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The transcription factor, sterol regulatory element binding protein 1 (SREBP-1), plays
important roles in modulating the proliferation, metastasis, or resistance to antitumor
agents by promoting cellular lipid metabolism and related cellular glucose-uptake/Warburg
Effect. However, the underlying mechanism of SREBP-1 regulating the proliferation or
drug-resistance in lung squamous cell carcinoma (LUSC) and the therapeutic strategies
targeted to SREBP-1 in LUSC remain unclear. In this study, SREBP-1 was highly
expressed in LUSC tissues, compared with the paired non-tumor tissues (the para-
tumor tissues). A novel small-molecule inhibitor of SREBP-1, MSI-1 (Ma’s inhibitor of
SREBP-1), based on natural product monomers, was identified by screening the database
of natural products. Treatment with MSI-1 suppressed the activation of SREBP-1-related
pathways and the Warburg effect of LUSC cells, as indicated by decreased glucose
uptake or glycolysis. Moreover, treatment of MSI-1 enhanced the sensitivity of LUSC cells
to antitumor agents. The specificity of MSI-1 on SREBP-1 was confirmed by molecular
docking and point-mutation of SPEBP-1. Therefore, MSI-1 improved our understanding of
SREBP-1 and provided additional options for the treatment of LUSC.

Keywords: sterol regulatory element binding protein 1, Warburg effect, lung squamous cell carcinoma, antitumor
agents, small molecular inhibitor, natural product monomers

INTRODUCTION

Currently, lung cancer remains the malignant tumor with the highest morbidity (Siegel et al., 2021; Sung
et al., 2021). Non-small cell lung cancer (NSCLC) is the most common pathological subtype of lung
cancer, accounting for more than 70–80% of the total incidence of lung cancer. Current studies on
NSCLC are more focused on the pathological subtypes of lung adenocarcinoma (LUAD), while less
attention is paid to the pathological subtypes of lung squamous cell carcinoma (LUSC) (Hirsch et al.,
2017; Felip et al., 2021; Thai et al., 2021). According to traditional studies, the overall progress of LUSC is
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slow and the prognosis of patients is better (Acker et al., 2021;Wang
J. et al., 2021; Nicholson et al., 2022). However, severe LUSC can
block the trachea and cause obstructive lung function damage.
Therefore, studies on LUSC should be strengthened (Lindsay
et al., 2021; Martinez de la Cruz et al., 2021; Pan et al., 2021).
Several treatment options for LUAD are currently available; they
include molecularly targeted therapy, immunotherapy, cytotoxic
chemotherapy drug therapy, and a combination of these options.
Compared with LUAD, LUSC has fewer options for antitumor
therapy (Lindsay et al., 2021; Martinez de la Cruz et al., 2021; Pan
et al., 2021). Therefore, LUSC-related studies should be expanded to
discover new andmore effective therapeutic intervention targets and
realize safer and more effective anti-tumor drug treatment strategies
for LUSC.

Increasing evidence show that metabolism is closely related to the
occurrence and progression of malignant tumors (Li T. et al., 2021;
Martínez-Reyes and Chandel, 2021). Therefore, this subject has
become a research hotspot. Several types of human malignancies
often have characteristics (the Warburg effect) that confer benefits,
such as energy for cell proliferation and alteration of the tumor
microenvironment related to metastasis and antitumor drug-
resistance, on cancerous cells (Hosios and Manning, 2021; Liu
et al., 2021; Yuan et al., 2021). Therefore, targeting metabolism-
related factors or pathways is considered as a promising approach for
controlling tumor growth and enhancing the sensitivity of cancer
cells to antitumor agents (Li R. et al., 2021; Damaghi et al., 2021). The
glucose and lipid metabolism pathways have been verified to be
closely related, and almost >60% of the carbons in glucose uptake by
cells are used to synthesize fatty acids, which mediate energy storage
and induce the generation of oncogenic molecules to meet the
abundant supply of lipids required for rapid cancerous cell
proliferation (Guo et al., 2014; Icard et al., 2020; Du et al., 2022).
SREBP-1 is a transcription factor bound to the sterol regulatory
elements (SREs) located in the promoters of its target genes involved
in fatty acid and triglyceride synthesis (Hagen et al., 2010; Galbraith
et al., 2018). Increasing evidence indicate that inhibition of SREBP-
1’s activation not only decreases synthesis of fat and impedes glucose
uptake of cancerous cells but also enhances the sensitivity of cells to
antitumor agents (Zhou et al., 2019; Chen et al., 2021; Ma et al.,
2021). Although SREBP-1 is therefore an intervention target for anti-
tumor therapy, current studies on small molecule inhibitors of
SREBP-1 are limited. Only a few small molecules have been
reported, and no SREBP-1 inhibitor has been studied in clinical
trials for clinical usefulness. Therefore, in-depth exploration of small
molecule inhibitors of SREBP-1 is needed.

