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The deacetylation process regulated by histone deacetylases (HDACs) plays an important
role in human health and diseases. HDAC6 belongs to the Class IIb of HDACs family, which
mainly modifies non-histone proteins located in the cytoplasm. HDAC6 plays a key role in
tumors, neurological diseases, and inflammatory diseases. Therefore, targeting HDAC6
has become a promising treatment strategy in recent years. ACY-1215 is the first orally
available highly selective HDAC6 inhibitor, and its efficacy and therapeutic effects are being
continuously verified. This review summarizes the research progress of ACY-1215 in
cancer and other human diseases, as well as the underlying mechanism, in order to guide
the future clinical trials of ACY-1215 and more in-depth mechanism researches.
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INTRODUCTION

Epigenetics, first defined by Professor C.H. Waddington, refers to the heritable modification of gene
expression and regulation while does not involve DNA sequence changes, and its related research
have been accelerated rapidly in the 21st century (Waddington, 2012; Cavalli and Heard, 2019).
Epigenetics includes DNA methylation, histone modification, nucleosome remodeling, and RNA-
mediated targeted regulation. They regulate many biological processes that lead to cancer and other
human diseases (Dawson and Kouzarides, 2012). Histone acetylation was first identified in 1963 and
functionally characterized as a positive regulator of transcription by Vincent Allfrey and colleagues in
1964 (Phillips, 1963; Allfrey et al., 1964). The balance between acetylation and deacetylation is
important in regulating gene expression. Histone deacetylases (HDACs) mediate deacetylation,
promote the return of chromatin to a suppressed, higher-order structure, which obviously reduces
DNA accessibility to the transcription machine. As a result, it will increase transcriptional silencing,
and then affect cell fate. Therefore, over acetylation of normally silenced regions or deacetylation of
normally active transcription regions may lead to various diseases (Timmermann et al., 2001).

There are 18 subtypes of HDACs in mammals: Class I (HDAC1, HDAC2, HDAC3 and HDAC8),
Class II (HDAC4, HDAC5, HDAC6, HDAC7, HDAC9 and HDAC10), Class III (SIRT1, SIRT2,
SIRT3, SIRT4, SIRT5, SIRT6 and SIRT7), and Class IV (HDAC11) (de Ruijter et al., 2003). By
removing acetyl groups from ε-amino-lysine of proteins (Gallinari et al., 2007), HDACs not only
alter transcription, but also promote the establishment or elimination of other post-translational
lysine modifications such as methylation and ubiquitination. Biological processes induced by
HDACs have a significant impact on human health, and HDACs abnormalities have been
documented to play a key role in many human diseases, including cancer, neurological diseases,
inflammatory diseases, and heart diseases (Seto and Yoshida, 2014; Zhou et al., 2021).
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In the HDACs family, HDAC6 is the most special as it is the only
HDAC with two functional deacetylase domains and a ubiquitin
binding zinc finger motif (Verdel et al., 2000; Grozinger et al., 1999;
Zhang et al., 2006), containing 1215 amino acid residues (Figure 1).
HDAC6 mainly targets proteins located in the cytoplasm. Through
the direct deacetylation of tubulin, cortactin and HSP90, or by
binding with some chaperonin, HDAC6 regulates the cell
response to some important phenomena (Hubbert et al., 2002;
Matsuyama et al., 2002; Valenzuela-Fernández et al., 2008; Wang
et al., 2018a). Deacetylation of microtubules by HDAC6 is necessary
for cell movement, cell cycle regulation, and processing of misfolded
proteins (Hubbert et al., 2002; Kawaguchi et al., 2003). The
deacetylation of HSP90 by HDAC6 plays an important role in
the ubiquitin-proteasome system and protein folding (Yu et al., 2002;
Bali et al., 2005; Kovacs et al., 2005). HDAC6 plays an important role
in cancer, neurological diseases, inflammatory diseases, and other
diseases (Porter et al., 2017; Cosenza and Pozzi, 2018; Ke et al., 2018;
Li et al., 2018; LoPresti, 2020; Shen and Kozikowski, 2020).
Therefore, inhibitors targeting HDAC6 may be promising
treatment modalities.

