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Cancer drug resistance has always been a major factor affecting the treatment of non-
small cell lung cancer, which reduces the quality of life of patients. The clustered regularly
interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9)
technology, as an efficient and convenient new gene-editing technology, has provided
a lot of help to the clinic and accelerated the research of cancer and drug resistance. In this
review, we introduce the mechanisms of drug resistance in non-small cell lung cancer
(NSCLC), discuss how the CRISPR/Cas9 system can reverse multidrug resistance in
NSCLC, and focus on drug resistance gene mutations. To improve the prognosis of
NSCLC patients and further improve patients’ quality of life, it is necessary to utilize the
CRISPR/Cas9 system in systematic research on cancer drug resistance.
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1 INTRODUCTION

Lung cancer is one of the most common cancers and is the leading cause of cancer death, accounting
for approximately 18% of cancer deaths (Sung et al., 2021). Non-small cell lung cancer (NSCLC) is
the most common type of lung cancer, accounting for more than 85% of total lung cancer cases, and
the World Health Organization (WHO) classifies NSCLC into adenocarcinomas, squamous
carcinomas, and large cell carcinomas based on differences in immunohistochemical markers
(Mengoli et al., 2018). The high lethality of lung cancer is associated with difficulty in diagnosis,
treatment, and poor prognosis (Woodard et al., 2016). The mainstay of treatment for NSCLC is
surgery and adjuvant cisplatin-based therapy (Duma et al., 2019), Many challenges remain in the
screening and treatment of lung cancer, and mortality is difficult to control. Although chemotherapy
can prolong survival to some extent in patients with moderately advanced NSCLC, the overall
response rate is only about 30%, the median survival is 8–12 months, and the 1-year survival rate is
30–40% (Reck and Rabe, 2017). The advent of targeted agents has led to improvements in the
treatment of NSCLC.

However, the treatment failure in NSCLC is closely related to the phenomenon of acquired drug
resistance and multidrug resistance (MDR) in prognosis. For example, in NSCLC patients harboring
EGFR gene mutations, the EGFR-TKI class of drugs is the standard first-line treatment, showing
disease progression after 9–13 months despite some therapeutic efficacy (Kelly et al., 2015). Tumors
with EGFR-TKI resistance mechanisms had EGFR secondary mutations, bypass or downstream
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pathway activation: such as HER2 amplification, met
amplification, FGFR1 activation, PI3K/Akt pathway activation,
BRAF mutation, and loss of PTEN expression (Uchibori et al.,
2018; Leonetti et al., 2019).

Clustered regularly interspaced short palindromic repeats/
CRISPR associated protein 9 (CRISPR/Cas9) technology is the
most powerful gene-editing technology after zinc finger nucleases
(ZFNs), transcription activator-like effector nucleases (Talens)
(Carroll, 2011; Joung and Sander, 2013), with flexible and
convenient features, it is inexpensive and has been widely used
in biology, microbiology, agriculture, and animal husbandry.

To further investigate the mechanisms of multidrug resistance
in NSCLC and improve the prognosis and quality of life of NSCLC
patients, we discuss issues related to NSCLC drug resistance by
reversing NSCLC multidrug resistance via CRISPR/Cas9,
screening drug-resistant targets, and targeting therapies.

2 MECHANISM OF THE CRISPR/CAS9
SYSTEM

CRISPR/Cas, an acquired immune defense system that evolved
during long-term evolution in bacteria and archaea to fight

invading viruses and foreign DNA, was first identified in 1987
(Ishino et al., 1987) and was later shown to have powerful gene-
editing functions.

CRISPR gene sequences are constituted by multiple short and
conserved repeats and non-repetitive sequences called spacers,
and CAS proteins are a family of endonucleases. There are three
main stages in the mechanism of acquired immune protection by
CRISPR/Cas9, which are the acquisition of CRISPR spacer
sequences, expression of CRISPR genes, and CRISPR
interference (Deveau et al., 2010). When a foreign gene first
invades a bacterium, CRISPR/Cas9 recognizes the protospacer
adjacent motif (PAM), and cuts the DNA sequence adjacent to
the PAM as a candidate protospacer from the foreign DNA,
inserts downstream of the leader region of the CRISPR sequence,
and repairs. When foreign genes re-invade, CRISPR sequences
are transcribed to form pre-CRISPR-derived RNA (pre-crRNA)
and trans-acting crRNA (tracrRNA), the former of which is
sheared by Cas proteins into mature CRISPR derived RNA
(crRNA). Subsequently, a complex consisting of pre-crRNA,
tracrRNA and cas9 protein allows recognition of the foreign
gene and DNA double-strand cleavage.

A guide RNA (gRNA), consisting of 20–24 bases, recognizes
the PAM on both sides of the target DNA for target sequence

FIGURE 1 | (A): Mechanism of CRISPR/Cas9 system; (B): Mechanism of CRISPR/dCas9 system.
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cleavage, its HNH enzyme will shear the crRNA complementary
DNA strand, while its RUVC active site will shear the
noncomplementary strand, causing double-strand breaks
(DSBs), and the cell performs DNA repair by non-
homologous end joining (NHEJ) and homologous directed
recombination (HDR) pathways, thus creating a permanent
mutation (Figure 1A).

