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Introduction: In human pharmacology, there are two important scientific branches:
clinical pharmacology and pharmacoepidemiology. Pharmacokinetic/pharmacodynamic
(PK/PD) modeling is important in preclinical studies and randomized control trials.
However, it is rarely used in pharmacoepidemiological studies on the effectiveness and
medication safety where the target population is heterogeneous and followed for longer
periods. The objective of this literature reviewwas to investigate how far PK/PDmodeling is
utilized in observational studies on glucose-lowering and antiarrhythmic drugs.

Method: A systematic literature search of MEDLINE, Embase, and Web of Science was
conducted from January 2010 to 21 February 2020. To calculate the utilization of PK/PD
modeling in observational studies, we followed two search strategies. In the first strategy,
we screened a 1% random set from 95,672 studies on glucose-lowering and
antiarrhythmic drugs on inclusion criteria. In the second strategy, we evaluated the
percentage of studies in which PK/PD modeling techniques were utilized.
Subsequently, we divided the total number of included studies in the second search
strategy by the total number of eligible studies in the first search strategy.

Results: The comprehensive search of databases and the manual search of included
references yielded a total of 29 studies included in the qualitative synthesis of our
systematic review. Nearly all 29 studies had utilized a PK model, whereas only two
studies developed a PDmodel to evaluate the effectiveness of medications. In total, 16 out
of 29 studies (55.1%) used a PK/PD model in the observational setting to study effect
modification. The utilization of PK/PD modeling in observational studies was calculated
as 0.42%.

Conclusion: PK/PDmodeling techniques were substantially underutilized in observational
studies of antiarrhythmic and glucose-lowering drugs during the past decade.
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1 INTRODUCTION

There are two important scientific branches in human
pharmacology, namely, clinical pharmacology with
pharmacokinetic/pharmacodynamic modeling among small
patient groups and pharmacoepidemiology with observational
studies with effect modeling of medications in large populations
or healthcare databases. The question arises as to how far these
branches interact with a mutual exchange of information and
expertise to attain some synergy by combining and integrating
methodology and scientific output. Because in clinical
pharmacology, the individual is the study subject, whereas
pharmacoepidemiology focuses on effects in study populations,
it seems that there is much to be gained where an overlap exists.

Pharmacokinetics (PK) generally describes the
time–concentration relationship of the drug in body fluids and
tissues in order to investigate the effect of the body on drugs to
learn how drugs are absorbed, metabolized, and excreted. PK
studies help identify recommendable dosage schemes, as well as
predict different toxicity profiles, maximum drug concentration,
and food/drug–drug interactions (Derendorf et al., 2000; Charles,
2014; Tamargo et al., 2015; Garralda et al., 2017).
Pharmacodynamics (PD) refers to identifying the potential
effects of a drug on the body and its physiology, including
therapeutic effects and adverse effects. PD studies investigate
the relationship between drug concentration at the receptor site
and the receptor’s response to different drug concentrations. PK
and PD demonstrate the link between the dose–response curves
of a particular drug (Derendorf et al., 2000; Felmlee et al., 2012;
Garralda et al., 2017). Physiologically based pharmacokinetic
(PBPK) modeling predicts both systemic and tissue
concentration–time profiles in individuals (Tan et al., 2019) as
the basis of individual pharmacodynamic effects. Clinical
pharmacologists are constantly moving this forward from
individuals to groups with population-based PK/PD studies to
evaluate the intra- and inter-individual variability, for instance,
variability by gender (Harris et al., 1995), race (Johnson, 2000), or
body mass index (BMI) (Hanley et al., 2010) in a specific
population and to investigate its associated effects on the PK
profile of the medication and its therapeutic response and dosing
optimization (Vinks, 2002; Mould and Upton, 2013; Charles,
2014; Bensalem and Ternant, 2020). This information should be a
basis for individualized therapy and developing a proper dosage
regimen when a favorable therapeutic target goal is set (Vinks,
2002; Jayachandran et al., 2015). Utilization of PK/PD modeling
is not only warranted in preclinical studies and randomized
control trials (RCTs) as a part of new drug applications, but
also PK/PDmodeling data are essential for widespread and large-
scale use in heterogeneous populations such as the elderly and
children and long-term follow-up. The therapeutic window of
antiarrhythmic drugs is narrow, and hence, a perfect target for
PK/PD studies as small changes in the dosage will lead to a
considerable PD alteration (Blix et al., 2010; Tamargo et al., 2015).
Furthermore, PK/PD modeling is not only important for drugs
with a narrow therapeutic window but also for other medications
with a wider index. Glucose-lowering drugs have large
therapeutic indexes and are safe. However, diabetic patients

