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Background: Subarachnoid hemorrhage (SAH) is a serious neurosurgical emergency with
extremely high morbidity and mortality rates. Resveratrol (RES), a natural polyphenolic
phytoalexin, is broadly presented in a wide variety of plants. Previous research had
reasonably revealed its neuroprotective effects on experimental SAH animal models to some
extent. But the results were more controversial. Therefore, we conducted a meta-analysis to
evaluate the evidence on the effectiveness of RES in improving outcomes in SAHanimalmodels.

Methods: A systematic literature review was conducted in PubMed, EMBASE, and Web
of Science databases to incorporate experimental control studies on the efficacy of RES on
SAH models into our research. The standardized mean difference (SMD) was used to
compare the brain water content (BWC) and neurological score (NS) between the
treatment and control groups.

Results: Overall, 16 articles published from 2014 to 2022 met the inclusion criteria. The
meta-analysis of BWC showed a significant difference in favor of RES treatment (SMD:
−1.026; 95% CI: −1.380, −0.672; p = 0.000) with significant heterogeneity (Q = 84.97; I2 =
60.0%; p = 0.000). Further stratified analysis was performed for methodological
differences, especially dosage, time of treatments, and time-point of outcome
assessment. The meta-analysis of NS showed a significant difference in favor of RES
treatment (SMD: 1.342; 95% CI: 1.089, 1.595; p = 0.000) with low heterogeneity (Q =
25.58; I2 = 17.9%; p = 0.223).

Conclusion: Generally, RES treatment showed an improvement in both pathological and
behavioral outcomes in SAH animal models. The results of this study may provide a
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reference for preclinical and clinical studies in the future to some extent, with great
significance for human health.
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INTRODUCTION

Subarachnoid hemorrhage (SAH), a disastrous neurosurgical
disease due to its high morbidity and mortality rates, is mainly
caused by a ruptured aneurysm or cerebrovascular malformation
(Haut et al., 2006). The typical clinical manifestations of SAH are
sudden onset of severe headache, nausea, vomiting, and
meningeal irritation, with or without focal signs (van Gijn
et al., 2007). Although the etiology of SAH can be eliminated
by surgery in most patients, brain injury from SAH will still
persist (Wong et al., 2012; Petridis et al., 2017). During the last
decade, early brain injury (EBI) has been shown as an important
factor leading to the poor prognosis of SAH in many studies (Pan
et al., 2020; Li et al., 2021). EBI-induced neuronal damage will be
permanent and lead to long-term neurologic impairment due to
the poor regenerative capacity of the human brain (Rass and
Helbok, 2019). Various effective therapies to reduce the loss of
neurons after SAH are yet to be studied.

Resveratrol (RES), also known as 3–4′-5-trihydroxystilbene, is
a natural polyphenolic phytoalexin that is widely present in a
variety of plants such as Vitis, Polygonum, peanut, and Veratrum
(Baur and Sinclair, 2006; Walle, 2011). In vitro and animal

experiments have shown antioxidant, anti-inflammatory,
anticancer, and cardiovascular protection effects of RES (Xia
et al., 2017; Rauf et al., 2018; Meng et al., 2021). RES has been
proved to have neuroprotective effects in cerebral ischemia,
intracerebral hemorrhage, and neurodegenerative diseases in
preclinical studies in recent years (Zhao et al., 2019; Liu et al.,
2021; Su et al., 2021). In 2017–2018, our team found that RES
could reduce brain water content (BWC) and improve
neurological function in experimental SAH rats by alleviating
neuronal apoptosis (Zhao et al., 2017a; Zhao et al., 2017b; Liang
et al., 2019). During the last decade, there were studies that
supported our results, while some did not (Li and Han, 2018;
Zhou et al., 2021). Moreover, the methodological differences,
especially dosage, timing of treatment, and time point of outcome
assessment, were so divergent in each study that it was difficult to
evaluate the overall therapeutic effect (Wan et al., 2019;
Vellimana et al., 2020).

Up to date, no systematic review and meta-analysis have been
conducted to evaluate the quality and synthesize evidence of
preclinical studies on the effects of RES in SAH. Thus, the
purpose of this study is to provide the preclinical evidence on
the pathological and behavioral outcomes in RES-treated SAH

FIGURE 1 | Flowchart of the literature search performed.
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TABLE 1 | Characteristics of the included studies.