In 2013, Qi et al. introduced h840a mutations in the HNH
domain of the cas9 protein and D10A mutations in the RUVC
domain, which rendered the protein activity defective and,
although DNA could still be precisely targeted, lost its original
function (Qi et al., 2013). The dCas9 can regulate target genes
under the guidance of sgRNAs without generating DSBs. The
dcas9 protein can carry different effector domains, recruit
endogenous transcriptional activators and RNA polymerase to
target DNA sequences for target gene activation, and also disrupt
transcription factor binding or hinder RNA polymerase binding,
thereby silencing target gene expression (McCarty et al., 2020)
(Figure 1B).

3 PRINCIPLES OF MULTIDRUG
RESISTANCE IN NSCLC REVERSED BY
CRISPR/CAS9 TECHNOLOGY
Drug resistance is an essential factor leading to treatment failure
in many intractable diseases, which limits the application of
chemotherapeutics in NSCLC patients, and the reasons why
tumor cells develop drug resistance are complex and variable,
mainly including drug inactivation, enhanced drug efflux,
epigenetic changes, DNA repair ability, apoptosis inhibition,
alteration of drug targets Epithelial-mesenchymal transition
(EMT), etc. (Gottesman, 2002; Panda and Biswal, 2019)
(Figure 2). These mechanisms can act independently or in
combination and act through various signal transduction

pathways. CRISPR/Cas9 has been used for the study of drug
sensitization and resistance. We discuss the key reasons for drug
failure in NSCLC and the role of CRISPR/Cas9 technology.

3.1 Studies on Drug Resistance Genes
NSCLCs are strongly associated with mutations in related genes
that cause alterations in the structure or number of proteins
encoded by the genes, leading to changes in the function of their
associated genes. In addition to the well-known EGFR and ALK,
BRAFmutations, ros1 rearrangements, RET rearrangements, and
others are common in NSCLC. There are a variety of targeted
drugs acting on the relevant receptors (Table 1; Figure 3). The
CRISPR/Cas9 system can be used to remove the functional
regions of drug resistance genes, thereby reversing drug
resistance. It can also be used to knock out or overexpress
drug resistance genes in cell lines and animals, making it
easier to research drug resistance mechanisms in tumors.

3.1.1 EGFR
EGFR is a tyrosine kinase receptor that Homo—or
heterodimerizes with ligands to cause autophosphorylation,
which in turn regulates downstream signaling pathways
leading to tumor proliferation, invasion, metastasis and
angiogenesis. Mutations in the EGFR kinase domain are
present in approximately 10%–40% of patients with NSCLC.
Treatment of EGFR mutant lung cancers with EGFR-TKIs
effectively inhibits tumor progression and prolongs
progression free survival (PFS) in patients with NSCLC
compared with standard chemotherapeutic agents (Schrank
et al., 2018). Approximately 90% of EGFR mutations are
caused by mutations in exon 19 (exon 19 deletion mutation)
and exon 21 (L858R) (Camidge et al., 2014; Robichaux et al.,
2018). After administration of TKIs, most patients develop
acquired resistance, which is usually caused by a secondary
mutation at position 790 in exon 20 (Cross et al., 2014),

FIGURE 2 | Different mechanisms involved in anticancer drug resistance.
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Targeting the third-generation EFGR-TKI Osimertinib for this
resistance occurs where the EGFR c797s mutation blocks efficient
binding of Osimertinib to the target EGFR c797 site (Jia et al.,
2016). Tang et al. proposed an individualized molecular surgical
treatment strategy for EGFR mutant lung cancer using CRISPR/
Cas9 technology, which generates breaks at mutation sites or
exons. The wild-type sequence containing the exon and the donor
DNA with its left and right homology arms would then replace
the mutated sequence or exon by HDR, an approach that would

eradicate the drug resistance gene and thus prevent cancer
progression (Tang and Shrager, 2016). Liu et al. used CRISPR/
Cas9 technology to create renal cell carcinoma (RCC) cell lines
with EGFR knockout, which significantly inhibited cancer cell
proliferation and induced cell arrest in the G2/M phase. However,
knocking out EGFR resulted in high ERK expression, but the
authors discovered that ERK and Akt could be inhibited by
Sunitinib (a multi-targeted TKI) in combination (Liu et al.,
2020), suggesting that CRISPR mediated knockout of drug
resistance genes may be a promising option for future disease
treatment.

3.1.2 ALK
Anaplastic lymphoma kinase (ALK), which belongs to the insulin
receptor (IR) superfamily, is a highly conserved receptor tyrosine
kinase. ALK rearrangements are found in approximately 3%–7%
of NSCLC patients (Devarakonda et al., 2015). ALK is mutated as
a fusion with echinoderm microtubule-associated protein like 4
(EML4), encoding the form of an EML4-ALK fusion protein that
leads to ALK dimerization, which results in the activation of ALK
and its downstream signaling pathways such as JAKs/STAT3 and
RAS/MEK/ERK, leading to aberrant cell proliferation and
differentiation and promoting tumorigenesis (Soda et al., 2007;
Sasaki et al., 2010). In 2014, Blasco et al. designed sgRNAs
targeting intron 14 of the EML4 gene and intron 19 of the
ALK gene in mice, generated DSBs using Cas9, and generated
EML4-ALK rearrangements in non-small cell lung cancer cells,
which were able to promote tumor formation in the lungs of mice,
demonstrating the importance of the CRISPR/Cas9 system for
studying chromosomal rearrangements (Blasco et al., 2014).
EML4-ALK exhibits potent oncogenic properties both in vitro
and in vivo, in which tumor development can be rapidly

TABLE 1 | Summary of targeted therapeutic drugs for non-small cell lung cancer.

Targrt Mechanism of Action Drug Usage Ref

First generation
EGFR-TKIs

Inhibits by binding to the ATP site of the EGFR receptor Erlotinib For first-line treatment of locally advanced or
metastatic NSCLC with sensitive gene mutations in
EGFR.