may encounter several complications during their life, and
therefore, it is important to optimize and individualize the
treatment for these patients throughout PK/PD modeling
(Landersdorfer and Jusko, 2008). In observational settings, the
effects of drugs are studied on a population-based scale. Hence,
one might expect that population PK/PD modeling is an
important part of pharmacoepidemiology. It should be
possible to integrate both branches of human pharmacology to
overcome the discrepancy between clinical and real-world
medication outcomes. Unfortunately, although applying PK/
PD modeling is possible in observational/
pharmacoepidemiological studies, it seems that it was only
scantily performed until now (Ette et al., 2003; Herland et al.,
2005; Charles, 2014; Standing, 2017). Therefore, the objective of
this literature review was to investigate how far PK/PD modeling
has been utilized in pharmacoepidemiological studies during the
past decade and to identify the different types of models and their
specific objectives.

2 METHODS

A systematic literature review was performed according to the
most recently updated PRISMA (Preferred Reporting Items for
Systematic Review and Meta-Analysis) guideline (Page et al.,
2021). The study was performed in a work package as part of an
EU-sponsored IMI-project [grant agreement 116,030], and the
study focused on antiarrhythmic and glucose-lowering drugs.

2.1 Search Strategy
2.1.1 Search Strategy 1
A literature search of MEDLINE, Embase, and Web of Science
was conducted from January 2010 to 21 February 2021 based on
all MeSH terms and keywords, including but not limited to
[observational studies] AND [glucose-lowering agents OR
antiarrhythmic drug]. According to a large number of
retrieved studies with this strategy and consequently
impractical screening, we followed a sampling method. We
selected 1% (956 studies) of the total number of studies
(95,672) that were selected using the ENDNOTE–Excel
random sampling method (Wanner, 2017). After that, by
screening the 956 studies in the random set, the number of
studies fulfilling the inclusion criteria was identified. Eventually,
the proportion of true-positive identified studies out of 956 was
used to estimate the number of all observational studies on
glucose-lowering medications and antiarrhythmic drugs within
the last 10 years (denominator).

2.1.2 Search Strategy 2
To evaluate the percentage of PK/PDmodeling utilization among
the aforementioned observational studies, MeSH terms
describing a PK/PD model were added to the previous search
query, including ([observational studies] AND [glucose-lowering
agents OR antiarrhythmic drug] AND [Pharmacokinetic OR
Pharmacodynamics], (Supplementary Table) (numerator to
calculate the utilization of PK/PD modeling). The summary of
both search strategies is presented in Table1. In addition, the
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TABLE 1 | Eligibility criteria.

Search strategy 1 Search strategy 2

Inclusion criteria Exclusion criteria Inclusion criteria Exclusion criteria

Observational study Clinical trials, case reports, case series, editorial,
abstracts, and commentary.

Observational study Clinical trials, case reports, case series, editorial,
abstracts, and commentary

Glucose-lowering medications or
antiarrhythmic medications

Any other medications rather than these two
groups or are not according to the ATC
classification

Glucose-lowering medications or
antiarrhythmic medications

Any other medications rather than these two
groups or are not according to the ATC
classification

Human study Animal/experimental studies Human study Animal/experimental studies
Between 2010–2020 Out of this range Between 2010–2020 Out of this time-interval
NA NA Applying a PK/PD model Not applying a PK/PD model

Abbreviations: NA, Not Applicable; ATC, Anatomical Therapeutic Chemical Classification System; PK/PD, Pharmacokinetic/Pharmacodynamic.

FIGURE 1 | PRISMA flow chart.
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references of the included studies were manually searched for any
further appropriate studies. The prevalence of utilizing PK/PD
modeling in observational studies was calculated by dividing the
numerator by the denominator.

2.2 Data Screening and Abstraction
Two researchers (SMJ and PP) independently screened articles by
their titles and abstracts, and any discrepancies were solved by
consensus. Afterward, articles were screened by their full text in
the second eligibility assessment round and then highlighted as
eligible if they had fulfilled the inclusion criteria. Any
disagreement in this step was resolved by a third researcher
(FA). Furthermore, the data of eligible studies were extracted
by study design, study year, type of PK/PD model, effect
modifiers, medication name, and PK/PD parameters using a
designated form.