Natural product monomer molecules are not only biologically
active substances but also important sources of new drugs (Jia
et al., 2016; Xiaokaiti and Li, 2020; Li B. et al., 2021). In this study,
a natural product compound library was screened, and natural
product monomer molecules that could act on SREBP-1 were
obtained. A compound, MSI-1 (Ma’s SREBP-1 inhibitor), was
identified. MSI-1 did not only inhibit the activation of the SREBP-
1 pathway but also enhanced the sensitivity of LUSC cells to
antitumor agents. These findings improved our understanding of
SREBP-1 in LUSC and provided a potential option for LUSC
treatment.

MATERIALS AND METHODS

Clinical Specimen, Cell Lines, and Vectors
LUSC and LUAD tissue specimen used in this study, specifically the
cDNA samples obtained by reverse transcription from the RNA
samples extracted from clinical specimens, were provided by
Professor Zhou Wei of Beijing Hospital, Beijing China (Zhou
et al., 2021). The cell lines, NCI-H226 and NCI-H520, were
purchased from the Type Culture Collection of the Chinese
Academy of Sciences (Shanghai, People’s Republic of China) or
theNational Infrastructure of Cell Line Resources, Chinese Academy
ofMedical Sciences (Beijing, People’s Republic of China), the culture
collection centers of the Chinese government and were gifts from
Zhou Wei of Beijing Hospital, Beijing China. Patient-derived cells
(PDC Nos. 1–5) were gifts from Zhou Wei of Beijing Hospital,
Beijing China. After the cell suspension was obtained from the
surgically excised LUSC tissue with a pre-sterilized 200-mesh steel
sieve, the resulting cell suspension was washed with DMEM
supplemented with 20% FBS (specific method) (Zhang et al.,
2018). DMEM and 20% FBS were mixed with cells gently.
Thereafter, the mixture was centrifuged thrice at 800 rpm to
obtain PDCs (Zhang et al., 2018).

Antitumor Agents
The antitumor agents, anlotinib [Cat. No.: S8726], gefitinib [Cat.
No.: S1025], erlotinib [Cat. No.: S7786], osimertinib [Cat. No.:
S7297], gemcitabine [Cat. No.: S1714], etoposide [Cat. No.:
S1225], paclitaxel [Cat. No.: S1150], and adriamycin [Cat. No.:
S1208]), were purchased from Selleck Corporation, Houston, TX,
United States. For the cellular experiments, among these agents,
anlotinib, gefitinib, erlotinib, osimertinib, gemcitabine, etoposide,
and paclitaxel, were dissolved in an organic solvent (dimethyl
sulfoxide, DMSO) and diluted using the DMEM without FBS
(Feng et al., 2020; Zou et al., 2021a; Wang Y. et al., 2021; Jie et al.,
2021). Adriamycin was directly dissolved in DMEMwithout FBS.
For the animal experiment, anlotinib was dissolved in the organic
solvent (DMSO, PEG400, and Tween 80) and then diluted using
the sterilized phosphate buffered saline (Wang et al., 2020; Wang
J. H. et al., 2021; Du et al., 2021).

The Small Molecular Inhibitor of Sterol
Regulatory Element Binding Protein-1 and
the Molecular Docking
The compound, “3-(5-isopropyl-4-(4-methylpyridin-3-yl)thiazol-2-
yl)benzamide,” is a natural product monomer with an inhibitory
activitiy on SREBP-1. It is found in natural product compound
libraries, and it was named as MSI-1 (Ma’s SREBP-1 inhibitor). In
this study, MSI-1 was obtained by total chemical synthesis
(Figure 1). The construction of the molecular docking model is
based on the proteinmodel in the ProteinData Bank (PDB) database
(PDB ID code: 6K9M) (Eberhardt et al., 2021). Small molecule
ligands were drawn using Chemdraw. After the drawing was
completed, it was saved as a mol file and imported into
OpenBabel software for hydrogenation, protonation, and energy
minimization through the MMFF94 high-precision organic small
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molecule force field (Jia et al., 2021). Docking was performed using
AutoDock Vina 1.2, and the docking force field was the Vina force
field. In the docking experiment, according to the positional
relationship of the existing co-crystal inhibitors, a cube with x =
11.428, y = –9.756, and z = –35.446 as the center and a side length of
14.359 Åwas selected as the docking pocket. All docking simulations
were run with default settings and search accuracy set to exhaustive
level 32, generating up to nine dockingmodels.Molecular simulation
maps in this study were drawn using the PyMOL software (http://
www.pymol.org).