Zhou et al. (2011)

Gefitinib It is used for single drug continuous treatment of locally
advanced or metastatic NSCLC with platinum and
docetaxel chemotherapy failure

Goss et al. (2013)

Second
generation EGFR-
TKIs

Blocking the EGFR-HER2 signaling pathway Afatinib It can significantly improve the progression free
survival, objective response rate (ORR) and 8-weeks
disease control rate

Park et al. (2016)

Third generation
EGFR-TKIs

Play a role in secondary drug resistance. the binding
of ALK

Osimertinib Targeted treatment of patients with EGFR mutation
and T790M drug resistance mutation significantly
prolonged PFS in patients with NSCLC.

Cho et al. (2019)

First generation
ALK-TKIs

Competitive binding to ATP binding sites blocks. The
binding of the ALK enzyme to ATP, hinders the
subsequent autophosphorylation process, and leads to
the inactivation of the ALK downstream signal pathway

Crizotinib It can effectively inhibit NSCLC caused by ROS 1 gene
rearrangement

Moro-Sibilot et al.
(2019)

Second
generation ALKK-
TKIs

Ceritinib It is applicable to NSCLC patients who progress after
treatment with kezotinib or cannot tolerate its toxic and
side effects

Soria et al. (2017)

BRAF inhibitor The continuous activation of BRAF gene leads to the over
activation of MEK/ERK signaling pathway, which leads to
tumor production and even tumor metastasis

Dabrafenib Combined with trimetinib to treat patients with
advanced NSCLC with braf-v600e mutation

Planchard et al.
(2017)

c-Met inhibitor c-MET can affect the downstream PI3K/Akt and MAPK
pathways, and abnormal c-met activity leads to abnormal
metabolism

Tivantinib Combined with EGFR-TKI can effectively prolong the
PFS of EGFR mutant NSCLC.

Yoshioka et al.
(2015)

FIGURE 3 | Cell signaling in NSCLC drug resistance.
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suppressed using ALK TKIs (Soda et al., 2008). Tumor cells often
develop acquired resistance to ALK inhibitors, resulting from
secondary mutations in the patient’s kinase domain, gene
amplification, and activation of alternative signaling pathways
(e.g., EGFR, kit, IGF1R, etc.) and epithelial mesenchymal
transformation (Spaans and Goss, 2014; Kong et al., 2019).
ALK creates secondary mutations that promote an altered
spatial conformation of the kinase, weaker binding to the
drug, or stronger binding to ATP, leading to the development
of drug resistance. The initial ALK mutation was the L1196m
mutation, and the leucine residue L1196 in the ALK kinase
domain, located at the bottom of the ATP binding pocket, is
mutated to methionine. The thioether side chain of methionine
would create a steric hindrance to hinder the binding of the ALK-
TKI Crizotinib to the ALK kinase, resulting in Crizotinib
resistance (Doebele et al., 2012).

3.1.3 ROS1
The receptor tyrosine kinase ROS proto-oncogene 1 (ROS1)
belongs to a group of receptor tyrosine kinases in the insulin
family of receptors, and ROS1 rearrangements are observed in
approximately 1%–2% of patients with NSCLC (Gainor and
Shaw, 2013). The kinase domains of ALK and ROS1 share
homology, and Crizotinib, an ALK-EML 4 inhibitor, was used
to interfere with ROS1 fusion gene-positive and ALK-EML4
fusion gene-positive lung cancer cells, and Crizotinib was
found to inhibit the growth of hcc78 cells (ROS1 fusion gene-
positive) (Bergethon et al., 2012), Accordingly, some ALK-TKIs
have been shown to be effective in patients with ros1
rearrangement (Huber et al., 2014). Choi et al. achieved the
first CD74-ROS1 translocation event utilizing CRISPR/Cas9
technology in 2014, suggesting that Cas9-induced DSB can
result in chromosome translocation (Choi and Meyerson,
2014). Sato et al. designed gRNAs to target EZR intron 9 and
ROS1 intron 33 and successfully generated EZR/ROS1 fusions in
HBECp53 lung adenocarcinoma cells, which highly induced the
phosphorylation of MEK and ERK, and the MEK/ERK signaling
pathway can mediate the primary or acquired resistance to
ROS11 TKIs in ROS1 rearranged lung adenocarcinoma
patients. Using a combination of Selumetinib and Crizotinib,
the authors effectively inhibited the growth of ros1 fusion positive
cells in vitro and in vivo (Sato et al., 2020), providing a therapeutic
strategy for NSCLC.

3.1.4 KRAS
Kirsten rat sarcoma viral oncogene (KRAS) belongs to the RAS
protein family, and KRAS mutation is a common type of
mutation in non-small cell lung cancer. When KRAS is bound
to guanosine triphosphate (GTP), it is activated and can activate
downstream BRAF/MEK/ERK and PI3K/Akt/mTOR signaling
pathways (Friedlaender et al., 2020). The mutation rate of KRAS
in NSCLC is 20%–30%, and about 97% of these mutations are
point mutations in codon 12 or 13 in exon 2 (Rotow and Bivona,
2017). KRAS is a marker of resistance to EGFR-TKIs drugs, and
KRAS mutation is an indicator of poor prognosis in NSCLC. So
far, no effective KRAS inhibitors have been developed. Gao et al.
used the CRISPR/Cas9 system to knock out KRAS G12S, used

dcas9 KRAB to bind to the target. KRAB, a transcription
inhibitor, can downregulate mRNA transcription. Cas9-sgG12S
suppressed the proliferation of tumor cells by inhibiting the
production of the KRAS (G12S) protein in A549 cells, as well
as the phosphorylation levels of downstream molecules Akt and
ERK. The tumor volume reduced by 46%, the tumor volume
decreased by 30%, and the expression of KRAS mutant protein
decreased dramatically in A549 mice treated with Adv-Cas9-
sgG12S (Gao et al., 2020).

