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Background: Accurate target identification of small molecules and downstream

target annotation are important in pharmaceutical research and drug

development.

Methods: We present TAIGET, a friendly and easy to operate graphical web

interface, which consists of a docking module based on AutoDock Vina and

LeDock, a target screen module based on a Bayesian–Gaussian mixture model

(BGMM), and a target annotation module derived from >14,000 cancer-related

literature works.

Results: TAIGET produces binding poses by selecting ≤5 proteins at a time from

the UniProt ID-PDB network and submitting ≤3 ligands at a time with the

SMILES format. Once the identification process of binding poses is complete,

TAIGET then screens potential targets based on the BGMM. In addition, three

medical experts and 10 medical students curated associations among drugs,

genes, gene regulation, cancer outcome phenotype, 2,170 cancer cell types,

and 73 cancer types from the PubMed literature, with the aim to construct a

target annotation module. A target-related PPI network can be visualized by an

interactive interface.

Conclusion: This online tool significantly lowers the entry barrier of virtual

identification of targets for users who are not experts in the technical aspects of

virtual drug discovery. The web server is available free of charge at http://www.

taiget.cn/.
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Key points

• TAIGET is a graphical web interface to identify potential

targets of small molecules, which consists of a docking

module, a target screen module, and a target annotation

module.

• The target annotation module is constructed by text mining

and manually curating >14,000 cancer-related literature

works, which involves 73 cancer types and 2,170 cell types.

• TAIGET supports docking service in a mini-batch mode.

Instruction

A drug discovery process starts with identification of targets

and clarification of mechanism of action of drugs, with the hope

to win the battle of disease treatment (Vamathevan et al., 2019).

Approaches for target identification in drug discovery include

virtual and experimental screening. As one of the most widely

used structure-based virtual screening approaches, molecular

docking allows identifying the most likely target of a query

ligand. There are many popular docking procedures, such as

AutoDock, LeDock, Glide, GOLD, and DOCK (Lapillo et al.,

2019; Shahid et al., 2021). To reduce scoring bias, Lee and Kim,

(2020) constructed a web server for target prediction, by ranking

scoring algorithms of GOLD, AutoDock Vina, and LeDock. To

assist identification of putative targets for herbal ingredients,

Zhang et al. (2019) used a reverse docking approach to predict

ligand–target interactions. When Ma and Zou, (2021) developed

an inverse docking procedure using the DOCK algorithm to

support docking ligands against an ensemble of multiple protein

structures.

However, the advantages of docking are balanced by a serious

deficit: docking creates many false-positive events (Lyu et al.,

2019). This is caused by relatively rough search algorithms, for

example, Monte Carlo algorithm generates a random initial

configuration of ligand in the active site consisting of a

random conformation, translation, and rotation; tabu search

algorithm made a number of small random changes to the

current configuration of ligand and ranked them (Sulimov

et al., 2019). To avoid the false-positive events, we previously

developed a target filter algorithm based on a Bayesian–Gaussian

mixture model (BGMM) (Wei et al., 2022). We clustered the

interaction pairs between ligand atoms and protein fragments

extracted from the crystal structures of ligand-binding proteins

in the PDB (released from January 1995 to April 2021) and found

that the potential targets should meet with ≥600 significant

interaction pairs, and meanwhile, ≥0.8 ratio of them to all the

interaction pairs (Wei et al., 2022). The advantage of our method

was that we not only considered the major bonds between the

ligand and protein, such as hydrogen bonds, salt bridges,

hydrophobic contacts, halogen bonds, and pi-stacking (Shaikh

et al., 2021), but also summarized all the atomic contacts between

the ligand and protein by defining an atomic contact between one

ligand atom and the first atom of the protein fragment with an

interatomic distance ≤5 Å. We proposed that the diverse

characteristics of atomic contacts could accurately screen the

targets of small molecules.

In addition, target annotation is important for researchers to

identify functional elements of targets and to get an insight into

target-related proteins/genes and their functions (Xu et al., 2022;

Zhang et al., 2022). There are two main ways to annotate targets.

One is based on literature curation or experimental results.

Several popular databases provided information about protein/

gene interactions collected from literature or experimental

results, for example, IntAct molecular interaction database,

BioGRID, and Molecular INTeraction (MINT) database

(Licata et al., 2012; Orchard et al., 2014; Chatr-Aryamontri

et al., 2015). The protein interaction network analysis (PINA)

platform integrated protein–protein interactions (PPIs) with

RNA-seq transcriptomes and mass spectrometry-based

proteomes (Du et al., 2021). Another method is based on

FIGURE 1
TAIGET workflow.
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machine learning or deep learning. Sun et al. applied stacked

autoencoder (SAE) to study sequence-based PPI prediction with

an average accuracy of 97.19% (Hashemifar et al., 2018). Chen

et al. presented a residual recurrent convolutional neural network

in the Siamese architecture for PPI prediction. Zeng et al. (2020)

developed an end-to-end deep learning framework with

combined local contextual and global sequence features to

predict PPI. The aforementioned studies raised the following

three questions: 1) Different drugs have different effects on

protein/gene regulation, so whether some PPIs could be

broken by specific drugs? 2) Are PPIs different in different

cell lines? 3) Are PPIs different in different diseases?

