

Corrigendum: Bioassay-Guided Interpretation of Antimicrobial Compounds in Kumu, a TCM Preparation From *Picrasma quassioides*' Stem via UHPLC-Orbitrap-Ion Trap Mass Spectrometer Combined With Fragmentation and Retention Time Calculation

Haibo Hu^{1,2}*, Changling Hu³, Jinnian Peng², Alokesh Kumar Ghosh¹, Ajmal Khan¹, Dan Sun^{1,4} and Walter Luyten¹*

OPEN ACCESS

Edited and reviewed by:

Mukhlesur Rahman, University of East London, United Kingdom

*Correspondence:

Haibo Hu haibo.hu@kuleuven.be Walter Luyten walter.luyten@kuleuven.be

Specialty section:

This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

Received: 15 March 2022 Accepted: 29 March 2022 Published: 25 April 2022

Citation:

Hu H, Hu C, Peng J, Ghosh AK, Khan A, Sun D and Luyten W (2022) Corrigendum: Bioassay-Guided Interpretation of Antimicrobial Compounds in Kumu, a TCM Preparation From Picrasma quassioides' Stem via UHPLC-Orbitrap-Ion Trap Mass Spectrometer Combined With Fragmentation and Retention Time Calculation. Front. Pharmacol. 13:897243. doi: 10.3389/fphar.2022.897243 ¹Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium, ²National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China, ³Laboratory for Functional Foods and Human Health, Center for Excellence in Postharvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, United States, ⁴College of Life Sciences, NanKai University, Tianjin, China

Keywords: Picrasma quassioides, kumu, beta-carboline, orbitrap elite, MS fragmenter, fragmentation prediction

A Corrigendum on

Bioassay-Guided Interpretation of Antimicrobial Compounds in Kumu, a TCM Preparation From Picrasma quassioides' Stem via UHPLC-Orbitrap-Ion Trap Mass Spectrometer Combined With Fragmentation and Retention Time Calculation

by Hu, H., Hu, C., Peng, J., Ghosh, A. K., Khan, A., Sun, D. and Luyten, W. (2021). Front. Pharmacol. 12:761751. doi: 10.3389/fphar.2021.761751

In the original article, there was a mistake in **Table 3** as published. The IC_{50} , and MBC calculations of positive controls were unintentionally incorrect when generated by software Graphpad, and may make people confused about their high IC_{50} values in the original manuscript. Hence, the tests of these compounds were repeated twice again to confirm these results. The corrected **Table 3** appears below.

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Hu, Hu, Peng, Ghosh, Khan, Sun and Luyten. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

TABLE 3 | Antimicrobial activity (μ g/ml) of three β -carbolines.

Microbials	Methylnigakinone (2)		Nigakinone (10)		β-Carboline-1- carboxylic acid (25)		Positive control ^a	
	IC50	MBC	IC50	MBC	IC50	MBC	IC ₅₀	МВС
S. aureus	205.70	>500	55.35	>125	47.70	>125	0.28	>125
S. epidermidis	NT	NT	69.18	>125	50.88	>125	0.49	125
M. luteus	137.10	>250	87.29	>250	33.99	64	2.63	>64
L. innocua	NT	NT	35.04	>250	117.80	>125	0.59	>125
E. faecalis	109.00	>500	50.07	>125	70.66	>125	9.44 ^b	125 ^b
B. cereus	102.40	>250	38.75	>250	30.48	>125	0.02	>125
E. coli	NT	NT	NT	NT	19.17	>125	0.02	<3.91
P. aeruginosa	NT	NT	NT	NT	NT	NT	0.02	7.81
S. sonnei	NT	NT	NT	NT	14.81	>125	0.02	31.25
S. flexneri	194.80	>250	29.99	>250	3.96	125	0.02	<3.91
A. baumannii	NT	NT	NT	NT	30.28	>125	0.17	15.62
E. aerogenes	NT	NT	NT	NT	93.65	>125	0.04	>125
B. diminuta	NT	NT	10.46	>64	4.50	64	2.26	>64
A. hydrophila	NT	NT	68.64	>64	10.03	64	<0.01	0.02
S. enterica subsp. enterica	NT	NT	490.12	>500	19.34	>64	0.01	2.00
C. parapsilosis	236.00	>500	201.50	>500	NT	NT	0.13 ^c	12.56 ^c
C.albicans	356.90	>500	493.80	>500	NT	NT	0.01 ^c	12.56 ^c
C. auris	32.82	>125	31.91	>125	NT	NT	0.10 ^c	>50°
C. glabrata	NT	NT	NT	NT	NT	NT	0.12 ^c	>12.56
S. cerevisiae	NT	NT	NT	NT	NT	NT	0.44 ^c	>50 ^c

^aPositive control: Ciprofloxacin.

^bChloramphenicol.

^cMiconazole.