Real Time Quantitative Polymerase Chain
Reaction and Biochemical Examination
After the tissue samples were ground using liquid nitrogen, total
RNA samples were extracted and then reverse-transcribed for RT-
qPCR detection. For the clinical specimen, the cDNA samples were
directly analyzed using RT-qPCR. For the subcutaneous tumor
tissues, the tissue re-extraction of total RNA samples using liquid
nitrogen (Ma et al., 2020). For the cell experiments, H226 cells were
treatedwith agents or transfectedwith vectors and then harvested for
RT-qPCR (Yin et al., 2019). For the vectors, the full length of SREBP-
1 (wild type, TYR335ALA mutation [TYR of 335 replaced with ALA],
PHE271ALA mutation [PHE of 271 replaced with ALA], and
PHE349ALA mutation [PHE of 349 replaced with ALA]). The
endogenous SREBP-1 was knocked out by transfecting siRNA
with G418 as the selectable marker, and then the mutant of
SREBP-1 was transfected with puromycin as the selectable
marker (Li B. et al., 2021). The reverse transcription reaction was
performed using the reverse transcription kit (Thermo Fisher
Scientific, Waltham, MA, United States), and the RT-qPCR was
performed according to the manufacturer’s instructions (Thermo
Fisher Scientific, Waltham, MA, United States). The following
primers were used in the RT-qPCR (Ma et al., 2016): 1) SREBP-
1, Forward Sequence 5′-ACTTCTGGAGGCATCGCAAGCA-3′;
Reverse Sequence 5′-AGGTTCCAGAGGAGGCTACAAG-3′; 2)
ACC, Forward Sequence 5′-TTCACTCCACCTTGTCAGCGGA-
3′; Reverse Sequence 5′-GTCAGAGAAGCAGCCCATCA CT-3′;
3) ACL, Forward Sequence 5′-GCTCTGCCTATGACAGCACCA
T-3′; Reverse Sequence 5′-GTCCGATGATGGTCACTCCCTT-3′;

4) FASN, Forward Sequence 5′-TTCTACGGCTCCACG
CTCTTCC-3′; Reverse Sequence 5′-GAAGAGTCTTCGTCA
GCCAGGA-3′; 5) ACS, Forward Sequence 5′-ATCAGGCTG
CTCATGGATGACC-3′; Reverse Sequence 5′-AGTCCAAGAGC
CATCGCTTCAG-3′; 6) GLUT1, Forward Sequence 5′-TTGCAG
GCTTCTCCAACTGGAC-3′; Reverse Sequence 5′-CAGAACCAG
GAGCACAGTGAAG-3′; 7) LDHA, Forward Sequence 5′-GGATCT
CCAACATGGCAGCCTT-3′; Reverse Sequence 5′-AGACGGCTT
TCTCCCTCTTG CT-3′; 8) HIF1α, Forward Sequence 5′-TATGAG
CCAGAAGAACTTTTAGGC-3′; Reverse Sequence 5′-CACCTC
TTTTGGCAAGCATCCTG-3′; 9) EPAS-1, Forward Sequence 5′-
CTGTGT CTGAGAAGAGTAACTTCC-3′; Reverse Sequence 5′-
TTGCCATAGGCTGAGGACTCCT-3′ (10) N-cadherin, Forward
Sequence 5′-CCTCCAGAGTTTACTGCCATGAC-3′; Reverse
Sequence 5′-GTAGGATCTCCGCCACTGATTC-3′; 11) Vimentin,
Forward Sequence 5′-AGGCAAA GCAGGAGTCCACTGA-3′;
Reverse Sequence 5′-ATCTGGCGTTCCAGGGACTCAT-3′; 12)
Snail, Forward Sequence 5′-TGCCCTCAAGATGCACATCCGA-
3′; Reverse Sequence 5′-GGGACA GGAGAAGGGCTTCTC-3′;
13) Twist Forward Sequence 5′-GCCAGGTACATCGACTTCCTC
T-3′; Reverse Sequence 5′-TCCATCCTCCAGACCGAGAAGG-3′.

Biochemical tests were conducted following the methods
described by Li et al. (Feng et al., 2018; Shao et al., 2018). Briefly,
the NCI-H226 or NCI-H520 cells were transfected with vectors or
treated with the indicated agents at certain concentrations. The cells
were collected for biochemical assessment of glycolysis, glucose
uptake, lactate production, and ATP generation.