HDACs inhibitors are divided into pan-inhibitor and selective
inhibitor. HDACs inhibitor has three functional groups. The
typical pharmacophore characteristics of HDACs inhibitor is
consist of zinc-binding group (ZBG), linker and cap group
(Figure 2A). To date, five HDACs inhibitors have been
approved: vorinostat (SAHA, Zolinza), romidepsin (FK228,
Istodax), panobinostat (LBH589, Farydak), belinostat

(PXD101, Beleodaq), and chidamide (HBI8000, Epidaza)
(Figure 3) (Whittaker et al., 2010; Duvic and Vu, 2007;
Garnock-Jones, 2015; Ning et al., 2012). However, the five
HDACs inhibitors are all pan-inhibitors. Due to adverse
toxicity such as fatigue, diarrhea, and thrombocytopenia, their
clinical application is limited (Falkenberg and Johnstone, 2014;
Minucci and Pelicci, 2006). To develop potentially less toxic and
more effective treatments, studies on selective HDACs inhibitors
are gradually deepening (Zhao et al., 2021; He et al., 2020).
Chemical modification of the cap group allows for isomer
selective HDACs inhibitors (Krämer et al., 2014). A series of
compounds containing urea-based branched linkers with
hydroxamate as ZBG have been identified as selective HDAC6
inhibitors (Bergman et al., 2012), such as Tubasatin A,
Nexturastat A, ACY-1215 (ricolinostat), ACY-241
(citarinostat), ACY-738, ACY-775, ACY-1083, KA2507, CKD-
504,CKD-506 etc (Zhao et al., 2021; Pulya et al., 2021). Among
whom, ACY-1215 is a typical representative, having an IC50 of
4.7 nM against HDAC6 (Figure 2B). As an effective and the first
oral bioavailable selective HDAC6 inhibitor, ACY-1215 is at least
10 times more selective against HDAC6 than other HDACs and is
basically non-toxic (Santo et al., 2012; Amengual et al., 2021).
ACY-1215 has been studied for long and its importance as anti-
cancer agent has already been established through various papers.
However, a comprehensive review specifically summarizing its
role on cancer and other human diseases is lacking. What’s more,
recent studies have found its potential applications in other
human diseases and revealed several novel mechanisms.
Therefore, we summarized the current study progress of ACY-
1215 in cancer and other human diseases.

ACY-1215 IN CANCER

Imbalance of non-histone acetylation is common in human
cancers, with changes in the structure or expression of histone
acetyltransferases and HDACs occurring in many cancers (Marks
et al., 2004). Since the first application of ACY-1215 in multiple
myeloma (MM) in 2012 (Santo et al., 2012), ACY-1215 has
shown satisfactory efficacy in various tumors. And its
molecular mechanism has been gradually revealed (Figures 4, 5).

Inhibiting Aggresome/Autophagy Pathway
and Enhancing Endoplasmic Reticulum
Stress
Accumulation of unfolded or misfolded proteins in the
endoplasmic reticulum (ER) causes an unfolded protein
response, which is a part of ER stress (Senft and Ronai, 2015).

FIGURE 1 | Structure of HDAC6. NLS, nuclear localization sequence. CD, catalytic domains. NES, nuclear export signal. SE14, cytoplasmic retention signal. UBP,
ubiquitin-binding zinc finger domain.