3.1.5 BRAF
V-Raf mouse sarcoma viral oncogene homolog B (BRAF) is a
serine/threonine kinase that is downstream of KRAS in the
MAPK signaling cascade pathway. BRAF is mutated in 60% of
melanomas and drives oncogenes for a variety of malignancies
such as colorectal, ovarian, and papillary thyroid cancer. RAS-
GTP binding to the receptor-binding domain (RBD) activates
RAF, leading to RAF phosphorylation and the induction of MEK
and ERK activation, which results in cell proliferation and
differentiation (Wan et al., 2004). Ding et al. tested the
amplification refractory mutation system in 1680 NSCLC
patients and found that the BRAF mutation rate was 1.7%,
and was mostly found in lung adenocarcinoma patients and
female patients (Ding et al., 2017). The predominant type of
mutation in the brae gene in NSCLC is V600E, with a mutation
rate of over 50% (Li et al., 2014), and investigators have found two
mutations, V458L and K438T, on exon 11 in lung
adenocarcinoma (Brose et al., 2002). Resistance to the BRAF
inhibitor dabrafenib often develops within 8 months (Flaherty
et al., 2010; Chapman et al., 2011). As BRAF mutations are more
common in melanoma, studies utilizing CRISPR/Cas9 for
chemotherapeutic agents have often revolved around the
melanoma. Wu et al. developed a light-inducible CRISPR/Cas9
system to cleave the mutated BRAF gene (BRAF V600E), which
promotes melanoma cell apoptosis and effectively inhibits
melanoma cell proliferation, invasion, and migration (Wu
et al., 2020).

3.1.6 MET
C-MET proto-oncogene, receptor tyrosine kinase (c-MET), a
transmembrane receptor encoded by the met gene, belongs to
the hepatocyte growth factor (HGF) receptor family, and HGF, in
combination with c-MET, undergoes phosphorylation and
autophosphorylation and activates downstream PI3 K/Akt and
MAPK signaling pathways (Pasquini and Giaccone, 2018), MET
amplification accounts for 5%–20% of NSCLC patients and is a
poor prognostic factor for EGFR-TKI acquired resistance
(Bubendorf et al., 2017). Met exon 14 mutations are common
and account for 3% of lung adenocarcinomas (Schrock et al.,
2016). Crizotinib acts as a tyrosine kinase receptor inhibitor
capable of inhibiting c-MET. Togashi and others used
CRISPR/Cas9 system to knock out the exon of MET 14 in
HEK293 cell line, MET phosphorylation raised, protein
expression increased, cell proliferation was reinforced, and cell
sensitivity to Crizotinib was improved (Togashi et al., 2015),
demonstrating that targeted therapy for MET exon 14 deleted
non-small cell lung cancer holds promise.
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3.1.7 Other Genes
Nonspecific conventional chemotherapy drugs, such as cisplatin,
paclitaxel, and etoposide, are also commonly used in the
treatment of NSCLC. Chen et al. silenced Rsf-1 in NSCLC by
CRISPR/Cas9, which inhibited cancer cell inhibition and
migration and promoted cancer cell apoptosis, demonstrating
that Rsf-1 regulates NF-κ B pathways to influence NSCLC
sensitivity to paclitaxel (Chen et al., 2017). Aurora-B is a key
factor regulating mitosis and is frequently overexpressed in lung
cancer. Yu et al. knocked down Aurora-B in the A549 cell line by
CRISPR/Cas9 technology, and demonstrated that Aurora-B
could confer NSCLC drug resistance by inhibiting cell
proliferation, p53 related DNA damage response and apoptotic
pathways, while knocking down Aurora-B was able to restore cell
sensitivity to cisplatin and paclitaxel (Yu et al., 2018). Zhang et al.
found that transducing-like (β) receptor 1 (tbl1xr1) was
overexpressed in NSCLC and promoted cancer progression by
regulating the MEK and Akt signaling pathways through its
master regulator c-MET, knockdown of tbl1xr1 by CRISPR/
Cas9 in A549 and H460 cell lines resulted in an increase in
the number of cells in G0/G1 phase, inhibited cell proliferation
and migration, and promoted apoptosis with a concomitant
increase in sensitivity to cisplatin (Zhang T. et al., 2020).

3.2 Application of CRISPR/Cas9 in
Screening Drug Resistance Genes
CRISPR/Cas9 technology is also being used for genetic screening
of potential drug resistance in NSCLC. Previously, RNA
interference (RNAi) - based genetic screens, the mainstay of
genome-wide loss of function screens, have been effective in
identifying genes in tumor cells that can respond to
chemotherapeutic agents and in studying signaling pathways.
However, there are a series of challenges in the application of
RNAi. For example, the high specificity of RNAi is relative, in
some cases siRNAs produce the off-target phenomenon. RNAi
cannot wholly block the expression of genes in mammalian cells,
especially those that are abnormally highly expressed (Jackson
et al., 2006; Mullenders and Bernards, 2009). CRISPR/Cas9
technology can activate or repress gene expression and can
label functional regions at specific genomic loci, resulting in
accurate genome editing with the advantages of fewer false
positives and lower off-target effects (Evers et al., 2016), which
has now been applied to screen drug resistance genes in a variety
of tumors.