Author,
year

Animal,
gender

Age Anesthetic
drug

Route Method
of SAH

Initial
dosage

Total
dosage

Treatment
point

Treated
(n)/

Control (n)

Assessment
time (h)

Outcome
measure
(direction)

Shao et al.
(2014)

SD
rats, NR

NR NR NR Endovascular
perforation

30 mg/kg 60 mg/kg Immediately
and 6 h
post-SAH

10,10
10,10

24 BWC (lower
is better) NS
(higher is
better)

Zhang
et al.
(2016)

SD rats,
Male

Adult Chloral
hydrate

i.p. Autogenous
blood

60 mg/kg 120 mg/kg 2 and 12 h
post-SAH

6,6 6,6 24 BWC (lower
is better) NS
(lower is
better)

Zhao et al.
(2017a)

SD rats,
Male

Adult Pentobarbital i.p. Endovascular
perforation

60 mg/kg 60 mg/kg 1 h post-SAH 6,6 6,6 72 BWC (lower
is better) NS
(higher is
better)

Zhao et al.
(2017b)

SD rats,
Male

Adult Pentobarbital i.p. Endovascular
perforation

60 mg/kg 60 mg/kg 1 h post-SAH 6,6 6,6 72 BWC (lower
is better) NS
(higher is
better)

Qian et al.
(2017)

SD rats,
Male

Adult Pentobarbital i.p. Endovascular
perforation

100 mg/kg 100 mg/kg 48 h
before SAH

6,6 6,6 24 BWC (lower
is better) NS
(higher is
better)

Zhang
et al.
(2017)

SD rats,
Male

Adult Chloral
hydrate

i.p. Autogenous
blood

60 mg/kg 120 mg/kg 2 and 12 h
post-SAH

6,6 6,6 24 BWC (lower
is better) NS
(lower is
better)

Guo et al.
(2018)

SD rats,
Male

Adult Pentobarbital i.p. Endovascular
perforation

60 mg/kg 60 mg/kg Post-SAH 6,6 6,6 24 BWC (lower
is better) NS
(higher is
better)

Wan et al.
(2019) (1)

SD rats,
Male

Adult Isoflurane Inhalation Endovascular
perforation

10 mg/kg 10 mg/kg 1 h post-SAH 6,2 24 NS (higher
is better)

Wan et al.
(2019) (2)

SD rats,
Male

Adult Isoflurane Inhalation Endovascular
perforation

30 mg/kg 30 mg/kg 1 h post-SAH 6,2 6,6 24 BWC (lower
is better) NS
(higher is
better)

Wan et al.
(2019) (3)

SD rats,
Male

Adult Isoflurane Inhalation Endovascular
perforation

90 mg/kg 90 mg/kg 1 h post-SAH 6,2 24 NS (higher
is better)

Wan et al.
(2019) (4)

SD rats,
Male

Adult Isoflurane Inhalation Endovascular
perforation

30 mg/kg 30 mg/kg 1 h post-SAH 6,6 6,6 24 BWC (lower
is better) NS
(higher is
better)

Liang et al.
(2019)

SD rats,
Male

Adult Chloral
hydrate

i.p. Endovascular
perforation

5 mg/kg 5 mg/kg 1 h post-SAH 6,6 6,6 24 BWC (lower
is better) NS
(higher is
better)

Li and Han
(2018)

SD rats,
Male

Adult Pentobarbital i.p. Endovascular
perforation

60 mg/kg 60 mg/kg 2 h post-SAH 6,6 6,6 72 BWC (lower
is better) NS
(higher is
better)

Xie et al.
(2019)

Wistar
rats,
Male

Adult Isoflurane Inhalation Autogenous
blood

60 mg/kg 240 mg/kg 2, 6, 24, and
46 h
post-SAH

6,6 6,6 48 BWC (lower
is better) NS
(higher is
better)

Vellimana
et al.
(2020)(1)

C57
mice,
Male

Adult Isoflurane Inhalation Endovascular
perforation

20 mg/kg 20 mg/kg 1 h
before SAH

14,10 48 NS (higher
is better)

Vellimana
et al.
(2020)(2)

C57
mice,
Male

Adult Isoflurane Inhalation Endovascular
perforation

20 mg/kg 100 mg/kg 1 h before
SAH (every
12 h for 2
days)

12,10 48 NS (higher
is better)

(Continued on following page)
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animals. Furthermore, this preclinical meta-analysis may offer a
reference for preclinical and clinical studies in the future on the
RES treatment following SAH.