FIGURE 2 | (A) Structure of HDACs inhibitor. (B)Structure of ACY-1215.
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Acetylated GRP78 inhibits misfolded or unfolded protein
transport along microtubules to centrosomes in the aggregate
pathway, inhibiting protein degradation, and then leading to
excessive ER stress. Unfolded protein response may induce
apoptosis if ER homeostasis cannot be restored (Pfaffenbach
and Lee, 2011). MM can be effectively treated with
proteasome inhibitors such as bortezomib or carfilzomib, but
myeloma cells can overcome proteasome inhibition through
alternative aggresome and autophagy pathways to escape from
death (Richardson et al., 2017). By deacetylating HSP90, HDAC6
binds and transports polyubiquitinated protein aggregates (Liu
et al., 2021). Tereu et al. (Hideshima et al., 2005) found that
selective inhibition of HDAC6 increased tubulin acetylation,
which in turn inhibited the aggresome pathway, therefore
leading to accumulation of polyubiquitinated proteins and
apoptosis in MM cells. In 2012, Santo et al. (Santo et al.,
2012) applied ACY-1215 for the first time in the treatment of
MM, and they found that the combination of low-dose ACY-1215
and bortezomib could produce synergistic anti-MM activity.
Compared with pan-HDAC inhibitors, the highly selective
ACY-1215 has improved security. Further studies by (Mishima
et al., 2015) showed that ACY-1215 inhibited aggresome
formation and autophagy caused by carfilzomib induced
inhibition of the proteasome pathway, and then induced
additional ER stress, thus promoting MM cell apoptosis. In
cholangiocarcinoma, reduction of autophagy caused by ACY-
1215 decreases proliferation and increases cilia expression
(Peixoto et al., 2020). In primary lymphoma, head and neck
cancer and melanoma, ACY-1215 and bortezomib have also been
demonstrated to have strong synergic effects by dual targeting

protein degradation pathways (Amengual et al., 2015; Peng et al.,
2017; Hattori et al., 2021).

Targeting Cell Signaling Pathways and
Related Gene Expression
ACY-1215 has also been demonstrated to be an important
regulator of apoptosis pathways in tumors. ACY-1215 inhibits
cell proliferation and promotes apoptosis by targeting MAPK/
ERK, PI3K/AKT and other cell signaling pathways. In non-
Hodgkin’s lymphoma, ACY-1215 causes inactivation of AKT
and ERK1/2, leading to increased DNA damage and ultimately
tumor cells death (Lee et al., 2019a). In melanoma cells, ACY-
1215 accelerates cell death by inhibiting ERK activation (Peng
et al., 2017; Sundaramurthi et al., 2022). In head and neck
carcinoma cell, the suppression of p-Chk1 activity caused by
ACY-1215 leads to synergistically enhanced apoptosis via
mitotic catastrophe in a p53-dependent manner (Miyake
et al., 2022). Enhanced transcriptional activity of p53 by
ACY-1215 is also found in triple-negative breast cancer
(Cao et al., 2022). In cholangiocarcinoma, ACY-1215
suppresses GRP78 translocation to the cell surface via PI3K/
AKT pathway, which inhibits proliferation and promotes
apoptosis (Kim et al., 2022). Growth inhibition has also
been observed in colon cancer cells, prostate cancer cells,
glioma cells and gallbladder cancer cells (Tan et al., 2019;
Corno et al., 2020; Huang et al., 2020; Ruan et al., 2021).
Besides, ACY-1215 in combination with immunosuppressant
IMiD (Hideshima et al., 2015) and inhibitor JQ1 (Carew et al.,
2019), a member of the Bromine domain and extra terminal

FIGURE 3 | Structure of HDACs inhibitors approved.
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protein family, down-regulated proto-oncogene c-Myc
expression and induced co-cytotoxicity in MM.

Inhibiting Cell Cycle, Cell Migration and
Motility
Abnormal cell cycle and strong migration ability of tumor cells
lead to rapid proliferation and high degree of malignancies. The
change of microtubule dynamics can lead to cell cycle stagnation.
ACY-1215 induces apoptosis and G0/G1 cell cycle arrest by
increasing tubulin acetylation in melanoma cells (Wang et al.,
2018b). In non-small cell carcinoma cell lines A549, LL2, and
H1299, inhibition of HDAC6 by ACY-1215 leads to G2 phase
arrest and increased apoptosis (Deskin et al., 2020). In ARID1A-
deficient endometrial carcinoma, the G2/M cell cycle checkpoint
and ATM/ATR-mediated DNA damage checkpoints is disrupted,
while the migratory and invasive phenotype can be reversed by
ACY-1215 (Megino-Luque et al., 2022). In triple-negative breast
cancer, ACY-1215 results in G1 cell cycle arrest and apoptosis
(Cao et al., 2022), and enhances the anti-tumor effect of eribulin
through tubulin acetylation (Oba et al., 2021). Moreover, F-actin
depended cell migration is also reduced when cortactin
deacetylation is inhibited (Li et al., 2018). ACY-1215 inhibits
the proliferation and migration of high-grade serous ovarian