Zeng et al., through genome-wide CRISPR/Cas9 gene
screening, found that inactivation of GPCR related effectors
produced obvious synergistic effects with EGFR inhibition in
EGFRmutated NSCLC cells, deficiency of GPCR related effector -
RIC8A could improve cell sensitivity to chemotherapeutic drugs,
and targeting RIC8A is promising as a new approach to
preventing EGFR-TKI resistance in NSCLC (Zeng et al., 2019).
Lee et al. used CRISPR/Cas9 libraries to screen human lung
cancer cell lines (NCI-H820) and knockdown of the genes
MDM4, PSMA6, PSMB6, ANAPC5, and CDK1 increased the
sensitivity of lung cancer cells to the EGFR-TKI Erlotinib, the
MDM4 inhibitor nutlin-3 synergized with PSMA6, and the

PSMB6 inhibitor Carfilzomib synergized with Erlotinib in vitro
cell lines and in vivo patient-derived xenograft experiments, can
promote tumor cell death, target cell cycle or protein
ubiquitination pathways, and may inhibit Erlotinib resistance
progression (Lee et al., 2021).

3.3 Modification of Cellular Transport
Pathways
Cancer cells often efflux chemotherapeutic agents out of the cell
to lower intracellular drug concentrations by up regulating one or
more adenosine triphosphate binding cassette (ABC) membrane
transporters (Mollazadeh et al., 2018). Three transporters
multidrug resistance protein 1 (MDR1), multidrug resistance-
associated protein 1 (MRP1), and breast cancer resistance protein
(BCRP) - have been implicated in cancer resistance (Sakaeda
et al., 2002; Cole, 2014; Mao and Unadkat, 2015). P-glycoprotein
(P-gp), a member of the ABC superfamily of structural
transporters that have been extensively studied, is encoded by
MDR1 (Panczyk et al., 2007), is widely distributed in tissues such
as the brain, lung, liver, kidney and gastrointestinal tract (Gupta
et al., 2015), and is highly expressed within tumor cells, which
confers drug resistance (Ambudkar, 1995; Li et al., 2016). Studies
in many different types of cancer have shown that increased
expression of any one of these transporters in cancer cells leads to
suboptimal clinical outcomes. Jia et al. showed that the expression
level of P-gp in ovarian cancer tissues was significantly higher
than that in adjacent normal tissues, and increased with higher
clinical stage of ovarian cancer (Jia et al., 2018). EL-Masry et al.
demonstrated that in adult acute myeloid leukemia (AML)
patients, BCRP was highly expressed in 34 out of 50 adult
AML patients (68%) (El-Masry et al., 2018). In chronic
myeloid leukemia (CML), tumor sensitivity can be increased
using febuxostat, a BCRP inhibitor (Ito et al., 2021).

Using the CRISPR/Cas9 system to target the MDR1 gene in
the MDR cell lines KBV 200 and HCT-8/V, Yang et al. were able
to improve vincristine and doxorubicin sensitivity inMDR cancer
cells (Yang et al., 2016a). The PI3K inhibitor BAY-1082439 was
able to down regulate P-gp and BCRP expression, and nonviral
transgenic vector-mediated CRISPR/Cas9 knockdown of PI3K in
non-small cell lung cancer H460 cell line and its resistant subline
H460/MX20 110 α And 110.0 β Subunit, leading to
downregulation of P-gp and BCRP and reversing P-gp-
mediated drug resistance (Zhang L. et al., 2020).

3.5 CRISPR/Cas9 for Epigenetic Regulation
Epigenetic regulation of cancer cells has an important role in the
process of drug resistance. Epigenetics refers to the regulatory
mechanisms of gene expression that result in an altered
phenotype through the modification of DNA bases. Many of
the genes that play a key role in the process of cancer drug
resistance often have abnormal alterations in epigenetics to
escape the body’s immune surveillance. Many of the sites that
are mutated at high frequency on the drug-resistant genomes of
tumors are genes encoding enzymes associated with epigenetic
regulation (Yu et al., 2011; Azad et al., 2013). Common epigenetic
regulations include DNA methylation, histone modification,
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noncoding RNA regulation, and chromatin remodeling, among
others (Dawson and Kouzarides, 2012). DNA methylation is the
addition of a methyl group to the cytosine of certain specific
regions (i.e., the Cp G Islands) where methylation occurs, leading
to the expression of the gene being affected. Transcriptional
inactivation, silencing of tumor suppressor genes when
aberrantly methylated, or activation of oncogenes due to DNA
hypomethylation may underlie tumorigenesis and
chemotherapeutic resistance (Liu B. et al., 2016). Terai et al.
showed that gefitinib-resistant lung cancer cells had significantly
increased methylation relative to parental cells (Terai et al., 2015).
Protein modification refers to the process by which histones
undergo methylation, acetylation, phosphorylation,
ubiquitination and other modifications under the action of
related enzymes (Audia and Campbell, 2016). In
hepatocellular carcinoma (HCC), G9a, a histone
methyltransferase, promotes HCC proliferation and metastasis
by regulating the dimethylation level of rarres3 histone (Wei
et al., 2017). In 2016, Okano et al. initially demonstrated the
essential role of the dCas9-Tet1 and dCas9-Dnmt3a systems for
epigenetic regulation by using Tet1 and Dnmt3a catalytically
inactive cas9 fusion proteins to target the brain-derived
neurotrophic factor (BDNF) promoter Ⅳ and distal enhancer
of myogenic determination factor (MyoD) (Liu X. S. et al., 2016).
In terms of histone deacetylation modification, Liu et al. fused
dCas9 to HDAC1 and achieved deacetylation of histones at the
KRAS promoter and effectively silenced the oncogene KRAS,
providing a novel approach for cancer therapy (Liu et al., 2021).