Cellular Survival Examination/MTT Assays
The LUSC cell lines (NCI-H520 or NCI-H226) were transfected
with vectors or treated with a series of concentrations of agents
(For molecular targeted agents, 10, 3, 1, 0.3, 0.1, 0.03, or
0.01 μmol/L; for etoposide, gemcitabine, or adriamycin, 1, 0.3,
0.1, 0.03, 0.01, 0.003, or 0.001 μmol/L; for paclitaxel, 0.1, 0.03,
0.01, 0.003, 0.001, 0.0003, or 0.0001 μmol/L). The MTT (3-(4,5)-
dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide)
experiments were conducted (Feng et al., 2018). After MTT
analysis, the samples were measured using a full wavelength
multi-function microplate reader at a wavelength of 490 nm
(Shao et al., 2018). Thereafter, the inhibitory rates and IC50

FIGURE 1 | Chemical total synthesis route of MSI-1.
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values of agents on LUSC cells were calculated (Shao et al., 2018;
Feng et al., 2019).

The In Vivo Tumor Model
Animal experiments were reviewed and approved by the Animal
Care and Use Committee of the General Hospital of Northern
Theater Command. Five-week-old nude mice were purchased from
Si-Bei-Fu Corporation, Beijing China. For the subcutaneous tumor
model (Sun et al., 2019; Chu et al., 2021), NCI-H226 cells were
cultured and inoculated subcutaneously into the nude mice. Mice
received the indicated doses of agents by oral administration. Tumor
sizes were calculated, and tumors were weighed. For the intra-lung
tumor model, the NCI-H226 cells, which were stably transfected
with luciferase-EGFP vectors, were injected through the tail vein.
The lesions or nodules in nude mice’s lung tissues formed by NCI-
H226 cells were measured using the luciferase in vivo imaging of
small animals and H&E staining, as previously reported (Yang et al.,
2019; Huo et al., 2021; Tan and Tan, 2022).

Statistical Analysis
The statistical analyses were performed using the SPSS 9.0
software (IBM, Armonk, NY, United States). Differences
among groups were assessed (Bonferroni correction with two-
way ANOVA or paired-sample t-test). The IC50 values of agents
on LUSC cells were calculated using the Origin 6.1 software
(OriginLab, Northampton, MA, United States).

RESULTS

Sterol Regulatory Element Binding Protein -1
is Highly Expressed in Lung Squamous Cell
Carcinoma Tissues Compared With Paired
Non-Tumor Tissues
The LUAD tissues, LUSC tissues, and paired non-tumor tissues
derived from patients were first analyzed using RT-qPCR. The
expression of SREBP-1 in LUAD was slightly lower than that in

paired non-tumor tissues, but the difference was not statistically
significant (Figure 2A). However, the expression of SREBP-1 in
LUSC was significantly higher than its expression level in paired
non-tumor tissues (Figure 2B). Additionally, the mRNA level of
SREBP-1 in cell lines was examined. As shown in Figure 2B, the
expression level of SREBP-1 was significantly higher in LUSC cells
(NCI-H226, NCI-H520, and PDC-1 ~ PDC-5) than that in lung-
original non-malignant WI38 cells. These results indicated that
SREBP-1 could play important roles in LUSC.

Sterol Regulatory Element Binding
Protein-1 Enhances the Resistance of Lung
Squamous Cell Carcinoma Cells to
Antitumor Agents
We further tested the roles of SREBP-1 in LUSC cells. SREBP-1 was
overexpressed and knocked down in LUSC cells. As shown in
Table 1, overexpression of SREBP-1 enhanced the resistance of
LUSC cells to antitumor agents, and the IC50 of the antitumor agents
(anlotinib, gefitinib, erlotinib, osimertinib, gemcitabine, etoposide,
paclitaxel, and adriamycin) on LUSC cells (NCI-H226 or NCI-
H520) increased accordingly (Table 1). Therefore, SREBP-1
enhances the resistance of LUSC cells to antitumor agents, and
knockdown of SREBP-1 could enhance the sensitivity of cells to anti-
tumor agents.