2.3 Eligibility Criteria
The most recent 10-year period [2010–2020] was applied.
Inclusion criteria were observational studies (cohorts, cross-
sectional, and case–control studies) and human studies on
glucose-lowering or antiarrhythmic medications with no
language restriction. For the second search strategy,
additionally, we included a study if a PK/PD model was
developed or utilized (Table 1).

3 RESULTS

3.1 Search Strategy 1
In total, 95,672 records were identified within the literature
search. After establishing a 1% random set, 956 studies were
screened for their title/abstract, and 860 were eliminated
according to the inclusion criteria. The full text of the
remaining 96 studies was assessed for eligibility resulting in 68
qualified articles meeting our inclusion criteria. Consequently, by
generalizing the 1% sampling to the entire identified records,
6,805 studies fulfilled our aforementioned criteria. This result
indicates that approximately 6,805 observational studies (of any
type) investigated glucose-lowering and antiarrhythmic
medications between 2010 and 2020. The retrieved number
was used as the denominator of the utilization proportion.
The PRISMA flowchart of the randomization and selection
procedure is depicted in Figure 1.

3.2 Search Strategy 2
The comprehensive search of databases, in addition to the
manual search of included references, yielded a total of 1,256
citations by limiting the previous result (95,672 studies) to the
PK/PD mesh terms. In contrast, 1,074 studies were excluded
after the title/abstract screening. Of the 182 remaining studies
undergoing full-text screening, 29 were included in the
qualitative synthesis of our systematic review. Other studies
were excluded because they did not apply a PK/PD
model—these 29 pharmacometric studies were used as the
numerator of the utilization proportion. The process of study
identification and eligibility is shown in Figure 1.

By dividing the retrieved numerator by the denominator, the
utilization proportion of PK/PD modeling in observational
studies was calculated as 0.42% (Figure 2).

While the majority of the 29 included studies (21) investigated
glucose-lowering medications, eight studies pertained to
antiarrhythmic medications (Araki et al., 2011; Hsu et al.,
2011; van den Broek et al., 2011; Shiga et al., 2013; Salem
et al., 2016; Bursi et al., 2017; Dallefeld et al., 2018; Riff et al.,
2018). As shown in Figure 3, nearly half (48%) of the studies on
glucose-lowering drugs focused on metformin and half of the
studies on antiarrhythmic drugs concerned lidocaine.

Nearly all studies had utilized a PK model. In contrast, only
two studies by Salem et al. (2016) and Stringer et al. (2015)
developed a PD model to evaluate the effect of medications in a
cohort and case–control study design, respectively. Of the 182
studies included for full-text screening, twenty studies focused on
antiarrhythmic, while eight (40%) applied PK/PD models. In
total, 21 (14.5%) out of 144 studies on glucose-lowering
medications applied PK/PD models.

Also, 11 out of 27 studies used a two-compartmental PK
model to describe the action of medications. Contrarily, only 1
study (Bursi et al., 2017) developed a model using four-
compartmental dispositions (Figure 4).

Also, 16 out of 29 studies (55.1%) used a PK/PD model in the
observational setting with the aim of treatment individualization
according to different patients’ clinical characteristics and
deriving the safest and the most effective dose of the
treatment, not only in a small group of patients but also in a
large population. A total of 9 studies have evaluated the effect of
population demographics (age, sex, race, and BMI, etc.) and 4
articles evaluated the outcome of genetic variation by applying a
PK/PD model. The characteristics and purpose of developing a
PK/PD model for each included study have been described in
Table2.

4 DISCUSSION

This analysis of almost 100,000 publications on glucose-lowering
and antiarrhythmic drugs over 10 years showed that PK/PD
modeling studies and observational studies are in two distinct
worlds. This is somewhat disappointing because both clinical
pharmacology and pharmacoepidemiology intend to study drug
effects in humans, and many of the pharmacokinetic and
dynamic determinants are important effect modifiers in
pharmacoepidemiological studies. This systematic review is the
first appraisal of PK/PD utilization in observational studies, to the
best of our knowledge. We showed that, in the past decade, the
application of PK/PD modeling has been substantially
underutilized in pharmacoepidemiological studies. This is
unfortunate because PK/PD modeling gives an insight into
important effect modifiers influencing drug metabolism and
efficacy and would facilitate risk estimates in
pharmacoepidemiology in subgroups and high-risk strata. By
taking advantage of PK/PD modeling in large populations, the
effects of different covariates (confounders or effect modifiers) on
the pharmacokinetic profile of specific medications could be
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FIGURE 2 | Decade of trend in the number of observational studies with PK/PD modeling.