cancer cells and tektin4-deficient triple-negative breast cancer
cells (Ali et al., 2020; Ge et al., 2021).

Revitalizing the Function of Immune Cells,
Promoting the Killing Ability Against Cancer
Cells
Immunotherapy is an important part of cancer therapy (van den
Bulk et al., 2018; Yang, 2015). Programmed death ligand 1 (PD-
L1) expression is significantly increased in ACY-1215
combination therapy in colorectal cancer cells (Ryu et al.,
2018). (Lee et al., 2018) further verified that the combination
of ACY-1215 and oxaliplatin could not only induce the
synergistic upregulation of PD-L1, but also decreased the level
of Bcl-2 protein and some other kinase. In ovarian clear cell
carcinoma, ACY-1215 was found to activate CD4 and CD8 T cells
and increase IFNγ+ CD4 and CD8 T cells, as a result enhancing
the immune killing effect (Fukumoto et al., 2019). In melanoma
patients, ACY-1215 downregulates mTORC1/2 signaling,
reduces yield of Treg and production of Th2 cytokines,
thereby, altering T-cell function (Laino et al., 2019). The
combination of ACY-1215 and JQ1 in the treatment of
xenograft tumors derived from human and mouse small-cell
lung cancer cell lines showed significant tumor growth

FIGURE 4 | Biological processes regulated by ACY-1215. (A) Acetylate tubulin and increase microtubule stability. (B) Acetylate GRP78, inhibit misfolded or
unfolded protein in the aggregate pathway and inhibit protein degradation. (C) Acetylate HSP90 and reduce polyubiquitinated protein transportation. (D) Reduce tau
hyperphosphorylation and promote clearance. (E) Reduce F-actin depended cell migration by deacetylating cortactin.

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 9079814

Li et al. Role of ACY-1215 in Diseases

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


inhibition by provoking NK-cell-mediated immunity (Liu et al.,
2018).

The antitumor effects of HDAC6 inhibitors were also
demonstrated in other selective HDAC6 inhibitors, such as
ACY-241 (Ray et al., 2018; Cosenza et al., 2020; Awad et al.,
2021; Park et al., 2021) and KA2507 (Tsimberidou et al., 2021).

ACY-1215 IN NEUROLOGICAL DISEASES

In addition to bind and transport polyubiquitinated proteins for
aggregation, HDAC6 can also regulate domain receptors for
cytoskeletal proteins such as tau, IIp45 (invasion inhibitory
protein 45) and EGFR (epidermal growth factor receptor)
through protein-protein interactions (Pulya et al., 2021).
HDAC6-mediated acetylation of multiple non-histones is
associated with different functions including intracellular
transport, neurotransmitter release, and aggregation formation
(Chen et al., 2010; Kalinski et al., 2019). Dysregulation of HDAC6
results in alterations in excitatory-inhibitory equilibrium,
synaptic transmission, memory, and protein processing.
HDAC6 inhibitors regulate a variety of events including
growth cone function, synaptic plasticity, transport and
autophagosome degradation (LoPresti, 2020). Inhibition of
HDAC6 restores α -tubulin acetylation and mitochondrial
transport (Perry et al., 2017). In addition, HDAC6 inhibitors
promote degradation of protein aggregates and protection from
neuronal oxidative stress (Wang et al., 2019; Zeb et al., 2019).
Therefore, ACY-1215 may play a vital role in neurodegeneration
and peripheral neuropathy.