Rakshit et al. used CRISPR/Cas9 to knock down BRCA1 in
human CD4 + T helper cells and demonstrated that the
expression of the BRCA1 gene in the VEGFA and aimp1 loci
was suppressed in NSCLC, and aberrant expression of multiple
DNA damage/repair factors was found in the aimp1 and VEGFA
loci. However, knockdown of BRCA1 results in high levels of
R-loop formation at the VEGFA and AIMP1 loci, and the R-loop
structure is one of the major intracellular causes of genomic
instability (Rakshit et al., 2021). Choudhury et al. used the
CRISPR/dCas9 system at the promoter region of BRCA1 to
reduce DNA methylation and reactivate gene expression to
restore function to BRCA1 for the purpose of cancer
suppression (Choudhury et al., 2016). Kang et al. used
CRISPR/Cas9 to change the CpG dinucleotides in the
promoter region to unmethylated dinucleotides and achieved
selective DNA demethylation by targeting methylated CpG sites
using the CRISPR/dCas9-Tet1 system (Kang et al., 2019).

Studies on miRNA Expression
MicroRNAs (miRNAs), a class of endogenous non-coding RNAs
with 19–24 nucleotides in length, play key roles in regulating
tumor cell proliferation, differentiation, migration, invasion, and
miRNAs and their mediated signaling pathways are directly
involved in the regulation of multiple cell biological pathways
and cisplatin response in non-small cell lung cancer (Zang et al.,
2017; Santos and Almeida, 2020). Yang et al. demonstrated that
miR-26a could inhibit the HMGA2 mediated E2F1-Akt signaling
pathway by down regulating intracellular high mobility group a 2
(HMGA2) expression, which in turn enhanced cisplatin

resistance (Yang et al., 2016b). MiRNAs can regulate non-
small cell lung cancer apoptosis, and then regulate the drug
resistance of cells. Qiu et al. found that miR-503 specifically
targeted anti-apoptotic protein Bcl-2, and then reversed cisplatin
resistance in non-small cell lung cancer (Qiu et al., 2013).

Overexpression of miR-421 in NSCLC promoted lung cancer
cell migration and invasion and increased the resistance of lung
cancer cells to paclitaxel. CRISPR/Cas9 knockout β- Catenin
downregulates miR-421 levels in A549 cells (Duan et al.,
2019). Knockdown of LHX6 in HCC827/ER cells by CRISPR/
Cas9 system reversed the reduced cell invasion and Erlotinib
resistance caused by downregulation of miR-214 (Liao et al.,
2017). Overexpression of miR-1304 significantly decreased the
number of NSCLC cells and promoted apoptosis. Li et al. showed
that the expression of HO-1 was significantly increased by
knockdown of endogenous miR-1304 by CRISPR/Cas9, and
miR-1304 inhibited NSCLC cell growth by targeting HO-1,
demonstrating that modulation of miR-1304/HO-1 may be a
novel therapeutic avenue (Li et al., 2017).

3.6 Studies on Epithelial Mesenchymal
Transition
Epithelial to mesenchymal transition (EMT) refers to the process
in which, under certain conditions, cells of the epithelial
phenotype appear to have downregulated expression of
characteristic proteins of the epithelial phenotype, whereas
cells of the mesenchymal phenotype are upregulated, that is,
epithelial cells undergo a morphological transition to a
fibroblastic or mesenchymal phenotype, and cells undergo loss
of cell polarity, which enables increased motility (Tsai and Yang,
2013). Key signaling pathways involved in EMT include TGF-β,
Wnt, Notch and Hedgehog et al. (Gonzalez and Medici, 2014;
David et al., 2016; De Francesco et al., 2018; Teeuwssen and
Fodde, 2019). Several methodologies have been utilized to
investigate the role of various genes in the EMT process in
various diseases. RNAi is often used in EMT research, but
because its low specificity is inevitable, CRISPR/Cas9 is now
being widely used to help us identify potential therapeutic targets
for EMT-associated diseases. For example, Survivin, one of the
main members of the inhibitor of apoptosis (IAP), was highly
expressed in a variety of tumor tissues and cells and promoted
EMT, which was associated with proliferation, migration and
chemoresistance in various cancers, such as breast cancer, non-
small cell lung cancer, and prostate cancer. Using the CRISPR/
Cas9 system, Zhao et al. showed that TGF-β could be attenuated
by knockdown of BIRC5, the gene encoding Survivin, in ovarian
cancer cells SKOV3 and OVCAR3 signaling that inhibits cancer
cell proliferation and migration and restores sensitivity to
paclitaxel (Zhao et al., 2017).

Using CRISPR/Cas9 mediated silencing of Smad3/Smad4,
Tong et al. showed decreased mRNA expression of Myocardin
(MYOCD) and downregulation of TGF-β Induced invasion and
epithelial-mesenchymal transition of non-small cell lung cancer
cells (Tong et al., 2020). Perumal et al. used the CRISPR/Cas9
system to knock out the phosphatase and tensin homolog (PTEN)
in the non-small cell lung cancer cell lines A549 and NCI-H460
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by Nuclear translocation of β-catenin and Snail/Slug in lung
cancer cells promotes EMT, which leads to metastasis (Perumal
et al., 2019). Mesenchymal cells are poorly sensitive to EGFR
inhibitors. Raoof et al. identified FGFR1 as the highest genomic
target to re-sensitize cells to EGF816 using a genome-wide
CRISPR screen, and EGFR inhibitors synergize with FGFR1
inhibitors to overcome chemoresistance in NSCLC with
mesenchymal features (Raoof et al., 2019).