MATERIALS AND METHODS

Literature Search
We conducted a comprehensive literature search in PubMed,
EMBASE, andWeb of Science databases to identify studies on the
effect of RES in SAH animal models. Search terms included
“subarachnoid hemorrhage” and “resveratrol” in Medical Subject
Headings (MeSh) terms with their entry terms’ appropriate
synonyms. The publication language was limited to English.
The literature search period ended on May 22, 2022.

Inclusion and Exclusion Criteria
We included the articles using the following criteria according to
the evidence-based medicine literature retrieval format: 1)
Population: experimental SAH animal models. 2) Interventions:
RES was administered pre-SAH or post-SAH. 3) Comparisons:
control animals were used. 4) Outcomes: therapeutic effects of RES
were assessed using BWC or neurological score (NS). 5) Other
criteria: experimental studies presented in original research articles
and full text had to be available. The exclusion criteria were as
follows: 1) Repetitive articles were excluded. 2) Co-treatments were
performed. 3) Lack of end points of BWC or NS. Two reviewers
(Tan and Song) independently performed title and abstract review
and full-text examination according to the inclusion and exclusion
criteria to determine the selected studies. Any disagreements were
resolved by consensus with a third reviewer (Luo).

Data Extraction
All of the data were extracted independently by two reviewers
(Tan and Song). The information collected from each study
included first author and publication year; species, gender, and
age of animals; anesthetics used; method of SAH induction;
intervention dosage (initial and total dosage); time point of
treatment; number of animals per group; assessment time;
pathological outcome (BWC) or functional outcome (NS); and
methodological quality score. Any disagreements were
resolved by consensus with a third reviewer (Luo). If the
included studies used multiple experimental groups by
different dosages, time points of treatment, or assessment
time to compare against only one common control group,
we divided these parallel groups equally into individual
independent experiments and divided the size of the control
group equally among treatment groups. If neurological score
was performed at different time points, only the final time
point was included. For every study, mean, standard deviation,
or standard error of mean (SEM) of BWC and NS were
extracted. For graphical data, GetData Graph Digitizer
software (version 2.20) was used to measure values for
mean and standard deviation from highly magnified images.
Standard Deviations not directly reported were calculated by
multiplying the reported SEM by the square root of the
group size.

Quality Assessment
Two reviewers (Tan and Song) independently evaluated the
quality of each study according to the Collaborative Approach
to Meta-Analysis and Review of Animal Data from Experimental

TABLE 1 | (Continued) Characteristics of the included studies.

Author,
year

Animal,
gender

Age Anesthetic
drug

Route Method
of SAH

Initial
dosage

Total
dosage

Treatment
point

Treated
(n)/

Control (n)

Assessment
time (h)

Outcome
measure
(direction)

Vellimana
et al.
(2020)(3)

C57
mice,
Male

Adult Isoflurane Inhalation Endovascular
perforation

20 mg/kg 100 mg/kg 1 h before
SAH (every
12 h for 2
days)

16,7 48 NS (higher
is better)

Vellimana
et al.
(2020)(4)

C57
mice,
Male

Adult Isoflurane Inhalation Endovascular
perforation

10 mg/kg 50 mg/kg 1 h before
SAH (every
12 h for 2
days)

9,7 48 NS (higher
is better)

Zhou et al.
(2021)(1)

SD rats,
Male

Adult Isoflurane Inhalation Autogenous
blood

60 mg/kg 120 mg/kg 2 and 24 h
post-SAH

6,6 72 NS (higher
is better)

Zhou et al.
(2021)(2)

SD rats,
Male

Adult Isoflurane Inhalation Autogenous
blood

60 mg/kg 120 mg/kg 2 and 24 h
post-SAH

6,6 24 BWC (lower
is better)

Diwan
et al.
(2021)

C57
mice,
Male

Adult Isoflurane Inhalation Endovascular
perforation

6 mg/kg 30 mg/kg 3 h post-SAH
(every 12 h
for 2 days)

12,11 48 NS (higher
is better)

Xiao et al.
(2021)

C57
mice,
Male

Adult Isoflurane Inhalation Endovascular
perforation

60 mg/kg 60 mg/kg 1 h
before SAH

6,6 24 NS (higher
is better)

