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RNA-delivery is a promising tool to develop therapies for difficult to treat

diseases such as neurological disorders, by silencing pathological genes or

expressing therapeutic proteins. However, in many cases RNA delivery requires

a vesicle that could effectively protect the molecule from bio-degradation,

bypass barriers i.e., the blood brain barrier, transfer it to a targeted tissue and

efficiently release the RNA inside the cells. Many vesicles such as viral vectors,

and polymeric nanoparticles have been mentioned in literature. In this review,

we focus in the discussion of lipid-based advanced RNA-delivery platforms.

Liposomes and lipoplexes, solid lipid nanoparticles and lipid nanoparticles are

the main categories of lipidic platforms for RNA-delivery to the central nervous

systems (CNS). A variety of surface particles’ modifications and routes of

administration have been studied to target CNS providing encouraging

results in vivo. It is concluded that lipid-based nanoplatforms will play a key

role in the development of RNA neuro-therapies.
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Introduction

Approximately 50 years ago, the first conversation of whether gene therapy could be

the solution for the treatment of serious diseases such as cancer or genetic disorders began

(Friedmann and Roblin, 1972). Since then, the science of gene therapy has flourished.

However, currently, only a few products based on in vivo or ex vivo gene therapy have

been approved by the US Food and Drug Administration (FDA) and the European

Medicines Agency (EMA) as serious limitations have not yet been overcome. Indeed, the

first gene therapy clinical trials resulted in serious adverse effects or even deaths that lead

the US National Institute of Health (NIH) to suspend the trials in pre-clinical stages

(Orkin and Motulsky, 1996).

Although today many of the early shortcomings of this technology such as off-target

effects, vector safety, or inefficient administration have been solved, there still remain
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some unsolved questions. Especially in the case of in vivo gene

therapy, nucleic acid should bypass the immune system and bio-

degradation processes of the human organism, reach the target

tissue, and even cross cell or nucleus membranes. Thus, the

accomplishment of the therapeutic genetic modifications

requires that the nucleic acid will remain effective till the time

of its expression by the target cells. For this purpose, the use of a

vector is very common. The vector is responsible for the delivery

of the nucleic acid to the target, avoiding its degradation and

systematic adverse effects. The majority of vectors are viral

vectors such as adenoviruses (Zhu et al., 2020; Voysey et al.,

2021; Watanabe et al., 2021), retroviruses (Rastegar et al., 2009),

lentiviruses (Maude et al., 2014; Sessa et al., 2016) or adeno-

associated viruses (Wuh-Liang et al., 2012; Keiser et al., 2016;

Mendell et al., 2017; Wang et al., 2018). Currently, many

scientific groups propose generally safe viral vectors as

efficient gene delivery platforms (Walther and Stein, 2000;

Bulcha et al., 2021; Selvaraj et al., 2021).

Nevertheless, other alternatives to the viral vectors have also

been developed and studied over a period of approximately

40 years (Patil et al., 2019; Faneca, 2021). Indeed, the first

medicinal product that used a lipid nanoplatform (LNP) for

the delivery of a siRNA molecule has been approved by FDA and

EMA in 2018 by the trade name Patisiran or Onppatro

respectively for the treatment of hereditary transthyretin-

mediated amyloidosis (hATTR amyloidosis) in adult patients

with stage 1 or stage 2 polyneuropathy (DeWeerdt, 2019). Today,

this technology has been used for the development of mRNA

COVID-19 vaccines (Tsakiri et al., 2021), while a few other

similar platforms are in clinical trials (Damase et al., 2021).

Diseases of the central nervous system (CNS) such as tumors

or neurodegenerative pathologies, have high mortality rates as

there are no medicinal products to cure them (Liang et al., 2021).

For example, approximately 6.2 million American citizens

aged ≥65 years were estimated to suffer from Alzheimer’s

disease (AD) while 121,499 deaths from the same pathology

were reported in 2019 (Wiley, 2021). Centers for disease control

and prevention (CDC) mention that by 2050 13.8 million US.

adults aged ≥65 years are expected to suffer from AD (Taylor

et al., 2017). Notably, these numbers refer to only one

degenerative disease. Moreover, in many of these conditions

such as AD, the only available treatment options are

symptomatic and do not address the underlying cause of the

disease (Breijyeh and Karaman, 2020). Thus, gene therapy for the

treatment of CNS diseases holds the potential to bring promising

results.