4 DELIVERY METHOD OF CRISPR/CAS9
SYSTEM

4.1 Physical Methods
In in vitro experiments, physical methods are often used to deliver
the CRISPR system, which is a simple and efficient way, mainly
including electroporation and microinjection. Cas9-sgRNA
complex encoded by plasmid is delivered through the cell
membrane. Microinjection has high costs and low efficiency.
Chen et al. used electroporation to efficiently deliver cas9/sgRNA
ribonucleoprotein to mouse fertilized eggs to realize mouse
genome editing (Chen et al., 2016).

4.2 Nonviral Vector
Nonviral vectors are less immunogenic, have larger capacities, and
can deliver large genes but less efficiently. Lipid nanoparticles
(LNPS) are one of the most commonly used nucleic acid
delivery systems. Negatively charged nucleic acids complex with
positively charged lipids via electrostatic interactions to form lipid
nanoparticles, which can protect nucleic acids from destruction by
nucleases and enter target cells via endocytosis (Chen et al., 2020).
The method is safe, cost-effective and straightforward, but has low
delivery efficiency. Cationic liposomes, zwitterionic liposomes, and
liposome-like materials have been used in CRISPR delivery
systems. Zhang et al. constructed a novel delivery system based
on polyethene glycol phospholipid modified cationic lipid
nanoparticles (PLNP), which significantly downregulated Polo-
like kinase 1 (PLK-1) protein and inhibited melanoma growth in
vivo and in vitro (Zhang et al., 2017).

Polymeric carriers are widely used for gene-drug delivery with
the advantages of easy synthesis, safety and no immunogenicity.
Kang et al., using polymer derived Cas9 complexed with sgRNA
targeting antibiotic resistance by covalently modifying the protein
with a cationic polymer to induce DNA double-strand breaks,
demonstrated potential applications compared to liposomes for
enhanced delivery efficiency (Kang et al., 2017).

Inorganic nanoparticles can also be used to deliver nucleic
acids with the advantages of low toxicity, high stability, flexibility
and easy regulation (Duncan et al., 2010). Mout et al. used
arginine functionalized gold nanoparticles (ArgNPs) to
cotransport cas9 protein and sgRNA, and ArgNPs delivered
RNP to both the cytoplasm and nucleus and achieved 90–95%
delivery efficiency (Mout and Rotello, 2017).

4.3 Viral Vectors
Lentiviral (LVs) vectors, based on the HIV-1 virus and consisting
of a spherical structure composed of single-stranded RNA, have

been widely used to deliver CRISPR/cas9. The major advantage of
lentiviral vectors is that they can reach 7 kb in load and
accommodate the SpCas9 gene and one or more sgRNAs.
Holmgaard et al. delivered CRISPR/Cas9 system based on
lentiviral vectors. Knockdown of the vascular endothelial
growth factor A (Vegfa) gene has led to new treatments for
ocular diseases (Holmgaard et al., 2017).

Adenoviruses (ADVs) are non enveloped linear double-
stranded DNA viruses with a wide host range, genetic stability,
high transduction efficiency and large loading capacity. Jin et al.
used Gateway cloning technology to develop an integrated
adenoviral vector without traditional enzymatic digestion and
ligation, improving transduction efficiency (Jin et al., 2019).

Adeno associated virus (AAVs) is extremely low
immunogenic relative to other viral vectors and has safety and
therapeutic potential. AAV sequences are long-lived in non-
dividing cells, provide stable transgene expression, and are the
most widely used viral vector to deliver CRISPR/Cas9 systems.

In 2021, Zhang Feng’s team developed a new delivery vector-
selective endogenous encapsidation for cellular delivery (SEND),
which is composed of a retrovirus-like protein, PEG10, that binds
to its mRNA and forms vesicles around it. The research team
modified and designed it to package and deliver specific RNAs
(Segel et al., 2021).

5 DEFICIENCIES AND CHALLENGES

The CRISPR/Cas9 system can well break through the limitations
of traditional diagnosis and combat tumor resistance, and is a
promising therapy, but some problems still need to be solved.

The off-target effect of CRISPR/Cas9 system is a widespread
phenomenon, and the serious consequences caused by off-target
limited CRISPR/Cas9 system from basic research to clinic, mainly
due to the local matching between the recognition sequence of
sgRNA and non-target DNA, the structure of sgRNA, PAM
sequence The cas9 protein, along with regulatory small
molecules of the DSB pathway, among others, all contribute to
targeting efficiency (Zhang et al., 2015). When the concentration
of the cas9 sgRNA complex is increased, the specificity of cas9
cleavage is reduced and the RNA polymerase II transcription
system can be used to express sgRNA and control the amount of
sgRNA expressed (Kiani et al., 2014). In addition to guiding cas9
to bind to specific targets, sgRNAs can also affect the specificity of
targets (Pattanayak et al., 2013). Increasing the guide sequence
length of the sgRNA did not improve target specificity, which was
found to be increased when the sgRNA contained 17–18
nucleotides (Fu et al., 2014). To improve the specificity of
DNA cleavage, investigators have used mutant dCas9 that
forms a dimer with the nuclease Fok I (FOK I-dCas9) to
reduce off-target effects, which is more than 140 fold more
specific than wild-type cas9 (Guilinger et al., 2014).
Meanwhile, direct delivery of purified recombinant cas9
protein and sgRNA into cells can also reduce off-target effects
(Kim et al., 2014).