The Novel Small Molecule Inhibitor of Sterol
Regulatory Element Binding Protein-1
Inhibits the Activation of Sterol Regulatory
Element Binding Protein-1, Warburg Effect,
and Epithelial-Mesenchymal Transition
Process in NCI-H226 Cells
The natural product monomer compound, 3-(5-isopropyl-4-(4-
methylpyridin-3-yl) thiazol-2-yl) benzamide, was identified
through a virtual screening of the Natural Product Compound
Library. The structure of 3-(5-isopropyl-4-(4-methylpyridin-3-

FIGURE 2 | Expression and identification of SREBP-1 in lung-derived tissues and cells. (A) The mRNA expression levels of SREBP-1 were detected in lung
adenocarcinoma, lung squamous cell carcinoma, and corresponding adjacent tissues; (B) in lung-derived non-tumor WI38, lung squamous cell carcinoma cell lines,
NCI-H226 and NCI-H520, and five detection of SREBP-1 mRNA expression levels in patient-derived cells; results are shown as histograms, pp < 0.05.
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yl) thiazol-2-yl) benzamide is illustrated in Figure 3 and named
as MSI-1 (Ma’s inhibitor of SREBP-1). Thereafter, virtual
docking/molecular docking was explored to elucidate the
potential mechanism of binding between MSI-1 and SREBP-1.
As shown in Figure 4, the compound, MSI-1, inserts into the
hydrophobic pocket of the protein, SREBP-1, and binds to the

protein through π-π conjugation. The amino acid residues,
PHE271, TYR335, and PHE349, form π-π conjugation with
the compound from three directions, which stabilizes the
binding of the compound relatively. Thereafter, the
activation of MSI-1 was examined. As shown in Figure 4,
MSI-1 inhibited the lipid metabolism-associated downstream
genes of SREBP-1, including acetyl-CoA carboxylation
(ACC), ATP citrate lyase (ACLY), fatty acid synthase
(FASN), and acyl-CoA synthetase (ACS), in a dose
dependent manner. Therefore, MSI-1 inhibits the activation
of SREBP-1.

TABLE 1 | SREBP-1 enhances the resistance of LUSC cells to antitumor drugs.

Agents NCI-H226 NCI-H520

Control SREBP-1 siSREBP1 Control SREBP-1 siSREBP1

IC50 values (μmol/L)

Anlotinib 1.09 ± 0.26 4.19 ± 0.58 0.28 ± 0.06 0.84 ± 0.36 2.96 ± 0.29 0.36 ± 0.18
Gefitinib 3.56 ± 0.94 5.55 ± 0.76 0.66 ± 0.31 3.28 ± 1.43 5.46 ± 0.64 1.19 ± 0.61
Erlotinib 2.97 ± 1.30 4.64 ± 1.21 0.98 ± 0.56 2.55 ± 0.67 5.67 ± 1.03 0.82 ± 0.16
Osimertinib 1.85 ± 0.57 4.10 ± 0.39 0.53 ± 0.25 1.61 ± 0.48 4.98 ± 0.32 0.64 ± 0.21
Gemcitabine 0.30 ± 0.10 0.96 ± 0.31 0.08 ± 0.01 0.42 ± 0.13 1.49 ± 0.78 0.06 ± 0.01
Etoposide 0.53 ± 0.24 1.66 ± 0.95 0.15 ± 0.06 0.68 ± 0.07 1.54 ± 0.33 0.28 ± 0.11
Paclitaxel 0.13 ± 0.04 0.43 ± 0.25 0.01 ± 0.00 0.16 ± 0.08 0.70 ± 0.30 0.03 ± 0.00
Adriamycin 0.25 ± 0.02 0.79 ± 0.44 0.02 ± 0.01 0.34 ± 0.02 1.39 ± 0.16 0.12 ± 0.01

FIGURE 3 | The structure of MSI-1.

FIGURE 4 | The molecular docking image of MSI-1 with SREBP-1.

FIGURE 5 | Effects of MIS-1 on SREBP-1 and related factors in LUSC
cells. NCI-H226 cells were cultured and treated with a series of concentration
gradients of MSI-1. After the cells were collected, SREBP-1 and its
downstream genes; Warburg effect-related metabolic indexes and gene
expression levels; EMT-related factor expression levels were detected. A heat
map is drawn according to the inhibition rate of MSI-1 acting on these factors,
and the shade of color in the heat map refers to the inhibition rate of MSI-1.
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TABLE 2 | MSI-1 enhances the sensitivity of LUSC cells to antitumor drugs.