Clarke
et al.
(2022)

C57
mice,
Male

Adult Isoflurane Inhalation Endovascular
perforation

6 mg/kg 6 mg/kg 3 h post-SAH 16,29 72 NS (higher
is better)

Lower is better: better prognosis with lower value; higher is better: better prognosis with higher value.
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Studies (CAMARADES) 10-item checklist (Macleod et al., 2004).
One point was given for each of the following criteria: 1) peer-
reviewed publication; 2) control of temperature; 3) random
allocation to treatment or control group; 4) blinded induction
of hemorrhage; 5) blinded assessment of outcome; 6) use of
anesthetic without marked intrinsic neuroprotective activity; 7)
animal model (aged, diabetic, or hypertensive); 8) sample size
calculation; 9) compliance with animal welfare regulations; and
(10) statement of potential conflict of interests. The studies’
quality was ranked as low (≤5 points) and high (>5 points).
Any disagreements were resolved by consensus with a third
reviewer (Luo).

Statistical Analysis
Stata statistical software (version 16.0) was used to perform the
meta-analysis. The standardized mean difference (SMD) was
used to compare the RES’s effect on the BWC and NS
between the treatment and control groups (Zeng et al., 2021).
Heterogeneity across the studies was tested by calculating the
I-squared (I2) statistic (Higgins et al., 2003). Whenever the I2

statistic was <50%, indicating low heterogeneity, then the fixed-
effects model was used. On the contrary, whenever the I2 statistic
was ≥50%, indicating high heterogeneity, then the random-effects
model was used (Vetter, 2019). Sensitivity analysis was performed
in which one study at a time was removed and the rest was
analyzed to evaluate whether the results were affected by a single
study. We conducted a stratified meta-analysis (Higgins and
Thompson, 2002) to clarify the impact of methodological
differences such as study quality, anesthetic drugs, methods to
induce SAH, and especially dosage, timing of treatment, and time
point of outcome assessment, using Review Manager software
(version 5.3). Publication bias was detected using a funnel plot.
Asymmetry was assessed using Egger’s test and the trim-and-fill
method (Egger et al., 1997). p < 0.05 was considered statistically
significant, and 95% confidence intervals (CI) were calculated for
all results.

RESULTS

Study Selection
The systematic review and meta-analysis were conducted by
following the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) guidelines (Moher
et al., 2009). Figure 1 showed the entire literature search
process. After a comprehensive literature search in PubMed,
EMBASE, and Web of Science databases, 121 records were
identified. Then, 75 records remained for the title and abstract
review after deleting duplicate records. After the title and abstract
review, 19 articles were selected for full-text examination. Two
were excluded because of missing end-point data for BWC and
NS, and one was excluded because RES was not actually used in
the experimental group. Finally, with the inclusion criteria, this
study included 16 articles published from 2014 to 2022 (Shao
et al., 2014; Zhang et al., 2016; Zhao et al., 2017a; Zhao et al.,
2017b; Qian et al., 2017; Zhang et al., 2017; Guo et al., 2018; Li and
Han, 2018; Liang et al., 2019; Wan et al., 2019; Xie et al., 2019;
Vellimana et al., 2020; Diwan et al., 2021; Xiao et al., 2021; Zhou
et al., 2021; Clarke et al., 2022). All articles were written in
English.

Study Characteristics
The characteristics of the included articles are shown in
Table 1. There were 12 studies comprising 35 comparisons
containing the data of BWC, while 16 studies comprising 22
comparisons containing the data of NS. These studies involved
SD rats (n = 11), Wistar rats (n = 1), and C57 mice (n = 4).
Almost all the studies used adult male animals except one that
did not report the gender and age of animals. As for anesthesia,
chloral hydrate (n = 3), pentobarbital (n = 5), and isoflurane
(n = 7) were used, while one study did not report the anesthesia
drug. Among them, chloral hydrate and pentobarbital were
administered intraperitoneally (i.p.) and isoflurane was
administered through inhalation. Further, endovascular

TABLE 2 | Quality scores of 16 included studies.