Recent studies have found that the CRISPR/Cas system may
adversely affect cell growth, and Leibowitz et al. found that
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CRISPR/Cas9 genome editing induces structural changes in the
nucleus, micronuclei, and chromosomal bridges, leading to the
occurrence of chromosomal rearrangement processes (Leibowitz
et al., 2021). Delivery vectors for CRISPR/Cas9 are closely related
to gene editing efficiency, and it is crucial to find safe, efficient,
and specific vectors. The loading capacity of vectors is limited,
and it is challenging to load Cas9 and gRNA into a certain size
carrier and improve the delivery efficiency in vivo. Currently, the
most widely used in vivo experiments are viral vectors, but some
nonviral vectors still need to be developed for more safe and
effective delivery tools (Chen et al., 2020). The intein-mediated
split-Cas9 system, which reconstitutes a full-length SpCas9
protein by fusing the segmented two segments of SpCas9 with
the N-terminus of intein fused to the C-terminus, respectively,
and mediates CIS splicing when both fusion proteins are
coexpressed, has been shown to be effective in addressing the
challenge of insufficient AAV loading capacity (Truong et al.,
2015). Carlson-Stevermer et al. used short RNA and streptavidin
to assemble and deliver a CRISPR repair kit to DNA cleavage
sites, greatly improving the precision of gene editing, which
resulted in an 18 fold increase in accuracy compared with
conventional CRISPR Technology (Carlson-Stevermer et al.,
2017). At the same time, there is a certain risk of
pathogenicity associated with viral vectors, and safety concerns
are also issues to consider when viral vectors are used in animal
experiments.

At the same time, gene knockout causes permanent changes in
genetic material and there are hidden dangers of mutation.
Therefore, it is necessary to find new methods to solve this
problem. Prime editor is a more accurate gene-editing method.
Its protease is fused by cas9 notch enzyme (h840a) and reverse
transcriptase. It can accurately insert and delete the target site
without introducing DSB and donor DNA templates. Compared
with HDR, it has higher efficiency, fewer by-products and a lower
off-target rate (Anzalone et al., 2019).

P53 is a tumor suppressor gene, and CRISPR/Cas9 can induce
p53 mediated DNA damage response, resulting in cell cycle arrest
and other phenomena and reducing the efficiency of genome
editing. Whereas inhibition of p53 predisposes cells to the effects
of other oncogenic mutations (Haapaniemi et al., 2018; Jiang
et al., 2022). Therefore, it is necessary to monitor the function of
p53 when CRISPR/Cas9 is used clinically.

There was a study that detected antibodies against Sacas9 and
Spcas9 in 78% and 58% of donor sera, respectively. Anti-Sacas9
T cells and anti-Spcas9 T cells were found in 78% and 67% of
donors, indicating that there is human immunity to cas9 protein
(Charlesworth et al., 2019). In the future, we need more research
to determine the safety and effectiveness of CRISPR/Cas9 system.

6 CONCLUSION

CRISPR/Cas9 gene-editing technology has developed rapidly since its
inception. Compared with ZFNs and TALENs, CRISPR/Cas9 gene-
editing technology is more straightforward and efficient. It is suitable
for ordinary laboratories and greatly promotes the progress of life
science and basic medical research. Now there is a genome-wide

targeted CRISPR/Cas9 system, which contains all genes of mouse
embryonic stem cells and human cells (Wang et al., 2014). Lu et al.
carried out the world’s first human clinical trial based on CRISPR/
Cas9 gene-editing technology. Immune cells were extracted from the
blood of a patient with metastatic non-small cell lung cancer. The
PD-1 gene that inhibits immune functionwas knocked out in vitro by
CRISPR technology, and then amplified and reinfused into the
patient’s body to achieve the effect of anti-tumor. The safety and
feasibility of this therapy inNSCLCwere proved for the first time (Lu
et al., 2020). In addition, several laboratories are also competing to
plan clinical trials. Researchers at theUniversity of Pennsylvania have
launched trials on myeloma, sarcoma and melanoma.

The use of CRISPR/Cas9 gene-editing technology has also
caused ethical and social problems. Due to the disadvantages such
as being off-target, CRISPR/Cas9 gene-editing technology may
cause some additional harm to patients, and the potential high
risk does not allow CRISPR/Cas9 gene-editing technology to be
used in the treatment of germline genes, Gene editing for
reproductive purposes may irreversibly change the human
genome and bring incalculable impact to mankind. In the
future, more evidence should be collected from animal
experiments to ensure the safety and feasibility of CRISPR/
Cas9 gene-editing technology in clinical practice.

The genetic complexity of non-small cell lung cancer is one of the
main causes of chemotherapeutic drug resistance. Unfortunately, no
effective gene-targeted drugs have been developed. We reviewed and
summarized the progress of CRISPR/Cas9, which provides a reference
for further research on the application of CRISPR/Cas9 gene-editing
technology in the treatment and drug resistance of non-small cell lung
cancer. We believe that further systematic and in-depth research is
necessary. We need to make full use of the advantages of CRISPR/
Cas9 gene-editing technology, explore its potential in the study of drug
resistance mechanisms, promote the rapid development of cancer
research and bring new hope to cancer patients.
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