Although many approaches to deliver RNA molecules that

do not contain viral vectors exist such as chemically modified

antisense oligonucleotides (ASO), N-acetylgalactosamine

(GalNAc) ligand-modified short interfering RNA (siRNA)

conjugates (Kulkarni et al., 2021) or polymeric delivery

platforms (Wahane et al., 2020) the role of non-viral, lipid

vectors in the development of advanced therapeutic medicinal

products for gene therapy is of great importance. In addition to

protecting the nucleic acid from degradation, these platforms can

be engineered to target the brain and ensure intracellular release

through endosomal escape mechanisms in some cases. In this

mini-review, we will discuss the approaches that are utilized for

the development of lipid gene delivery nanoplatforms that target

CNS and the perspectives of this technology in the treatment of

brain diseases.

Lipid-based nanoparticles

Lipid-based nanoparticles are the most well-studied non-

viral platforms for the delivery of RNA molecules (Zhao and

Huang, 2014; Meng et al., 2017). This broad category includes

liposomes, lipoplexes, lipid nanoparticles and solid lipid

nanoparticles, as presented in Figure 1. By virtue of their

biochemical composition, lipidic nanoparticles provide bio-

mimicking and bio-degradable platforms. As a result of their

lipophilicity, they can penetrate more easily the BBB while the

inclusion of cationic lipids stabilize the negatively charged RNA

molecules via electrostatic interactions.

Liposomes and lipoplexes

Liposomes are self-assembled pseudospherical vesicles in

which the lipid bilayers surround the aqueous core. Liposomes

have been widely and for a long time used as drug delivery

systems for the treatment of a plethora of diseases. Indeed, more

than 15 liposomal drugs are currently on the market (Large et al.,

2021). However, their application in encapsulating nucleic acids

is in the pre-clinical or early clinical phase.

Liposomes can be categorized by their size, charge, key

surface molecules or surface modifications to modulate

circulation time and avoid detection and elimination by the

immune system. The development of liposomes for gene

therapy often involves the use of cationic lipids which interact

electrostatically with the negatively charged genetic material

(Mishra et al., 2022). The complexation of nucleic acids with

cationic lipids leads to the formation of the lipoplexes in which

nucleic acids are either on the external surface of the structure or

in the internal cavity (Pereira et al., 2021). The most commonly

used cationic lipids are 2,3-Dioleoyloxy-propyl)-

trimethylammonium-chloride (DOTAP) (Lechanteur et al.,

2018; Hattori et al., 2019), di-O-octadecenyl-3-

trimethylammonium propane (DOTMA) and

dimethyldioctadecylammonium bromide DDA (Putzke et al.,

2020).

Concerning the central nervous system, certain liposomes/

lipoplexes experiments have proved efficacious. Recently, Bender

and others developed DOTAP:Cholesterol 1:1 liposomes that

were incubated with small interfering RNA (siRNA) that
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decrease the amount of neuronal cellular prion protein (PrPc)

and rabies virus glycoprotein fragment (RVG-9r). As it is

presented in the literature, RVG selectively interacts with the

nicotinic achetilocholine receptor on the surface of the neuronal

cells while the addition of a positively charged arginine residue at

the carboxyl terminus of RVG (9r modification) allows the

electrostatic interaction of the modified peptide and the

siRNA chains (Kumar et al., 2007). Indeed, their formulations

can effectively bypass the BBB and prolong the lifetime of prion-

infected mice. The targeting to the brain cells was successful due

to the RVG-9r protein while the therapeutic effect suggests that

the siRNA successfully knockdown the PrPc expression (Zabel,

2013; Bender et al., 2016, 2019). Since many neurodegenerative

diseases such as Alzheimer’s, Parkinson’s or Huntington’s

pathology, belong to the category of prion diseases, those

results could bring great promise for their treatment. In

another study, DOTAP: Cholesterol siRNA-liposomes

associated with transferrin that were topically administrated in

mouse brain proved to have high efficiency in downregulation of

pathological genes while having limited toxicity (Cardoso et al.,

2008). Finally, Yuan et al. show that siRNA (siGOLPH3) loaded

cationic liposomes incorporated with angiopep2GOLPH3 ligand

for LRP-1 receptor that is expressed in human BBB and glioma

cells, protein provide could result in a potential treatment of

glioma (Yuan et al., 2018).

Furthermore, different routes of administration can improve

the brain delivery efficiency of liposomes. Dhaliwal et al. chose to

administer their mRNA lipoplexes intranasally. The liposomes

were loaded with the mRNA, labeled with GFP-mRNA or

luciferase-mRNA to evaluate the transfection efficiency of the

formulations (Dhaliwal et al., 2020). The results proved that the

expression of the mRNA was higher when the liposomal vesicles

were utilized to vehiculate the mRNA than when the mRNA was

administered in naked form. In comparison with the

administration of the naked mRNA. Interestingly, Hu and

others showed that intranasal administration of core-cell

lipoplexes could effectively transfer the siRNA (Hu et al., 2022).