Agents NCI-H226 NCI-H520

Solvent control MSI-1 Solvent control MSI-1

IC50 values (μmol/L)

Anlotinib 0.94 ± 0.13 0.24 ± 0.10 0.60 ± 0.09 0.20 ± 0.01
Gefitinib 3.26 ± 0.70 1.40 ± 0.61 2.87 ± 0.52 1.60 ± 0.49
Erlotinib 2.70 ± 0.35 0.73 ± 0.44 1.96 ± 0.86 0.64 ± 0.07
Osimertinib 1.99 ± 0.48 0.60 ± 0.09 1.54 ± 0.38 0.45 ± 0.33
Gemcitabine 0.33 ± 0.04 0.14 ± 0.06 0.50 ± 0.06 0.16 ± 0.02
Etoposide 0.55 ± 0.21 0.27 ± 0.01 0.58 ± 0.15 0.36 ± 0.11
Paclitaxel 0.10 ± 0.03 0.01 ± 0.00 0.14 ± 0.05 0.02 ± 0.00
Adriamycin 0.36 ± 00.05 0.05 ± 0.02 0.28 ± 0.11 0.03 ± 0.01

FIGURE 6 | Antitumor activity of MIS-1 on subcutaneous tumorigenesis of LUSC cells in nude mice. After culturing NCI-H226 cells, the cells were inoculated
subcutaneously in nude mice to form tumor tissue; the mice received the indicated concentration of MSI-1 by oral administration. The results are shown as (A) tumor
tissue images; (B,C) tumor quantitative analysis results of tissue size and weight; (D) Heat map of the inhibition rate of MSI-1 on related factor levels in tumor tissue.
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Based on the evidence that SREBP-1 was tightly associated
with the Warburg Effect of cancerous cells and the Warburg
Effect of malignant cells was often associated with the
Epithelial-Mesenchymal Transition (EMT) process, the
effect of MSI-1 on the Warburg Effect and EMT was
examined. As shown in Figure 5, treatment of MSI-1
decreased glucose uptake, lactate and ATP production, and
LDH activation in a dose dependent manner. Moreover, MSI-1
decreased the expression of genes of glucose uptake or hypoxia
stress-related factors, such as GLUT1, LDHA, HIF-1α, and
EPAS-1, and EMT related factors, including Twist, Snail,
N-cadherin, and Vimentin in a dose dependent manner.
Therefore, the novel small molecule inhibitor of SREBP-1
inhibits the activation of SREBP-1, Warburg Effect, and
EMT process in NCI-H226 cells.

Notably, MSI-1 did not affect the expression level of SREBP-1
(Figure 5). Combined with the data on cell survival in Figure 5,
although the 3-μmol/L dose of MSI-1 has weak cytotoxicity to
NCI-H226 cells, it could significantly inhibit the activity of
SREBP-1 and the expression levels of related factors.
Therefore, MSI-1 at a dose of 3 μmol/L was used for further
experiments.

Ma’s Inhibitor of Sterol Regulatory Element
Binding Protein-1 Enhances the Sensitivity
of Lung Squamous Cell Carcinoma Cells to
Antitumor Agents
The above results indicate that knockdown of SREBP-1’s
activation by MSI-1 inhibited the Warburg Effect and EMT
process of LUSC cells, which contribute to chemo-resistance.
Therefore, the effect of MSI-1 on the sensitivity of LUSC cells
(NCI-H520 and NCI-H226) to antitumor agents. As shown in
Table 2, treatment of MSI-1 enhanced the sensitivity of LUSC
cells to antitumor agents and the IC50 values of these antitumor
agents on LUSC cells decreased. Thereafter, the in vivo activation
of MSI-1 was examined using the LUSC models in nude mice. As
shown in Figure 6, oral administration of MSI-1 repressed the
subcutaneous growth of NCI-H226 cells. Among the
concentrations of MSI-1, 2 mg/kg dose of MSI-1 exerted weak
antitumor activity but significantly inhibited the activation of the
SREBP-1 pathway, Warburg effect, and EMT process of NCI-
H226 cells in subcutaneous tumor tissues (Figure 6). Therefore,
2 mg/kg dose of MSI-1 was used for the next experiment.
Thereafter, the nude mice received the indicated concentration
of anlotinib only or combined with 2 mg/kg MSI-1. As shown in

FIGURE 7 | Effects of MIS-1 on tumorigenesis of LUSC cells killed by anlotinib in nudemice. NCI-H226 cells were obtained by culture, and the cells were inoculated
into nude mice to form subcutaneous tumor tissue. Animals were administered with anlotinib; either anlotinib only or in combination with MSI-1. Results are shown as (A)
images of tumor tissue; (B,C) volume and weight of tumor tissue.
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Figure 7, anlotinib inhibited the subcutaneous growth of NCI-
H226 cells in nude mice in a dose dependent manner. The same
dose of MSI-1 enhanced the antitumor activation of anlotinib on
NCI-H226 cells.