In this study, we developed TAIGET, a web server integrating

target identification and annotation (Figure 1). We provide here

the description of docking service, target screen, target

annotation, and PPI analysis. User guide and examples of how

to use TAIGET are further provided online.

Implementation

We first collected 176,773 PDB files (January 1995–April

2021) from the Protein Data Bank (PDB). Only Homo sapiens/

mouse protein–ligand binding files were maintained. After

filtering of the PDB files based on our previous work (Wei

et al., 2022), hydrogen atoms in proteins were removed by

pdb-tools (Rodrigues et al., 2018) and were added again by

Reduce. Size and position of binding pockets were calculated

based on 3D-coordinates of ligands in the PDB files. A UniProt

ID-PDB database was then constructed, consisting of 3D

structures of 51,362 proteins named by four-character PDB

IDs. The corresponding UniProt IDs of proteins were also

involved in the UniProt ID-PDB database. Thus, users could

provide UniProt IDs or four-character PDB IDs as protein

inputs.

The details about the BGMM-based target filter algorithm

could be found in our previous work (Wei et al., 2022). Briefly,

protein–ligand binding structures in the PDB files were split into

interaction pairs of ligand atoms and protein fragments

(covalently linked three heavy atoms) with an interatomic

distance of ≤5 Å. The interaction pairs were grouped into

ligand atoms with the same SYBYL atom type surrounding

the same protein fragment, which were further clustered via

the BGMM. Gaussian distributions with ≥20 ligand atoms were

identified as significant interaction patterns. Finally, the number

of significant docked interaction pairs and the ratio of them to all

the docked interaction pairs were defined as two important

criteria to screen potential targets after docking.

To validate the importance of the aforementioned two

features, we constructed a dataset involving 314 representative

ligand–protein complexes from the PDB database in the previous

work. Docking was conducted on the ligand and the

corresponding protein involved in the 314 complex structures.

For each docking case, root-mean square deviation (RMSD) was

used to estimate structural similarity between the ligand poses

and their corresponding crystal structure, respectively, and the

ligand poses with the highest and lowest RMSD values were

maintained. The process produced 1,252 binding poses. We

further classified the binding poses into two groups with a

threshold of RMSD of 2.5 Å. We proposed that the significant

interaction patterns were reliable if the aforementioned two

features were significantly higher in the group with

RMSD ≤2.5 Å than in the group with RMSD >2.5 Å.
Here, we used ROC analysis of the two features to evaluate

the classification accuracy. The Youden Index (YI) was used to

obtain the optimal cut-off point (Figure 2). When the number of

significant docked interaction pairs was equal to 285, the

sensitivity at the maximal Youden Index was 0.573 for the

group with RMSD ≤2.5 Å, while the specificity was 0.776.

When the ratio of significant docked interaction pairs to all

the docked interaction pairs was equal to 0.679, the sensitivity at

the maximal Youden Index was 0.71 for the group with

RMSD ≤2.5 Å, while the specificity was 0.547.

Because the number of significant docked interaction pairs

and the ratio of them to all the docked interaction pairs were two

independent and non-linear correlated features, we further

constructed machine learning models by using the two

features to predict probability of the binding pose with

RMSD ≤2.5 Å. We randomly divided the 1,252 binding poses

FIGURE 2
ROC curves for the group with RMSD ≤2.5 Å by the pattern
number and pattern ratio, respectively. Pattern num: the number
of significant docked interaction pairs. Pattern ratio: the ratio of
significant docked interaction pairs to all the docked
interaction pairs.
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into a training set (n = 876) and a test set (n = 376). Among

logistic regression (LR), k-nearest neighbors (KNNs), decision

tree (DT), random forest (RF), and XGBoost, XGBoost yielded

the best AUC of 0.78 (Figure 3). As shown in Table 1, XGBoost in

the test set showed 77% accuracy and 95% specificity. Thus, we

used XGBoost as the classification model in TAIGET to predict

the probability of obtaining a true-positive target.

For target annotation, 55,299 cancer-related literature works

ranging from 1995 to 2021 was first filtered by searching (cancer

[Tile/Abstract]) AND (viability [Tile/Abstract]) OR (apoptosis

[Tile/Abstract]) OR (invasion [Tile/Abstract]) OR (migration

[Tile/Abstract]) AND (drug [Tile/Abstract]) in PubMed. Titles,

abstracts, PMID, article types, and other related categories of the

literature were downloaded. After removing reviews, meta-

analyses, and clinical assays, information on PMID, species,

drugs, genes, regulation, cancer cell lines, cancer subtypes, and

cancer outcome was extracted from 14,394 literature studies.