Decreasing Levels of Amyloid Beta Load
and Tau Hyperphosphorylation
Neurodegenerative diseases are a kind of nervous system
diseases closely related to aging (Hou et al., 2019). Low
acetylation is present during neurodegeneration (Sharma
et al., 2019). HDAC6 may not only lead to deterioration of
learning and memory, but also increase Aβ and tau
phosphorylation levels (Liu et al., 2020). Extracellular
aggregation of Aβ plaques and intracellular neurofibrillary
tangles composed of hyperphosphorylated tau protein in the
human cortex and limbic regions contribute to the
development of Alzheimer’s disease (AD). Tau usually binds
to and stabilizes microtubules. But in AD and related
neurodegenerative diseases, significantly increased HDAC6
reduces tubulin acetylation, as a result, tau is
hyperphosphorylated and aggregates into neurofibrillary
tangles, which eventually leads to neuron loss, synaptic
dysfunction, and cognitive decline (Hempen and Brion,
1996; Yan, 2014; Tiwari et al., 2019; Li et al., 2021). (Zhang
et al., 2014) found that ACY-1215 effectively reduced the
behavioral defects of AD mice by reducing Aβ deposition
and tau hyperphosphorylation, as well as promoting
autophagy clearance. (Mao et al., 2017) further found in
drosophila that by increasing the acetylation of tubulin,
ACY-1215 could rescue microtubules defects and
neuromuscular junction growth anomalies caused by tau
overexpression. The same results were also noticed in
another selective HDAC6 inhibitor CKD-504 (Choi et al.,
2020).

FIGURE 5 | Signaling pathways and proteins in cancer regulated by ACY-1215.
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Improving Mitochondrial Function and Axon
Transport Defects
Cognitive impairment of the nervous system is directly related to
axon damage. (Wang et al., 2019) found that by increasing
tubulin acetylation, ACY-1215 decreased mitochondrial
transport and mitochondrial dysfunction and increased
synaptic density, thus ameliorating cisplatin-induced brain
damage in mice. The same conclusion was found in
hippocampus mitochondria (Ma et al., 2018). In HIV-positive
patients, binding of GP120 to neuronal microtubules and reduced
tubulin acetylation levels decreased the rate of axon transport of
brain-derived neurotrophic factor. Wenzel et al. showed that
ACY-1215 blocked GP120-mediated tubulin deacetylation and
axon transport reduction (Avdoshina et al., 2017; Wenzel et al.,
2019).

In addition to affecting cognitive function, axon transport
disorders are associated with peripheral neuropathy (Pareyson
et al., 2015; Prior et al., 2018). Peripheral neuropathy is a chronic,
debilitating disease that involves peripheral nerve damage in
varies diseases such as Charcot-Marie-Tooth (CMT) disease,
chemotherapy neurotoxicity, mitochondrial disease, and
diabetes (Colloca et al., 2017). Studies have found that
mechanical abnormal pain occurs due to mitochondrial
damage in neurons (Ma et al., 2019). ACY-1215 can effectively
reverse cisplatin-induced mechanical abnormal pain, and the
effect still exists 1 week after completion of treatment

(Krukowski et al., 2017). CMT2 is a non-demyelinating axonal
disease characterized by muscle weakness and atrophy (Morena
et al., 2019). What’s more, ACY-1215 ameliorates mitochondrial
transport deficits by increasing tubulin acetylation, which in turn
rescue axon transport deficits and then reverse motor and sensory
deficits in a mouse model for mutant “small heat shock protein
B1”-induced CMT2 at both behavioral and electrophysiological
levels (Benoy et al., 2017). The effect of ACY-1215 on CMT has
also been demonstrated in CKD-504 (Ha et al., 2020; Smith et al.,
2022).

