis with the fold errors of Cmax or AUC(0–t) more
than 10. Meanwhile, the variation of both fu and CLint was higher
than 3, resulting in significant fold errors of Cmax and AUC(0–t)

(>8.0). Moreover, inflection points were noted in the change trend
graph of fu and CLint of phenacetin, nifedipine, chlorzoxazone, and
tolbutamide shown in the figure of sensitivity analysis, with the
prediction value significantly fluctuating around. Therefore,
sensitivity analysis is necessary for model construction. That is to
say, when the in vitro parameters are close to the inflection point,
extra attention should be paid to the PBPK model construction.

In addition to using the PSA and HBD methods to predict the
absorption of model drugs in the PBPK model, we also explored
the prediction accuracy of the PBPKmodel using Papp from in vitro
experiments such as Caco-2 experimentation. Interestingly, the
results showed that the overall prediction performance of PBPK
models using the PSA and HBD methods was better. It could be
related to defects in the in vitro absorption experiments, such as the
inability to simulate the dynamic flow of fluids in the body, the lack
of mucus layer, the more minor tight junctions, and the thicker
unstirred water layer. These may cause the Papp to not to truly
simulate the diffusion of drugs in vivo and thus cannot truly predict
the drug absorption degree in the body.

It is worth mentioning that the PBPK model using in vitro
parameters is beneficial to drug development, and the more
accurate the value of in vitro parameters, the better fit the model.

TABLE 9 | Comparison between the predicted PK parameters of the baicalein PBPK model and the observed PK parameters at 121 mg/kg.

121 mg/kg p.o. Tmax (h) Cmax (μg/ml) AUC(0–t) (μg•h/ml) Reference

Prediction 0.24 1.05 0.98 —

Observation 1 0.17 ± 0.00 1.24 ± 0.78 0.79 ± 0.08 Zhang et al. (2011)
Fold error 1.44 1.19 1.25 —

Observation 2 0.17 ± 0.00 1.67 ± 0.85 0.79 ± 0.08 Huang et al. (2014)
Fold error 1.44 1.60 1.25 —

TABLE 10 | Variation span of the experimental in vitro parameters and prediction PK parameters in the sensitivity analysis.

fu CLint (μl/min/mg) Tmax(h) Cmax (μg/ml) AUC(0–t) (μg•h/ml)

Phenacetin 0.14–0.50 20.70–78.00 0.18–0.28 1.93–15.74 1.10–14.25
Fold range 3.45 3.77 1.56 8.16 12.95
Omeprazole 0.10–0.23 119.00–188.00 0.38–0.46 0.21–0.77 0.26–0.98
Fold range 2.21 1.58 1.21 3.67 3.77
Nifedipine 0.01–0.08 35.18–402 0.36–1.20 0.51–7.40 0.52–47.27
Fold range 8.00 11.43 3.33 14.51 90.90
Chlorzoxazone 0.05–0.373 5.00–38.80 0.29–0.70 37.69–199.27 34.69–1970.18
Fold range 8.11 7.76 2.41 5.29 56.79
Metoprolol 0.80–0.92 17.10–59.90 0.54–0.79 0.15–0.28 0.25–1.02
Fold range 1.16 3.50 1.46 1.87 4.08
Baicalein 0.03–0.08 338.90–574.11 0.19–0.36 0.59–2.08 0.51–2.36
Fold range 2.73 1.69 1.89 3.53 4.63
Tolbutamide 0.02–0.27 2.72–8.10 0.32–0.71 152.72–260.15 231.67–4587.60
Fold range 13.33 2.98 2.22 1.70 19.80

FIGURE 8 | Fold errors of the PK parameters from the PBPK models of
phenacetin, tolbutamide, omeprazole, metoprolol, chlorzoxazone, nifedipine,
and baicalein. The three lines in each parameter represent mean with 95%
confidence interval and the black dotted line across the fold error = 2
represent evaluation criteria.
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However, the model compounds we applied were BCS
(biopharmaceutics classification system) class II drugs, exhibited
linear absorption and primarily cleared via metabolism. Therefore,
our models were appropriate to the PK prediction of chemicals not
affected by transporters such as P-gp (p-glycoprotein) efflux
transporter. For other compounds with complex drug metabolism
characteristics, using in vitro parameters alone to construct a PBPK
model and the prediction accuracy still require further research and
validation. Moreover, in recent years, with the development of
computer technology and in vitro experiments, the contribution of
PBPK models to advancing 3Rs in new drug development is
undoubtedly a hot topic of discussion. Since rodents were widely
used in preclinical pharmacological experiments, this study used rats
as the model animal when constructing PBPK models based on
in vitro parameters. It is expected that animal experiments can be
reduced in the early stage of drug development with the validation of
the feasibility and reliability of the models. However, due to the
differences in physiological parameters of other species, the
construction of their PBPK models needs further exploration and
optimization, and due to the complexity of the human body, whether
this method can be directly applied to predict the pharmacokinetic
characteristics of candidate compounds in the humans and the
reliability of the predicted results still need further exploration.

5 CONCLUSION

In our study, bottom–up PBPK models constructed with in vitro data
were developed, andpopular probe substrateswere used asmodel drugs.

Most of the fold errors between the observed PKdatawith the predicted
ones were within the threshold of 2, indicating good prediction
accuracy. The influence of in vitro data was comprehensively
analyzed, and results supported that the model accuracy is related to
the precision of the in vitro data. Moreover, most of the observed PK
data is within the uncertainty range, and R2 is more than 0.8, indicating
the applicability of the PBPKmodel in the absence of in vivo data in the
early drug development. In conclusion, a strategy of the bottom–up
PBPK model with the quantity of an uncertainty range is constructed,
which helps reduce animal experiments and is a good practice of 3Rs in
the early screening of candidate compounds.
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FIGURE 9 | (A) Observed concentration vs. predicted concentration (n = 390) based on the PBPK model with the absorption module using the PSA and HBD
models (prediction 1) and the PBPK model using Papp from Caco-2 experimentation (prediction 2), blue box: ±20% of the observation concentration; (B) graph zoomed
at 0–10 μg/ml.

TABLE 11 | Performance of the PBPK model with absorption module using PSA
and HBD (prediction 1) and PBPK model using Papp from Caco-2
experimentation (prediction 2).

Performance R2 MAE RMSE

Prediction 1 0.82 3.30 10.64
Prediction 2 0.58 4.99 16.01
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