FIGURE 3 | Frequency distribution of medications. Abbreviations: OADMs, Oral Anti-diabetic Medications; GLP1 Agonist, glucagon-like peptide 1 Agonist; SGL2
Inhibitors, Sodium-glucose Cotransporter-2 Inhibitors.

FIGURE 4 | Distribution of different types of PK models.
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TABLE 2 | Characteristics of included studies.

Author and
publication year

PK/PD model and type
of model

Purpose of applying or developing a PK/PD model Effect modifier

Araki et al. (2011) PK model To investigate the role of patient characteristics in estimating doses
of amiodarone using routine therapeutic drug monitoring data and to
improve the predictive performance of the population
pharmacokinetic parameters in a high-concentration area

BMI, daily dosage, and duration of dosing
One-compartmental

Hsu et al. (2011) PK model To determine the pharmacokinetics of lidocaine in a 48-h infusion in
patients undergoing cardiac surgery with cardiopulmonary bypass

Weight and diabetes mellitus status
Two-compartmental

van den Broek et al.
(2011)

PK model To develop an optimized dosing regimen for lidocaine in preterm and
term neonates

Body size and physiologic maturation
One-compartmental

Shiga et al. (2013) PK model To evaluate the contributing factors to changes in the
dose–concentration relationship of bepridil and the risk factors for
excessive QT prolongation in patients with paroxysmal or
persistent AF

NA

One-compartmental
Salem et al. (2016) PD model To investigate the effective doses and covariates influencing

amiodarone efficacy
Pre-treatment with amiodarone, catecholamine
infusion, and magnesium loading

Bursi et al. (2017) PK model Further insights into the evaluation of the pharmacokinetic properties
of lidocaine and its metabolites to assess its safety

BMI, body fat, smoking, creatinine level, and
AST/ALT levelFour-compartmental

Dallefeld et al. (2018) PK model Characterizing amiodarone disposition in children NA
Three-compartmental

Riff et al. (2018) PK model To describe lidocaine pharmacokinetics in older women undergoing
breast cancer surgery after TLA and to explore the risk of the toxicity
of this technique

NA
One-compartmental

Bardin et al. (2012) PK model To develop a population pharmacokinetic model for metformin in
patients with type 2 diabetes mellitus over a wide range of body
weights and evaluate different size descriptors more specifically

NA
One-compartmental

Haidar et al. (2013) PK model To estimate pharmacokinetic parameters of insulin and glucagon
during closed-loop operation

NA
Two-compartmental

Riggs et al. (2013) PK model To develop a population PK model from phase I and II data to
estimate the effects of covariates, such as demographics, patient
habits, and laboratory values, which may explain variability in
empagliflozin PK parameters

Race and total protein
Two-compartmental

Yoon et al. (2013) PK model To assess the effect of genetic polymorphisms in organic cation
transporters (OCTs) on the population pharmacokinetics of
metformin

Liver function and genetic polymorphism
One-compartmental

Gertz et al. (2014) PK model To investigate the effect of OATP1B1 genotype as a covariate on
repaglinide pharmacokinetics and drug–drug interaction (DDI) risk

Genetic polymorphism
Two compartmental

Goswami et al. (2014) PK model To investigate the effect of prioritized transcription factor variants on
the systemic plasma levels of metformin in both patients and healthy
subjects

NA
Two-compartmental

Duong et al. (2015) PK model To investigate and compare the clearance ofmetformin in indigenous
and non-Indigenous patients with T2DM

NA
Two-compartmental

Petri et al. (2015) PK model To compare the pharmacokinetics of liraglutide in children and
adolescents and to determine whether the adult dosing regimen is
appropriate for future clinical trials in this pediatric population

NA

One-compartmental

Stringer et al. (2015) PD model To enhance the understanding of the treatment and time-course
effects on FPG and HbA1c and to develop a model to enable the
simulation for both groups and compare the longer-term glycemic
durability