Study,
year

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Total

Shao et al. (2014) + + 2
Zhang et al. (2016) + + + + + + + 7
Zhao et al. (2017a) + + + + + 5
Zhao et al. (2017b) + + + + + + 6
Qian et al. (2017) + + + + + + 6
Zhang et al. (2017) + + + + + 5
Guo et al. (2018) + + + + + + 6
Wan et al. (2019) + + + + + 5
Liang et al. (2019) + + + + + + + 7
Li and Han (2018) + + + + + + + 7
Xie et al. (2019) + + + + + + 6
Vellimana et al. (2020) + + + + + 5
Zhou et al. (2021) + + + + + + + 7
Diwan et al. (2021) + + + 3
Xiao et al. (2021) + + + 3
Clarke et al. (2022) + + + + + + 6
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perforation (n = 12) or autogenous blood injection (n = 4) was
chosen to induce SAH in the model. RES was administered
intraperitoneally in all the studies. The initial dosage of RES
was 5–100 mg/kg, while the most frequent dosage was
60 mg/kg (n = 9). RES was given only once in 13
comparisons of 10 studies, while it was given repeatedly in
9 comparisons of 7 studies (one study used both ways of
administration). The total dosage of RES was 5–240 mg/kg,
while the most frequent dosage was 60 mg/kg (n = 6). The time
of RES administration was divided into pre-SAH (n = 3) and
post-SAH (n = 13). Among them, one study’s pre-SAH
treatment group were administered multiple doses post-
SAH. The maximum duration of treatment for RES was
48 h. Assessments were performed 24 (n = 9), 48 (n = 3), or

72 h (n = 5) after the induction of SAH (one study used two
different time points to assess BWC and NS).

Quality Assessment
The details of the quality index are presented in Table 2. The
quality scores ranged from 2 to 7, with a mean value of 5.38. All
included studies were peer-reviewed publications. Ten studies
reported control of temperature. Nine studies reported
random allocation to treatment or control group. Nine
studies reported blinded assessment of outcome. All except
one study reported the use of anesthetic without marked
intrinsic neuroprotective activity and compliance with
animal welfare regulations. None of them used blinded
induction of SAH, used animals with relevant

FIGURE 2 | (continued).
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comorbidities, or reported a sample size calculation. Twelve
studies declared no potential conflict of interests.

Overall Response
On one hand, the treatment with RES revealed a significant
reduction in BWC by an SMD of −1.026 (95% CI: −1.380,
−0.672; p = 0.000, 12 studies, 35 comparisons, Figure 2A),
with statistically significant heterogeneity (Q = 84.97; I2 =
60.0%; p = 0.000). So, we performed further stratified analysis
from methodological differences, especially dosage, time of
treatment, and time point of outcome assessment. On the
other hand, the treatment with RES had a favorable effect on
NS outcome by an SMD of 1.342 (95% CI: 1.089, 1.595; p = 0.000,
16 studies, 22 comparisons, Figure 2B), with low heterogeneity
(Q = 25.58; I2 = 17.9%; p = 0.223). Therefore, further stratified
analysis was not performed.

Sensitivity Analysis
A sensitivity analysis was conducted to evaluate the stability of
our results by sequential omission of each study. Neither BWC

nor NS was significantly affected by any study for the pooled
SMD (Figures 3A, B).

Publication Bias
As shown in Figure 4A, conspicuous publication bias for BWC
was suggested by visual inspection of the funnel plot. Then it was
confirmed by the result of Egger’s test (p = 0.000). Under the
circumstances, to estimate the missing studies and recalculate
effect estimates, the trim-and-fill analysis was conducted. The
result was consistent (SMD: −1.026; 95% CI: −1.380, −0.672; p =
0.000), indicating no “missing” studies (Figure 4B). As shown in
Figure 4C, the funnel plot for the comparison of NS was
approximately symmetrical. Besides, no significant publication
bias was confirmed by the result of Egger’s test (p = 0.085).