Three medical experts and 10 medical students then manually

curated all the literature, especially in the following situations: 1)

regularization for cell lines in the abstracts could not distinguish

drug response in a specific cell line from many cell lines, for

example, lanatoside C had an anti-proliferation effect on

different human cancer cell lines (MKN-45, SGC-7901, HN4;

MCF-7, and HepG2). MKN-45 cells treated with lanatoside C

showed upregulation of cleaved caspase-9 and cleaved PARP and

downregulation of Bcl-xl. Medical experts and students replaced

“cancer cell lines (MKN-45, SGC-7901, HN4; MCF-7, and

HepG2)” with “MKN-45 cell line.” 2) Regularization for cell

lines in the abstracts could not distinguish the name of a specific

cell line from the names of many cell lines, for example, breast

cancer and melanoma cell lines were checked for the response to

PTX by cytotoxic assay. Medical experts and students replaced

“breast cancer and melanoma cell lines” with “breast cancer cell

line” and “melanoma cell line.” Furthermore, gene information

was standardized by protein ID in UniProt and protein-coding

genes in GENCODE (Frankish et al., 2021), while cell line

information was standardized by cancer cell lines in CCLE

(Nusinow et al., 2020).

In addition, PPIs in AFFINOMICS and cancer and cardiac

datasets in BioGRID (https://thebiogrid.org/) and IntAct

(https://www.ebi.ac.uk/intact/) were combined, with the aim to

construct target-related networks.

The TAIGET web server integrated, for the first time, a

docking service module, a target screen module, and a target

annotation module in a single GUI environment. Users have two

ways to submit a protein or ligand: 1) selecting a PDB ID or a

UniProt ID as a protein and 2) submitting a SMILES molecular

formula or a ligand file prepared by users. Also, the users have

two ways to run a job: 1) providing an input and sequentially

running the job from step 1 to step 3 and 2) selecting a specific

step among the three steps and providing the corresponding

input to run a sub-job.

The following parameters are available in the “STEP1:

Docking Service” module:

• Input files: Users can provide protein by entering four-

character PDB IDs or selecting UniProt IDs from our

UniProt ID-PDB database. Users can provide ≤5 proteins

at a time. In addition, users can provide ligands by entering

FIGURE 3
ROC curves for the group with RMSD ≤2.5 Å in the test set by
machine learning models. LR: logistic regression, KNNs: k-nearest
neighbors, DT: decision tree, RF: random forest, XGB: XGBoost.

TABLE 1 Model performance on the test set.

AUC Accuracy Sensitivity Specificity PPV NPV

LR 0.75 0.75 0.11 0.97 0.58 0.76

KNN 0.74 0.78 0.3 0.95 0.67 0.79

DT 0.74 0.77 0.22 0.96 0.69 0.78

RF 0.71 0.76 0.32 0.91 0.55 0.79

XGB 0.78 0.77 0.24 0.95 0.63 0.78

LR, logistic regression; KNNs, k-nearest neighbors; DT, decision tree; RF, random forest; XGB, XGBoost; PPV, positive predictive value; NPV, negative predictive value.
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SMILES molecular formulas or uploading ligand files in one

of the following formats, that is, *.pdb, *.pdbqt, *.smi, *.sdf,

and *.mol2. The SMILES molecular formulas of ligands can

be transformed to 3D structures by Open Babel (O’Boyle

et al., 2011) involved in TAIGET. Users can

provide ≤3 ligands at a time.

• Docking service: users can select AutoDock Vina (Trott

and Olson, 2010) or LeDock (Wang et al., 2016) to run

docking. AutoDock Vina and LeDock are the two

popular academic docking tools with relatively high

accuracy. However, although AutoDock Vina achieves

a large docking success rate, the correlation between

estimated and experimental binding free energy is low

(R < 0.5) (Nguyen et al., 2020). The weakness of LeDock

is its inability to calculate accurate binding energies.

During the docking process in TAIGET, a progress bar

will be shown.

• Data download: when the docking is complete, users can

download protein–ligand binding poses or click the “Go to

step 2” button.

• Run time: ~10s is required for each pair of protein and

ligand.

The following parameters are available in the “STEP2: Target

Screen” module:

• Input files: if users click the “Go to step 2” button, TAIGET

starts the target screen immediately. Users can also provide a

protein–ligand binding pose created by themselves in

this step.

• Target screen: when the job running is finished, a table,

portraying protein–ligand poses, PDB names, ligand names,

interaction patterns, interaction pattern ratios, and

probability will be shown.