Lipid nanoparticles

Disadvantages associated with the use of cationic lipids in

liposomes and lipoplexes such as rapid clearance from the

reticuloendothelial system (RES) due to opsonization and

activation of the complement system and toxicity issues

connected with cell apoptotic mechanisms, enhanced reactive

oxygen species (ROS) levels, have prompted the development of

the ionizable cationic lipids and the lipid nanoparticles (LNPs)

(Filion and Phillips, 1997; Knudsen et al., 2015; Cui et al., 2018;

Liu et al., 2020; Kulkarni et al., 2021). Cationic lipids that are

positively charged at about pH 4, but that are electroneutral at

physiological pH are key components of LNPs (Tenchov et al.,

2021). Consequently, they provide a safer solution as advanced

delivery platforms. Their safety is well-established due to the

recent approval and massive administration of Pfizer/BioNTech

and Moderna mRNA vaccines (Polack et al., 2020; Baden et al.,

2021). However, only a few studies evaluate the safety and

efficiency of LNP-RNA platforms intended for therapy in the

CNS. To the best of our knowledge, the first research article to

address this particular question was published in 2013. In this

study, Rugta et al. provide evidence that when their siRNA-LNPs

were administrated within mice cortex or via

intracerebroventricular injection a good rate of uptake by

neuronal cells and reduction of associated protein levels was

observed. Furthermore, no toxicity to neurons was observed

(Rungta et al., 2013). More recently, two separate research

FIGURE 1
Consistency of lipidic nanoparticles for RNA delivery. (A). Lipid nanoparticles (LNPs) contain an ionizable cationic lipid that allows the
encapsulation of the RNAmolecules into the internal aqueous cavities of the platform. Addition of PEG-lipid, helper lipid and cholesterol contribute
in physicochemical and biological stability of the LNPs. (B). Lipoplexes are liposomes that contain cationic lipids and are conjugated with nucleic
acids i.e., RNA. IN this case the nucleic acids are mainly in the external surface of the systems leading which indicates that the RNA is more
exposed to the environment than in the case of the LNPs. (C). Solid lipid nanoparticles are formed by the lipid core of solid lipids and the amphiphilic
surfactants that decorate the surface of the particles. Figure 1B adapted from Pereira et al. (2021).
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groups from Israel and Denmark have studied the potential role

of RNA interference-LNPs in the treatment of glioma. The

former, developed Dlin-MC3-DMA, DSPC, Chol, DMG-PEG,

and DSPE-PEG LNPs decorated with hyaluronan, which is a

CD44 ligand (Cohen et al., 2015). The latter, chose a more

complex formulation that externally has a slight negative

charge due to a PEGylated cleavable lipopeptide.

Metalloproteinases present in the tumor microenvironment

are responsible for the cleavage of the PEGylated lipoprotein

leading to positively charged LNPs that subsequently

endocytosed. Thus, intracellular release of the siRNA is

achieved (Bruun et al., 2015). Both groups resulted in good

toxicological results and a high knockdown percentage of the

targeted mRNA after in vitro experiments and topical

administration in mice. Tanaka et al. developed LNPs that

contained SS-cleavable proton-activated lipid-like materials as

the ionizable elements. These synthetic lipids provide a neutral

charge of the platform at physiological pH values while they are

protonated at the low endosomal pH. Similarly with the work of

Bruun et al. (2015), such a phenomenon leads to the protection of

the RNA molecule when administrated in vivo and the

intracellular release of this sensitive bio-molecule (Tanaka

et al., 2018). Finally, Khare et al., recently showed that LNPs

with C12-200 lipidoid, which is a syntetic lipid-like molecule that

displays tertiary amines in the headgroups, could provide a safer

approach for RNA delivery into the neurons than other platforms

that contain lipofectamine [mixture of 2,3-dioleoyloxy-N- [2

(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propaniminium

trifluoroacetate (DOSPA) and 1,2-Dioleoyl-sn-

glycerophosphoethanolamine (DOPE)]. The platform offers

favourable loading capacity, displays efficient cellular uptake

and low in vitro cytotoxicity in human cortical cell lines

(Khare et al., 2021).

Solid lipid nanoparticles

Solid lipid nanoparticles (SLNs) are another category of

lipidic nanoparticles. They from liposomes in that SLNs do

not have an aqueous central cavity but a solid lipid:surfactant

one (Scioli Montoto et al., 2020). Depending on their

composition, size and charge SLNs present unique

physicochemical properties (Naseri et al., 2015).

Concerning their role in the protection and delivery of

nucleic acids, SLNs have not been widely studied, maybe due

to their morphological characteristics. Since nucleic acids are

hydrophilic molecules, their interaction with the SLN could

take place only on the surface of the delivery platforms

electrostatically. However, electrostatic interactions are not

particularly stable and could easily break under

environmental pressure (Wojnarowska et al., 2018).