BMI, number of non- thiazolidinedione
medications, baseline FPG, and HbA1C

Chitnis et al. (2016) PK model To evaluate whether country-sourced metformin is a significant
covariate for different bioavailability

BMI, country-sourced metformin, and race
Two-compartmental

Geiser et al. (2016) PK model To characterize the pharmacokinetics of dulaglutide, estimate the
associated variability in the target patient population, and evaluate
potential intrinsic and extrinsic factors that may significantly influence
dulaglutide pharmacokinetics

Different dose, BMI, weight, race, and smoking
statusTwo-compartmental

Hoeben et al. (2016) PK model To develop a population-based PK model that adequately describes
the PK of canagliflozin after oral administration in healthy volunteers
and patients with T2DM and to evaluate the effects of ‘volunteer’
demographic characteristics and other covariates on PK parameters
of canagliflozin

BMI, eGFR, and diabetes
Two-compartmental

(Continued on following page)
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straightforwardly predicted in the real-world setting, which also
will be of value for personalizedmedicine concepts (Boyko, 2013).

Our study showed no obvious growing trend in PK/PD
modeling utilization in the past 10 years. The different
scientific roots of clinical pharmacology and
pharmacoepidemiology might partly explain this. PK/PD
modeling was developed in animal studies and human
volunteers to investigate drugs’ pharmacokinetics and
pharmacodynamics effect on human biology. Subsequent PK/
PD modeling in clinical trials in homogenous patient groups to
optimize dosing schedules was nevertheless considered of limited
value in predicting the response in large and heterogeneous
populations (Vinks, 2002). Although pharmacoepidemiology
started mainly quantifying adverse reactions and their risk
factors after marketing, the increasing size of healthcare
databases nowadays stimulates comparative studies on
effectiveness. Unfortunately, such databases rarely include
information that can be used for personalized fine-tuning of
results within various risk groups (Van Boxtel and Wang, 1997).
For instance, information on bodymass index or smoking is often
missing, while such determinants are often relevant. Another
important reason for this underutilization may be because blood
sampling and in-patient observations are often not feasible in a

pharmacoepidemiological setting. In clinical trials, detailed
patient information is more easily obtained. Consequently,
observational studies have some limitations which can be
avoided in randomized control trials to a great extent by
complete data collection.

Our review was limited to two pharmacotherapeutic groups,
that is, glucose-lowering and antiarrhythmic drugs as
representative agents of medications with a wide and narrow
therapeutic window, respectively. Due to the striking global
prevalence of diabetes (6.28% in 2017) in comparison to
cardiac arrhythmia (0.51% in 2017) (Khan et al., 2020; Lippi
et al., 2021), the use of glucose-lowering agents is higher than that
of antiarrhythmic drugs. In line with this, the selection of articles
from the current study sample also shows that the total number of
studies on glucose-lowering medications (21 studies) is higher
than that on antiarrhythmic (8 studies). However, in addition to
this lower number, our literature search suggests that more effort
has been put into applying PK/PD models for antiarrhythmic
drugs. An important reason for this higher PK/PDmodeling yield
in studies on antiarrhythmic drugs is their narrower therapeutic
window (Muller and Milton, 2012). After all, the narrower the
therapeutic window, the higher the probability of toxicity or
adverse effect, and therefore, more PK/PD profile monitoring is

TABLE 2 | (Continued) Characteristics of included studies.

Author and
publication year

PK/PD model and type
of model

Purpose of applying or developing a PK/PD model Effect modifier

Santoro et al. (2016) PK model To develop and validate limited sampling strategy (LSS) models to
predict the area under metformin’s plasma concentration–time
curve (AUC)

NA
Non-compartmental
model

Duong et al. (2017) PK model To investigate the proportion of metformin cleared by the kidneys
(CLR), the proportion of the drug not cleared by the kidneys (non-
renal clearance of metformin, CLNR/F), and the drug exposure
(AUC0–12,AUC0–24) of metformin in a large sample of patients with
varying degrees of renal function

NA
Two-compartmental

Petri et al. (2018) PK model To evaluate the effect of sex, age, race, ethnicity, body weight, renal
function, maintenance dose level used, and injection site chosen on
the individual average steady-state plasma concentrations of
semaglutide

Race, ethnicity, renal function, and weight
One-compartmental

Ceacareanu et al.
(2018)