ACY-1215 IN INFLAMMATORY DISEASES

Generally, inflammation is a defensive response of lesion present
in living tissue (Shi and Pamer, 2011). However, dysregulated, or
excessive inflammation can be harmful. Through regulating cell
signaling pathways, inflammatory cytokines, and inflammatory
cells (Ran and Zhou, 2019; Lee et al., 2020), HDAC6 inhibitors
have great potential as a treatment for inflammatory diseases,
including rheumatoid arthritis (Oh et al., 2017), inflammatory
bowel disease (Lu et al., 2016; Do et al., 2017), and respiratory
inflammation (Ren et al., 2016). In addition, ACY-1215 has also
shown to promising results in acute liver failure (ALF),
osteoarthritis, and skin inflammation (Figure 6).

Gong et al. (Jiao et al., 2017; Zhang et al., 2018; Chen et al.,
2021) applied ACY-1215 to a mouse model of ALF. They showed

FIGURE 6 | Signaling pathways and proteins in inflammation regulated by ACY-1215.
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that ACY-1215 improved liver tissue damage and liver function
in ALF, reduced the expression level of inflammatory factor
TNFα-mRNA and NF-κB-P65 protein, and reduced NLRP3
inflammasome through regulation of ATM/F-actin signaling
pathway. In vitro, ACY-1215 mitigated LPS-induced
macrophage inflammation via the TLR4-MAPK/NF-κB
pathway (Zhang et al., 2019a). Furthermore, ACY-1215 can
also activate AMPK signaling pathway, enhance autophagy,
regulate mitochondrial mediated oxidative stress, improve
glucose metabolism and lipid metabolism, and thereby reduce
apoptosis and inflammatory response in ALF (Zhang et al.,
2019b; Chen et al., 2019; Chen et al., 2020a; Wang et al.,
2021). In osteoarthritis, ACY-1215 inhibits the STAT3 and
NF-κB pathway in chondrocytes leading to anti-inflammatory
and chondroprotective effects (Cheng et al., 2019), as well as
inhibits VEGF expression through the PI3K/AKT pathway and
then promotes osteoblast apoptosis (Li et al., 2019). In addition,
ACY-1215 improves neuropathic pain by blocking MyD88-
dependent pro-inflammatory pathways (Chen et al., 2022).
HDAC6 inhibitors inhibit inflammation by inhibiting NF-κB
signaling, reducing the production of various pro-
inflammatory cytokines and chemokines, and inhibiting the
inflammatory response of monocytes/macrophages, which was
also demonstrated in CKD-506 (Choi et al., 2018; Lee et al., 2020;
Park et al., 2020; Park et al., 2021). Another interesting finding
was that ACY-1215 inhibited the function of impaired CD8
T cells during skin inflammation, preventing the development
of contact hypersensitivity and graft-versus-host disease like-

diseases in vivo by regulating CD8 T cell activation and
function (Tsuji et al., 2015).

ACY-1215 IN OTHER DISEASES

Because of ACY-1215’s involvement of various pathway, attempts
in varies disease models have yielded inspiring results. In
polycystic liver disease, ACY-1215 diminished liver cyst
development and fibrosis by reducing cholangiocyte
proliferation and cyst growth both in vitro and in vivo
(Gradilone et al., 2014). ACY-1215 with pasireotide
synergistically reduced cyst growth and increased length of
primary cilia in vivo, and decreased cell proliferation and
inhibited cAMP levels in vitro (Lorenzo Pisarello et al., 2018).
In a mouse model of polycystic kidney disease, ACY-1215
treatment reduced cAMP and cyst growth (Yanda et al., 2017).
And ACY-1215 mitigated renal fibrosis by suppressing
transforming growth factor-β1 and epidermal growth factor
receptor signaling pathways in obstructive nephropathy (Chen
et al., 2020b). In glucocorticoid-induced osteoporosis, ACY-1215
reverses dexamethasone-induced inhibition of osteoblast
proliferation and differentiation (Wang et al., 2020). In rats
with cardiac ischemia-reperfusion injury, ACY-1215 might
reduce infarct size through modulating hypoxia inducible
factor-1α expression (Lin et al., 2020). Although this part of
the study did not have a more in-depth mechanism discussion, it
also provided a new treatment idea for the diseases.