Stratified Analysis
As shown in Table 3, we performed a stratified analysis of BWC.
First, we stratified the data by study quality. Studies were
classified into high and low quality, and there was no
significant difference in estimated effect size between them

FIGURE 2 | (continued). (A). Forest plot analyzing the effect of RES treatment on BWC. (B). Forest plot analyzing the effect of RES treatment on NS.
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(X2 = 2.98, p = 0.08, Supplementary Figure S1). Concerning the
anesthesia drugs, there was no significant difference in
estimated effect size between the three different anesthetics
used in the studies (X2 = 1.98, p = 0.39, Supplementary
Figure S2). Although two different SAH induction methods
were used in the studies, there was still no significant difference
in estimated effect size between them (X2 = 1.26, p = 0.26,
Supplementary Figure S3). The total dosage of RES was
5–240 mg/kg, and the stratified analysis showed no
significant difference in the estimated effect size (X2 = 8.68,
p = 0.12, Supplementary Figure S4) among them. Further, the
stratified analysis showed no significant difference between
single-dose and multiple-dose groups (X2 = 0.44, p = 0.51,
Supplementary Figure S5). In addition, pre- and post-SAH
treatments showed a significant difference in the estimates of
effect size (X2 = 7.41, p = 0.006, Supplementary Figure S6).
Finally, the time points of outcome assessment, which included
24, 48, and 72 h, showed a significant difference in the estimates
of effect size (X2 = 8.03, p = 0.02, Supplementary Figure S7).

DISCUSSION

Summary of Evidence
Over the past few decades, research studies have been conducted
to explore the potential of various natural compounds to treat

neurological diseases, while RES became a popular choice for
many studies (Poulose et al., 2015). RES, a promising candidate
for neuroprotection, has been proved to improve prognosis in
traumatic brain injury and ischemic stroke animal models (Lopez
et al., 2015; Liu et al., 2021). To the best of our knowledge, no
meta-analysis has been conducted to evaluate the efficacy of RES
in SAH animal models, and our study fills this gap. Our study
demonstrated that RES helped in reducing BWC (SMD: −1.026;
95% CI: −1.380, −0.672; p = 0.000) and improving NS (SMD:
1.342; 95% CI: 1.089, 1.595; p = 0.000) in SAH animal models.
The results of this meta-analysis in preclinical studies suggest that
RES may have a potential application value in providing a
neuroprotective effect in clinical SAH patients.

Possible Mechanisms
RES has attracted much attention in preclinical studies of
neurological diseases, not only because of its good
biocompatibility but also its ability to quickly cross the
blood–brain barrier via simple diffusion (Xie et al., 2019). On
one hand, RES exhibited several functions including
mitochondrial protective effect, enhancement of autophagy,
inhibiting proinflammatory cytokine production, and anti-
inflammatory and anti-apoptotic effects (Li and Han, 2018;
Zhou et al., 2021). These effects of RES may ameliorate EBI in
SAH. On the other hand, via reducing oxidative stress and
increasing nitric oxide availability, RES protected

FIGURE 3 | (continued).
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cerebrovascular endothelial cell function (Schmitt and Dirsch,
2009; Chang et al., 2011). These effects of RES may relieve
cerebral vasospasm and have an improvement on delayed
cerebral ischemia (DCI) in SAH. Therefore, we hold the
opinion that RES is a promising neuroprotective candidate in
the future, which deserves more research in the treatment of SAH.

Interpretation of Stratified Analysis
In this meta-analysis, RES had significant neuroprotective effects
in reducing BWC and improving NS. But the heterogeneity
among BWC groups was statistically significant (Q = 84.97; I2

= 60.0%; p = 0.000). Thus, the next step of stratified analysis from
methodological differences, especially dosage, time of treatment,
and time point of outcome assessment, was performed.

Study Quality
Whether the quality of research could influence the estimation of
effect size was debated since the beginning of this meta-analysis.
Some meta-analyses suggested that the quality of research has a
significant impact on the outcome (Macleod et al., 2004; Macleod
et al., 2005), while others had a disagreement, denoted different
qualities had no significant difference (Li et al., 2014; Cui et al.,
2015). According to the results of our meta-analysis, studies with
high quality tended to show higher efficacy than studies with low
quality, but without significant difference. Although this trend of
high quality versus high effect size is logical, more research will be
needed to get a more definitive result. Besides, we suggest that

future studies refer to the CAMARADES checklists (Macleod
et al., 2004) when designing to ensure high quality.