PK model To predict metformin’s clearance in acute myelogenous leukemia
(AML) population

NA
Two-compartmental

Dissanayake et al.
(2018)

PK model To assess the impact of kidney function on single-dose metformin
PK profiles

Renal function
One-compartmental

Overgaard et al.
(2019)

PK model To investigate the impact on HbA1c and body weight on switching to
semaglutide from other GLP-1RAs (liraglutide, dulaglutide, and
exenatide ER) and to analyze different dose-escalation algorithms
depending on the PK of each GLP-1RA

HbA1C and weight
Several different
compartment models

Sokolov et al. (2019) PK model To assess the dapagliflozin exposure–response relationship in
Japanese and non-Japanese patients with type 1 diabetes mellitus
(T1DM) and investigate if a dose adjustment is required in Japanese
patients

NA
Two compartmental

van Noorden et al.
(2019)

PK model To develop a first model of insulin detemir and its unique action and
validate it against existing data in the literature

NA
Three-compartmental

Li et al. (2020) PK model To determine the dosing regimen of metformin in patients with
T2DM. It was undertaken to estimate the pharmacokinetic
parameters of metformin and to evaluate the impact of demographic
and genetic polymorphism factors on metformin disposition

eGFR, genetic polymorphism, and BMI
One-compartmental

PK: pharmacokinetics, PD: pharamacodynamics, BMI: body mass index, T2DM: type 2 diabetes mellitus.
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required (Tamargo et al., 2015). The study by Caruso et al. (2014)
also confirmed the importance of applying the PK/PD model to
studies on antiarrhythmic drugs to enable a more accurate
prediction of the medication’s clinical effects.

PK/PD modeling is highly encouraged in other vital therapeutic
processes, not only inmedications with a narrower therapeutic index
but also in pediatric clinical research (De Cock et al., 2011).
Furthermore, De Cock et al. explained the pivotal role of PK/PD
modeling in studies on children to predict the possible therapeutic
failure and occurrence of adverse effects or death.

Our systematic review observed that most studies developed
the PK/PD model to evaluate the effect of different covariates on
therapeutic outcomes in small- or medium-sized populations.
Our result is in line with a previous study (Standing, 2017) that
showed that using a PK/PD model can improve the approach to
personalized medicine where the effect of variables such as age,
sex, BMI, and genetic variation could be adjusted.

It should be taken into account that most included studies
applied a PK/PDmodel to the secondary data. Secondary data are
data which cannot be traced back to the level of individual cases of
statistical units. These data sources can be retrieved by collecting
the primary data from trials with matching population
characteristics. For instance, the data had been collected for a
particular purpose/research question but again utilized to answer
another research question. The utilization of secondary data is
more practical than collecting primary data from large
populations, and it is also more economical (Schneeweiss and
Avorn, 2005; Suissa and Garbe, 2007). Moreover, with the recent
advances in electronic healthcare databases,
pharmacoepidemiologists have easier access to these data to
boost their investigations on medications’ effectiveness and
individualized dosage optimization (Hennessy, 2006). For
instance, clinical trial data on the incidence of cardiovascular
endpoints in age-, sex-, and BMI-stratified analyses matched to
observational studies could improve the quality of effectiveness
studies in pharmacoepidemiology. In the future, individual
pharmacogenetic passports can be used to tailor individual
pharmacotherapy, especially if genetic analyses in responders/
non-responders would become a common practice in drug trials.
PK/PD modeling thereby will play a crucial role in the efficacy
and safety assessment of recently developed medications and
optimizing treatment. The synergy between clinical
pharmacology and pharmacoepidemiology could be
substantially improved if more effect- and risk-stratification in
clinical trials would occur to investigate which subgroups’
response and toxicity are the highest. In this way, recognizing
determinants of drug response and toxicity would provide

important information on effect modifiers available in
observational datasets. This would improve the validity and
efficiency of real-life effectiveness studies.

5 CONCLUSION

Overall, there is a lack of synergy between clinical pharmacology
and pharmacoepidemiology, especially large-sized observational
studies make only limited use of information on effect
modification from PK/PD studies. On the other hand, clinical
trials might pay more attention to risk stratification, for instance,
by pharmacogenetic analyses in responders/non-responders.
Personalized pharmacotherapy will favor increased cooperation
between both branches of human pharmacology.
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