The above results mainly focused on the cultured LUSC
cells or LUSC cells in nude mouse subcutaneous tumor model.
These models could not mimic the in situ proliferation of
LUSC cells in the lung. As shown in Figure 8, by tail vein
injection, NCI-H226 cells formed nodules or lesions in the
lungs of nude mice. These nodules or lesions, which are shown
as lung imaging results in the results of in vivo imaging, were
identified by luciferase. Anlotinib-only administered at a dose
of 0.5 mg/kg had a weaker effect on the formation of nodules or
lesions in the lungs of NCI-H226 cells in nude mice, whereas
the combined effect of 2 mg/kg MSI-1 and anlotinib
significantly enhanced the anti-tumor activity of anlotinib.
The proliferation and survival of NCI-H226 cells in the lungs
of nude mice were confirmed by the pathological analysis

results of H&E staining. Therefore, MSI-1 enhances the
sensitivity of LUSC cells to antitumor agents.

The Specificity of Ma’s Inhibitor of Sterol
Regulatory Element Binding Protein-1 on
Sterol Regulatory Element Binding
Protein-1
To further confirm the specificity of MSI-1 on SREBP-1, according
to the molecular docking results and theoretical model in Figure 4,
the key amino acids that mediate the interaction between SREBP-1
and MSI-1 were point-mutated (Figure 9). Thereafter, MSI-1 was
used for treatingNCI-H226 cells. The results showed that when TYP
at 335was replaced with ALA or PHE at 271was replaced with ALA,
MSI-1 lost its effect on SREBP-1(Figure 9); when PHE at 349 was
replaced with ALA,MSI-1 had no effect on SREBP-1(Figure 9). The
inhibitory activity was greatly diminished. This confirms the
interaction mechanism between MSI-1 and SREBP-1.

FIGURE 8 | Confirmation of the effect of MSI-1 on the killing of LUSC cells by anlotinib using small animal in vivo imaging technology. NCI-H226 cells (LuciferaseEGFP
double-labeledNCI-H226 cells) were obtained by culture, and the cells were inoculated into nudemice by tail vein injection, and then 0.5 mg/kg anlotinib, 2 mg/kgMSI-1-only or in
combination on nudemice, and then perform smallmolecule in vivo imaging (Luciferase activity detection) on nudemice (A). The lungs of nudemicewere subjected to pathological
staining analysis (A). The results are shown as the quantitative analysis results of Luciferase live imaging images (A), pathological staining images (A), and the quantitative
results of Luciferase (B) and pathological staining images (C). pp < 0.05, thewhite tips in the figure indicate the Luciferase imaging results of themouse lungs, and the black arrows
indicate the nodules/lesions in the lungs formed by NCI-H226 cells in the pathologically stained images.
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DISCUSSION

Compared with LUAD, LUSC currently has limited treatment
options, which are mainly surgical treatment, chemotherapy,
and radiation therapy (Saito et al., 2019; Daly et al., 2021).
However, the lung cancer-related molecular targeted therapies
often focus on the TKI (repressed by gefitinib) used in LUAD
of NSCLC, and the TKIs for LUSC treatment remains
insufficient (Jeong et al., 2017; Xue et al., 2021). The
resistance of LUSC to radiotherapy and chemotherapy has
been reported, and the sensitivity of LUSC of different stages
and stages to these treatment strategies is considered to be
different (Ruiz et al., 2019; Song et al., 2019; Xu et al., 2020;
Xiao et al., 2021). Therefore, LUSC-related research is needed.
Zhou et al., 2021 found that the RTKs, including VEGFR and
PDGFR, are overexpressed in LSCC tissue and a multi-targeted
protein kinase inhibitor, anlotinib, can effectively achieve the
anti-tumor effect on LUSC (Zhou et al., 2021). In addition to
radiotherapy and chemotherapy, the radiofrequency ablation
for LUSC has been reported (Ridge et al., 2014; Jiang et al.,
2021; Zhou et al., 2021). These results indicate that new
therapeutic targets related to LUSC are needed.

In this study, for the first time, SREBP-1 was found to
induce the resistance of LUSC to anti-tumor drug treatment,
and downregulating the activity of SREBP-1 can upregulate the
sensitivity of LUSC cells to anti-tumor drugs. The antitumor
agents used in this study included four cytotoxic
chemotherapies (gemcitabine, paclitaxel, etoposide, and
Adriamycin) and four molecular targeted agents (anlotinib,

gefitinib, erlotinib, and osimertinib). Most of the cytotoxic
chemotherapy drugs are commonly used clinical anti-tumor
chemotherapy drugs. Among the molecular targeted drugs,
gefitinib, erlotinib, and osimertinib target the EGFR, and these
three agents’ antitumor activities are affected by EGFR
mutation status; whereas anlotinib is a multi-target protein
kinase inhibitor (Yan et al., 2021; Han et al., 10282021; Shen
et al., 2020). Our results showed that the killing effect of
anlotinib on LUSC cells is significantly stronger than that of
gefitinib, erlotinib, and osimertinib. This finding suggests that
multi-targeted protein kinase inhibitors, such as anlotinib,
may be more advantageous for LUSC. In the future, EGFR
mutation in LUSC will be the focus of our study. Taken
together, our results show that SREBP-1 is an effective
intervention target for LUSC treatment, and SREBP-1
inhibitors can be used as adjuvant drugs in combination
with other anti-tumor drugs.