Anesthetic Drug
To date, no systematic review has been conducted to discuss the
effects of anesthetics use in SAHmodels. Although phenobarbital
achieved the best effect, the final result indicated no significant
difference of effect size between the three groups. It has been
reported that the three anesthetics might have potential
neuroprotective roles (Macleod et al., 2005; Liu et al., 2015;
Jiang et al., 2017), but their efficacy remained uncertain in
SAH models. The inhibition of NMDA excitatory receptors
and GABA receptors might be the specific mechanism for
these anesthetics (Muir, 2010; Olsen and Li, 2011). With the
improvement of experimental technology and the introduction of
high-tech equipment, traditional intraperitoneal anesthesia has
gradually been replaced by inhalation anesthesia for animals
(Han et al., 2021). Besides, inhalation anesthesia was also
widely used in human surgery (Papazian et al., 2016).
Therefore, future studies need to focus on finding an
inhalation anesthetic with minimal impact on the
pathophysiologic process of SAH.

Method to Induce SAH
As for the most commonly used models in SAH animals, both the
endovascular perforation and the autogenous blood injection
enjoy great fame (Marbacher et al., 2018). But, unfortunately,

FIGURE 3 | (continued). (A). Sensitivity analysis of RES treatment of BWC. (B). Sensitivity analysis of RES treatment of NS.
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the physiological conditions of human SAH are so complicated
that no animal model at the moment could simulate it. The result
of our stratified analysis showed no significant difference of effect
size among the two methods. The injection site and volume of
blood were different in the autogenous blood injection model,
while the sutures used for puncture were different in the
endovascular perforation model (Marbacher, 2016). However,
it is still necessary to use these twomethods in animals to simulate
the physiological conditions of human SAH to some extent, in
order to continue the study of SAH. More suitable SAH models
need to be found in the future.

Dosage and Time of RES
Above all, the great variations in the total dosage, frequency of
intervention, and time of administration made it hard to
draw conclusions. The total dosage of RES was 5–240 mg/kg.
Our result suggested that 100 mg/kg of RES had a better
curative effect than other dosages, but the dosage ranges were
too large to make reliable assessments, with no significant
difference between these groups. Actually, only one author
used the 100 mg/kg dosage in 4 comparisons, making the
evidence for optimal dosage even weaker. After oral
administration, the elimination half-life of RES was 9.2 h

in human. While after intravenous injection, the elimination
half-life of RES was 11.4 h in human (Baur and Sinclair,
2006). In SD rats, the time was reduced to 4.8 h after
intravenous injection (Ng et al., 2014). Therefore, in vivo,
multiple-dose therapy of RES may overcome the problem of
short duration of action, achieving higher efficacy than
single-dose therapy in SAH. But beyond our expectation,
the result showed that the effect size of studies using multiple
doses was not significantly different from those using a single
dose. Small sample sizes and different total dosages may have
an effect on the results in individual studies. In addition,
significant differences in estimates of effect size were found
between pre- and post-SAH treatment groups. The time of
RES therapy could theoretically target different mechanisms.
Early treatment could increase nitric oxide availability,
reduce oxidative stress, and inhibit apoptosis (Li and Han,
2018; Zhou et al., 2021). Late treatment could reduce
proinflammatory cytokine production and inhibit
neuroinflammation (Schmitt and Dirsch, 2009; Chang
et al., 2011). To sum up, pre-SAH treatment may be more
neuroprotective in reducing EBI, which occurred rapidly
after SAH (Rass and Helbok, 2019). With significant
heterogeneity still existing in both groups, formulating

FIGURE 4 | (A). Funnel plots for RES treatment of BWC. (B). Trim-and-fill analysis of RES treatment of BWC. (C). Funnel plots for RES treatment of NS.
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relevant standards for the total dosage, frequency of
intervention, and time administration will be particularly
important in the future.

Time Point of Outcome Assessment
BWC was measured at three time points of 24, 48, and 72 h after
SAH, according to the choice of researchers. Statistically
significant differences were found among these three groups,
while the 48-h group has higher efficacy than other two groups.
Although the difference was statistically significant, there was
only one study that chose the 48-h time point. Too few studies
might lead to an overestimation of the efficacy of RES. Besides,
many studies suggested that 24 h after SAH is the optimum time
point to complete the pathological and functional detection of
EBI in animals (Lin et al., 2021). Therefore, normalizing the
selection of the observation point needs to be performed in future
studies.

Advantages and Limitations
Great efforts have been made to get objective results in our meta-
analysis. First, for providing the most complete evidence for RES
treatment, our team attempted to review most of the reports

associated with this field. Then, in order to reduce potential
publication bias of the included studies, two practiced reviewers
independently evaluated and extracted all the data and dealt with
disagreements reasonably. Finally, our meta-analysis showed that
RES treatment resulted in an improvement in both pathological and
behavioral outcomes in SAH animal models. Sensitivity analysis
confirmed stable results of BWC and NS, while stratified analysis
detected heterogeneity in the result of BWC from methodological
differences. To some extent, the results suggested the
neuroprotective role of RES treatment, indicating RES may serve
as a new therapeutic strategy for clinical SAH patients.