Nevertheless, an interesting study was performed by Rassu

et al. They stabilized BACE-1 siRNA negatively charged

molecules, that could have a valuable role in the treatment

of Alzheimer’s disease, with RVG-9R, which was positively

charged. Afterward, the siRNA-RVG-9R complex solution

was mixed with triglycerides, poly (vinyl alcohol) and

chitosan for the formation of a double emulsion that

contains the SLNs. The chitosan coated SNPs presented

higher in vitro mucoadhesiveness and permeability

properties than the non-coated SNPs (Rassu et al., 2017).

Another study utilized two different siRNA molecules that

knockdown the human c-Met, which is found in glioma to

deliver them by SLN. The siRNA molecules were first

conjugated with polyethylene glycol (PEG) via a disulfide

bond. The SLN-siRNA-PEG formulations displayed

accumulation in the brain tumor, no systemic toxicity as

well as suppression of the tumor growth after intravenous

administration in the glioblastoma xenograft tumor model

(Jin et al., 2011).

Discussion

Today, the treatment of brain malignancies such as

glioblastoma or neurodegenerative diseases still remains an

elusive (Mullard, 2021; Sun and Roy, 2021). Gene therapy is a

promising approach to developing new medicinal products for

a plethora of different diseases (Sudhakar and Richardson,

2019; Parambi et al., 2022). For instance, the small interfering

RNAs can downregulate the expression of pathological

proteins that are present in diseases. Such pharmacological

action is not possible with other therapeutic approaches

(i.e., by small drugs or proteins). Viral vectors have been

the gold standard of brain gene delivery in the past years as

they can easily pass the BBB, they are taken up by the brain

cells and transfer their genes into the cell nucleus (Lundstrom,

2018). Although the viruses that are utilized are either

attenuated or non-replicating, concerns about the safety of

these vectors exist in terms of immunogenicity and

mutagenicity.

The BBB remains one of the main obstacles for the lipidic

delivery systems. Three pathways responsible for the lipidic

vesicles by-pass through the BBB are mentioned in the

literature: 1) adsorptive-mediated transcytosis (AMT), 2)

receptor-mediated transcytosis (RMT), and 3) carrier-

mediated transcytosis (CMT) (Juhairiyah and de Lange,

2021). Concerning AMT, cationic vesicles interact

electrostatically with the endothelial cells of the BBB.

However, the cationic charge leads to toxicity effects and

fast inactivation of the particles via opsonization processes.

The decoration of the lipidic nanoparticles with accessory

molecules such as peptides or antibodies is a common

procedure. Transferrin (Kong et al., 2020), glucose or

mannose and their derivatives (Qu et al., 2014; Arora

et al., 2020), vitamin C (Peng et al., 2018) and glutathione
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(Salem et al., 2015; Trapani et al., 2021) are some of these

accessory molecules. Another effective way to avoid the BBB

via non-invasive administration is the nose-to-brain

pathway. Although the exact mechanism of action of nose-

to-brain delivery is not clear, transfer through olfactory

nerves or trigeminal nerves seems to be the most common

way after intranasal administration. For the former, the

nanoparticles paracellularly pass through the gaps of

olfactory cells, finally reaching the subarachnoid space

(Crowe et al., 2018). Indeed, Godfrey and others found

that their intranasally administrated nanoplatforms were

located in the olfactory bulb only 5 min after the

administration (Godfrey et al., 2018). On the other hand,

the transport through the trigeminal nerves seems to be less

common but possible both by intra- or extra-cellular routes

(Cunha et al., 2017; Bourganis et al., 2018). However, some

consideration still exists of whether today, nose-to-brain

administration of nanovesicles increase the effectiveness of

active molecules (Feng et al., 2018).

The majority of recent and current studies related to the

delivery of small molecules or bio-molecules in the CNS with

the aid of nanotechnology have focused on liposomal

nanovesicles. However, other platforms, such as LNPs may

be better choices for the transport of genetic material in the

brain due to the better encapsulation of a sensitive RNA

cargo. For instance, although many of the studies mentioned

above indicate that LNPs containing RNA molecules could

play an important role in the treatment of CNS diseases, all of

them used a patient unfriendly route of administration and

more work is necessary for the development of platforms that

are not only safe and efficacious but also not demanding for

the patient. Moreover, in vivo toxicity studies after repeated

administration is necessary to verify the safety of the

platform as in many cases the therapeutic regimen would

entail multiple, rather than single, dose protocol.

Nevertheless, lipidic nanoparticles that carry RNAs hold

great promise as advanced therapeutic medicinal products

that could provide effective results in the treatment of

neurodegenerative disorders, such as Alzheimer’s disease,

or brain tumors like glioblastoma.
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