TABLE 1 | ACY-1215 in different phases of clinical trials.

NCT number Condition or
disease

Registration
date

Status Phase Dosage of
ACY-1215

Combination drug

NCT02091063 Lymphoid Malignancies March 19, 2014 Completed Ⅰ/Ⅱ Phase Ⅰ: 160 mg QD or
160 mg BID

N/A

Phase Ⅱ: 160 mg BID
NCT01323751 Multiple Myeloma March 28, 2011 Completed Ⅰ/Ⅱ Phase Ⅰ: 40, 80, 160, 240 mg QD,

or 160 mg BID
Bortezomib and
dexamethasone

Phase Ⅱ: 160 mg QD
NCT01997840 Multiple Myeloma November 28,

2013
Active, not
recruiting

Ⅰ/Ⅱ 160 mg QD Pomalidomide and
dexamethasone

NCT02632071 Metastatic Breast Cancer December 16,
2015

Completed Ⅰ 80, 120, 180, or 240 mg QD Paclitaxel

NCT02189343 Multiple Myeloma July 14, 2014 Completed Ⅰ N/A Pomalidomide and
dexamethasone

NCT02787369 Chronic Lymphoid Leukemia June 1, 2016 Active, not
recruiting

Ⅰ N/A Ibrutinib or idelalisib

NCT01583283 Multiple Myeloma April 24, 2012 Completed Ⅰ Ranging from 40 to 480 mg QD Lenalidomide and
dexamethasone

NCT02088398 Healthy Subjects March 17, 2014 Completed Ⅰ 120 or 160 mg QD N/A
NCT03176472 Painful Diabetic Peripheral

Neuropathy
June 5, 2017 Recruiting Ⅱ 120 mg QD N/A

NCT05193851 Peripheral Nervous System
Diseases

January 18, 2022 Recruiting Ⅰ N/A N/A

NCT05229042 Chemotherapy-Induced
Peripheral Neuropathy

February 8, 2022 Not yet recruiting Ⅰ N/A N/A

NCT02661815 Gynecological Cancer January 25, 2016 Terminated Ⅰb N/A Paclitaxel and/or
Bevacizumab

N/A: not available.
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FUTURE PERSPECTIVE

HDAC6 regulates various biological processes involved in
proteasome degradation, cell migration, microtubule dynamics,
apoptosis, and axon growth, and it also participates in a variety of
signaling pathways in pathological responses to diseases. Targeting
the above biological process by inhibiting the functions and activities
of HDAC6 are well studied in different cancers, neurodegenerative
diseases, epigenetic rare diseases, and inflammatory diseases. To date,
many selective HDAC6 inhibitors have been have been reported in
preclinical studies and have entered clinical trials (Tables 1, 2).
However, except for ACY-1215, the present application range of
other HDAC6 inhibitors is limited. Studies on ACY-241 (Ray et al.,
2018; Cosenza et al., 2020; Awad et al., 2021; Park et al., 2021) and
KA2507 (Tsimberidou et al., 2021) mainly focused on tumors, CKD-
504 (Choi et al., 2020; Ha et al., 2020; Jeong et al., 2022; Smith et al.,
2022) focused on neurological diseases, and CKD-506 (Choi et al.,
2018; Park et al., 2020; Bae et al., 2021) focused on inflammatory

diseases. Although ACY-241 and KA2507 show higher selectivity
over ACY-1215 on HDAC6, its studies on other diseases needs
further research (Table 3).