Human malignancies, including LUSC, are often
characterized by aerobic glycolysis, also known as the
Warburg effect (Cao et al., 2020). However, studies on the
Warburg effect often focus on hepatocellular carcinoma or
breast cancer (Li et al., 2018; Zheng et al., 2019; Huang
et al., 2021; Zuo et al., 2021). Few studies on the Warburg
effect in LUSC have been reported (Wang et al., 2018; Hoang
et al., 2019; Cao et al., 2020; Woźniak et al., 2021). In this study,
we found that SREBP-1 is closely related to the Warburg effect
of LUSC, and the use of the small molecule inhibitor, MSI-1, of
SREBP-1 can inhibit the Warburg effect of LUSC cells.
Treatment of MSI-1 not only inhibited the downstream
genes (including Fasn, Acc, Acly, and Scd) of SREBP-1 but
also inhibited the glycolysis-related biochemical indices
(glucose uptake, lactate and ATP production, and LDH) and
EMT-related factors. Increasing evidence have indicated that
SREBP-1 is a major regulator of lipid metabolism (especially
fatty acid synthesis) and a key factor in cell proliferation and
microenvironment regulation, especially drug resistance (Chen
et al., 2018; Talebi et al., 2018; Xu et al., 2021). In this study, we
found and confirmed the effect of MSI-1 on SREBP-1, andMSI-
1 could upregulate the sensitivity of LUSC cells to antitumor
drugs by acting on SREBP-1. Because MSI-1 inhibits the
metabolism-related properties of LUSC cells, the effect of
MSI-1 on killing LUSC cells by other antitumor drugs
should not be selective, as indicated in Table 2. Notably, we
preliminarily summarized and predicted the structure-activity
relationship between MSI-1 and SREBP-1 using molecular
docking and point mutants at key sites of the interaction
between SREBP-1 and MSI-1. The amino acid residues,
PHE271, TYR335, and PHE349, formed π-π conjugation
with the compounds from three directions. Among the three
key amino acid residues, PHE271 and TYR335 are relatively
close, and the mutation of a single amino acid residue can
basically inhibit the interaction between MSI-1 and SREBP-1;
whereas PHE349 and its mutation are relatively fair. The
interaction between MSI-1 and SREBP-1 was significantly
attenuated. This suggests that PHE271 and TYR335 may be
slightly more important than PHE349.

FIGURE 9 | The specificity of the interaction between MSI-1 and
SREBP-1. The point mutants of SREBP-1 were constructed to replace the
original SREBP-1 in NCI-H226 cells, and then the cells were treated with MSI-
1 to detect their effects on the levels of related factors. The results are
displayed as a heatmap.
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Although research and development of small molecule
inhibitors of SREBP-1 is necessary, the number of existing
inhibitors (such as fatostatin, FGH10019, betulin, and PF-
429242) is small and the reports are few, and they have not
entered clinical application (Kamisuki et al., 2011; Zou et al.,
2021b; Wang T. B. et al., 2021; Ren et al., 2021). In addition to
these, a recent report by Zou et al. (2021) found a relationship
between the expression level of SREBP-1 in HCC tissues and
the prognosis of HCC RFA, and used a novel small molecule
inhibitor of SREBP-1 in combination with RFA to achieve a
better anti-tumor effect on HCC (Trott and Olson, 2010).
Among these agents, betulin is a natural product monomer
molecule. Our previous results showed that betulin effectively
inhibited transcription factor activity of SREBP-1 and
suppressed the glucose uptake and Warburg effect of HCC
cells to enhance the sensitivity of HCC cells to molecular
targeted agents (Ma et al., 2016). The MSI-1 isolated from
the natural product monomer molecule in this study can help
improve our understanding of SREBP-1. Additionally, the
future structural optimization and modification of MSI-1
will have greater theoretical and practical implications. This
study has initiated the chemical synthesis route of MSI-1 and
realized the total synthesis of MSI-1, which is also of certain
significance.
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