The present research achieved positive outcomes; however,
some limitations still exist: 1) Our research only included data
published in English. Although the search strategy was detailed,
there is still the possibility that some published studies were
missed. Some negative results were less likely to be published.
Therefore, this meta-analysis may have exaggerated the effect
size. 2) Our study included a relatively small number of published
studies with highly significant heterogeneity, with a number of
influence factors such as study quality, anesthetic drug, method to
induce SAH, total dosage, dose administration, time of
administration of treatment, and time point of outcome

TABLE 3 | Stratified meta-analysis of brain water content.

Subgroup No. of
studies

SMD
(95%CI)

Heterogeneity test Χ2 P

Q I2 p

1 Study quality
High 19 −1.40 (−2.04, −0.77) 66.52 73% 0.00001
Low 16 −0.77 (−1.10, −0.44) 17.93 16% 0.00001

2.98 0.08
2 Anesthetic drug
Chloral hydrate 10 −0.73 (−1.27, −0.19) 16.62 46% 0.05
Pentobarbital 14 −1.38 (−2.14, −0.62) 50.18 74% 0.00001
Isoflurane 10 −1.00 (−1.51, −0.48) 14.62 38% 0.1

1.89 0.39
3 Method to induce SAH
Endovascular perforation 27 −1.14 (−1.60, −0.69) 78.86 67% 0.00001
Autogenous blood 8 −0.78 (−1.21, −0.35) 6.02 0% 0.54

1.26 0.26
4 Total dosage of RES
5 mg/kg 4 −1.19 (−2.70, 0.32) 14.06 79% 0.003
30 mg/kg 8 −0.86 (−1.45, −0.27) 12.15 42% 0.10
60 mg/kg 11 −0.73 (−1.28, −0.18) 21.79 54% 0.02
100 mg/kg 4 −4.18 (−6.58, −1.77) 12.24 75% 0.007
120 mg/kg 7 −0.71 (−1.17, −0.25) 5.17 0% 0.52
240 mg/kg 1 −1.37 (−2.68, −0.05)

8.68 0.12
5 Dose administration of RES

Single dose 26 −1.12 (−1.59, −0.65) 76.45 67% 0.00001
Multiple doses 9 −0.91 (−1.32, −0.50) 8.33 4% 0.00001

0.44 0.51
6 Time administration of RES
Pre-SAH treatment 4 −4.18 (−6.58, −1.77) 12.24 75% 0.007
Post-SAH treatment 31 −0.81 (−1.11, −0.50) 54.28 45% 0.004

7.41 0.006
7 Time point of outcome assessment
24 h 25 −1.32 (−1.81, −0.83) 74.29 68% 0.00001
48 h 1 −1.37 (−2.68, −0.05)
72 h 9 −0.45 (−0.84, −0.06) 4.98 0% 0.76

8.03 0.02
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assessment. Although a further stratified analysis was conducted,
the differences between most subgroups were still not significant.
These results may be related to insufficient sample size and a lack
of statistical capability. Therefore, sufficient evidence needs to be
provided in the studies with large sample sizes in the future. 3)
Specific SAH animal models with comorbidities such as
hypertension or diabetes were not mentioned in the included
articles, so it was not possible for our study to evaluate the efficacy
of RES in these situations. 4) There was no study in this meta-
analysis that evaluated the potential side effects of RES treatment
in SAH. High dosage of RES (1,000 mg/kg/day) has been reported
to cause hepatic and renal toxicity (Crowell et al., 2004; Rocha
et al., 2009). It was not possible for our study to evaluate the safety
of RES treatment either. Thus, for the clinical translation of RES
treatment, significant work still has to be done.

CONCLUSION

Our systematic review and meta-analysis revealed that RES
treatment showed an improvement in both pathological and
behavioral outcomes in SAH animal models. Limitations of
the experimental design and methodological quality should be
considered when interpreting the results. The results of this study
may provide a reference for preclinical and clinical studies in the
future, to some extent, with great significance for human health.
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