It has beenmore than 10 years since the discovery and application
of ACY-1215. Currently, there are more than 10 phase I/II clinical
trials related to ACY-1215. The existing trial results show that at the
recommended dose of ACY-1215 of 160mg daily, the combination
with bortezomib/lenalidomide and dexamethasone of MM therapy
has a higher treatment response and without adverse events (Yee
et al., 2016; Vogl et al., 2017). The safety and efficacy of ACY-1215 in
patients with recurrent and refractory lymphatic malignancies were
also demonstrated (Amengual et al., 2021). Meanwhile, ACY-1215
could have meaningful clinical impact on preventing or attenuating
taxane-induced peripheral neuropathy (Lee et al., 2019b). While,
there are currently no phase III clinical trials of ACY-1215 ongoing.
Therefore, phase III clinical trials of the above or clinical trials on the
application of ACY-1215 on other diseases need further
investigation.

TABLE 2 | Other HDAC6 inhibitors in clinical trials.

Inhibitor NCT number Condition or
disease

Registration
date

Status Phase Dosage Combination drug

ACY-241 NCT02551185 Advanced Solid
Tumors

September 16,
2015

Completed Ⅰ 180, 360, or 480 mg QD Paclitaxel

ACY-241 NCT02635061 Non-Small Cell Lung
Cancer

December 18,
2015

Active, not
recruiting

Ⅰ 180, 360, or 480 mg QD Nivolumab

ACY-241 NCT02400242 Multiple Myeloma March 27, 2015 Active, not
recruiting

Ⅰ Ranging from 180 to 480 mg QD Pomalidomide and
dexamethasone

ACY-241 NCT02935790 Malignant Melanoma October 18, 2016 Completed Ⅰ N/A Ipilimumab and nivolumab
KA2507 NCT03008018 Solid Tumors January 2, 2017 Completed Ⅰ 50, 100, 200 mg QD, or 200,

400, 800 mg BID
N/A

CKD-504 NCT03713892 Huntington Disease October 22, 2018 Recruiting Ⅰ N/A N/A
CKD-506 NCT05238948 Healthy Subjects February 14, 2022 Recruiting Ⅰ N/A Midazolam
CKD-506 NCT04204603 Rheumatoid Arthritis December 19,

2019
Completed Ⅱ N/A N/A

CKD-510 NCT04746287 Healthy Subjects February 9, 2021 Active, not
recruiting

Ⅰ N/A N/A

N/A: not available.

TABLE 3 | Inhibition of HDAC6 inhibitors on HDACs.

IC50, nM

ACY-1215 (Santo
et al., 2012)

ACY-241 (Huang
et al., 2017)

KA2507
(Tsimberidou
et al., 2021)

CKD-504 (Choi
et al., 2020)

CKD-506 (Choi
et al., 2018)

HDAC1 58 35 9895 >10,000 >2000
HDAC2 48 45 >10,000 >10,000 >2000
HDAC3 51 46 >10,000 >10,000 N/A
HDAC4 7000 >20,000 9613 >10,000 N/A
HDAC5 5000 >20,000 1997 >10,000 N/A
HDAC6 4.7 2.6 2.5 46 5
HDAC7 1400 7300 2333 >10,000 >2000
HDAC8 100 137 621 6600 >2000
HDAC9 >10,000 >20,000 5648 >10,000 N/A
HDAC11 >10,000 N/A >10,000 >10,000 N/A
Sirtuin 1 >10,000 N/A N/A N/A N/A
Sirtuin 2 >10,000 N/A N/A N/A N/A

N/A: not available.
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At present, ACY-1215 has achieved significant therapeutic effects
among various diseases in cell and animal models, and the involved
pathway is relatively clear. However, there are still some objective
problems that cannot be ignored. On the one hand, the limitations of
the disease model itself lead to the distance gap from laboratory to
clinic, and on the other hand, the safety and efficacy of ACY-1215 still
need more clinical trials to prove. The latest researches also showed
that ACY-1215 could improve the developmental competence of
somatic cell nuclear transfer embryos (Gao et al., 2022) and promote
the generation of megakaryocyte progenitors (Jiang et al., 2022).

In the present review, we summarized the research progress of
ACY-1215 in cancer and other human diseases, as well as its
related mechanisms. This review will guide researchers to further
explore the clinical application of ACY-1215 to various diseases
and further reveal its underlying molecular mechanisms.
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