• An interactive image: when users click a specific row of the

table, a 3D protein–ligand binding structure will be shown

on the left window. Users can rotate the image by the mouse.

• Data download: users can download the target-related

matrix and the 3D image.

• Run time: ~30s is required for the identification of

interaction pairs and the pattern calculation for each

protein–ligand pose.

The following parameters are available in the “STEP 3: Target

Annotation” module:

• Input files: users can submit a UniProt ID that they are

interested in. After clicking the “Find Target” button, a new

window appears to show the four-character PDB IDs related

to the UniProt ID. Users can also submit a four-character

PDB ID in the step.

• Target annotation: if the four-character PDB ID or UniProt

ID can be found in our standardized and curated

associations among drugs, genes, gene regulation, cancer

outcome, cancer cell lines, and cancer types, a new table will

be created to show the associations.

• A PPI network: after clicking the “Target-related PPI”

button, the screened targets can be projected to the PPI

network constructed by AFFINOMICS and cancer and

cardiac datasets in BioGRID and IntAct. Users can

visualize and drag the nodes in the target-related PPI

network using the mouse. Node colors represent the

number of literature, and the darker the color, the lager

the number of target-related literature. By placing themouse

on one node, users can observe the node-related

representative literature.

• Image download: TAIGET supports export of a high-quality

picture of the PPI network, with the aim to facilitate

academic research or education.

Results and discussion

TAIGET consists of a docking service module, a target

screen module, and a target annotation module, with the aim

to facilitate traditional experiment researchers to identify

potential targets. Compared with DrugComb (Zheng et al.,

2021) that collected drugs, drug concentration, cell lines,

drug response from drug combination screening studies, and

monotherapy drug screening datasets, we text-mined and

manually curated >14,000 PubMed literature works to

construct associations among drugs, genes, gene

regulation, cancer outcome, and cancer types for target

annotation. Finally, 7,553 associations among drugs

(6,109 types), genes (3,063 types), gene regulation, cancer

outcome, cancer cell lines (2,170 types), and cancer types

(73 types) were extracted from the literature. As we known,

there is no active web server constructing such a simplified

and comprehensive pipeline for target identification. In

TAIGET, we only allow users to input ≤5 proteins at a

time for docking because of the limitation of computing

power. If users have more requirements, they could contact

the authors by e-mails.

Input files for TAIGET

For docking, users can input PDB IDs or UniProt IDs. For

example, one user attempts to study the interactions of the serine/

threonine kinase BRAF, a promising therapeutic target for lung

cancer, with gefitinib, a tyrosine kinase inhibitor used as first-line

therapy to treat non-small cell lung cancer. By providing UniProt

ID P15056 of BRAF as the protein input, a new window will be

created, showing 76 BRAF-related PDB files. Here, the user

selects 1UWH as the protein structure, and meanwhile,

provides the SMILE format of gefitinib
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COC1=C(C=C2C(=C1)N=CN=C2NC3=CC(=C(C=C3)F)Cl)

OCCCN4CCOCC4 as the ligand input.

For the target screen, the user can input protein–ligand files

created by oneself. TAIGET will identify interaction pairs and

calculate interaction patterns for each interaction pair.

For target annotation, the user can enter a four-character

PDB ID or a UniProt ID. For example, when the user provides

1UWH as an input, a new window will be created to show

UniProt ID P15056. By clicking the UniProt ID with the mouse, a

new table will be created, showing all the BRAF-related literature.

Output files for TAIGET

In the docking step, a user can download ≤5 docked

protein–ligand poses at a time or directly go to the next

step. Here, we select AutoDock Vina for the docking of BRAF

with gefitinib, which produces two poses.

In the target screen step, a table related to BRAF–gefitinib

binding information will be created. The user can download the

target-related information by clicking the “Download Results”

button.

In the target annotation step, the user can get associations

among drugs, genes, gene regulation, cancer outcome, cancer cell

lines, and cancer types. Here, the user can provide 1UWH as an

input to find three cancer-related literature works in a new table.

For example, when the PubMed literature with doi of 10.2119/

molmed.2011.00164 is identified, the user has access to the

BRAF-related information, that is, sorafenib resulted in cell

apoptosis of marrow stromal cells, nurse-like cells, and CLL

cells by upregulation of BRAF and several related genes.

Supported browsers and systems by
TAIGET

The web server has been tested on all major browsers and

operating systems (Table 2).

Conclusion

TAIGET combines docking and a BGMM-based target filter

model to identify potential targets of small molecules, which is

friendly to non-expert users via a GUI. More importantly, TAIGET

involves a target annotation database, which contains curated

associations among drugs, genes, gene regulation, cancer

outcome, cancer cell lines, and cancer types derived

from >14,000 PubMed literature works. This greatly favors

experts and non-experts to explore target function and regulation

in specific cancer cell lines.
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