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Drug repurposing is the process of discovering new indications (i.e., diseases or
conditions) for already approved drugs. Many computational methods have been
proposed for predicting new associations between drugs and diseases. In this
article, we proposed a new method, called DR-HGNN, an integrative
heterogeneous graph neural network-based method for multi-labeled drug
repurposing, to discover new indications for existing drugs. For this purpose, we
first used the DTINet dataset to construct a heterogeneous drug-protein—-disease
(DPD) network, which is a graph composed of four types of nodes (drugs, proteins,
diseases, and drug side effects) and eight types of edges. Second, we labeled each
drug-protein edge, dp;, = (d;, p)), of the DPD network with a set of diseases, {J;; 1, - . .,
0, ) associated with both d; and p; and then devised multi-label ranking approaches
which incorporate neural network architecture that operates on the heterogeneous
graph-structured data and which leverages both the interaction patterns and the
features of drug and protein nodes. We used a derivative of the GraphSAGE
algorithm, HINSAGE, on the heterogeneous DPD network to learn low-dimensional
vector representation of features of drugs and proteins. Finally, we used the
drug-protein network to learn the embeddings of the drug-protein edges and
then predict the disease labels that act as bridges between drugs and proteins.
The proposed method shows better results than existing methods applied to the
DTINet dataset, with an AUC of 0.964.

Keywords: computational drug repurposing, graph embedding, graphsage, data integration, link prediction, graph
neural network

1 INTRODUCTION

Drug repurposing (DR) is a process of identifying novel therapeutic purposes for existing drugs.
Over the years, computational drug repurposing (CDR), known as in silico drug repurposing,
has gained considerable popularity in the pharmaceutical industry due to its time and cost
efficiency in the drug development process compared to the traditional de novo drug discovery
process. Drug repurposing can be a promising treatment strategy for a lot of health crises such
as COVID-19 since it can shorten the drug development process with much less funding
(Sadeghi et al., 2021; Su et al., 2021). In recent years, different computational approaches are
suggested for repurposing drugs based on machine learning, network analysis, and text mining
(Li et al., 2016). Since network-based methods are capable of using ever-increasing large-scale
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biological datasets such as genetic, pharmacogenomics,
clinical, and chemical data, they are more desirable for
drug repurposing tasks (Sadeghi and Keyvanpour, 2019).

With the recent advances in deep learning methods on graphs due
to their promising ability to capture complex and highly non-linear
network structures, graph neural network (GNN) method usage on
biological networks seems more interesting than ever (Pan et al,
2022), (YuJ.-L. et al,, 2021). For example, Yu Z. et al. (2021) proposed
a layer attention graph convolutional network (LAGCN) for the
drug-disease association prediction. The LAGCN utilizes a GCN
to capture structural information from the heterogeneous network
composed of drug-disease associations, drug-drug similarities, and
disease-disease similarities. The attention mechanism is introduced to
combine the embeddings from different convolution layers, which
leads to a more informative representation of drugs and diseases.
Wang et al. (2020) proposed BiFusion, a bipartite GCN model for
CDR through heterogeneous information fusion. BiFusion combines
insights from multiscale pharmaceutical information by constructing
a multi-relational graph of drug-protein, disease-protein, and
protein—protein networks. (Cai et al. (2021) proposed a method,
called DRHGCN, based on the heterogeneous information fusion
graph convolutional network. deepDR, on the other hand, uses a
variational auto-encoder (VAE) to infer candidates for repurposing
(Zeng et al., 2019). Zhao et al. (2021) proposed a method called
multi-graph representation learning (MGRL), which first uses
the graph convolution network to learn the graph
representation of drugs and diseases. Then, the graph
embedding algorithm represents the relationships between
drugs and diseases. Finally, the two kinds of graph
representation learning features were put into the random
forest classifier for training. The drug repositioning method
based on heterogeneous networks and text mining (HeTDR)
proposed by Jin et al. (2021) fuses network topology
information and text mining information to gain and
predicts potential drug-disease associations by an
embedding learning method.

The main difference between these aforementioned deep
learning-based methods for CDR tasks is that they use
different types of network inputs or add extra features and
also different GCN structures as decoders. Hence, one way to
expand these methods is to include additional biological
network types in the equation of the DR task. However,
creating the base heterogeneous network for CDR is a
challenging task.

This study casted the CDR problem as a link prediction task
and proposed DR-HGNN, a novel approach for inferring new
drug-disease associations (i.e., new links between drugs and
diseases). The main idea is to «create a multi-label
heterogeneous drug-protein-disease (DPD) network as
input for the heterogeneous variation of the GraphSAGE
algorithm.

First, DR-HGNN integrates six heterogeneous networks and
four homogeneous networks for creating drug and protein side
information, which can potentially improve the performance of
CDR. Second, DR-HGNN creates a DPD network in which, for
each drug and protein in the drug-target interaction (DTI)
network, we assume there is at least one disease that connects

DR-HGNN

these two. In other words, we used diseases as our labels in the
DTI network. However, this leads to a multi-label problem which
means that there can be more than one disease as a bridge for each
DTI. Hence, in the third step, we solved this problem with a
transformation-based solution. Later, we used a generalized
version of GraphSAGE for heterogeneous networks, called
HinSAGE. HinSAGE processes the input DPD network for
embedding each drug and protein node. Finally, an edge
embedding layer will be used for predicting new disease edges
between drugs and proteins. This edge embedding scores each
edge between drug and proteins and the disease label associated
with this edge. DR-HGNN shows a high predictive performance
when compared to existing CDR methods.

2 METHODS

Algorithm 1. DR-HGNN

Input : Drug-protein interactions (Gg;s), drug-drug interactions(Gq4), drug-disease associations
(Gys), drug-side-effect associations (Gg;), drug-drug similarity (G,), protein—disease
associations (G,s), protein-protein similarity (Gp), and protein-protein interactions (Gp,)

Output : Embedding scores for each {d;, p;, ds} in DPD graph

F, + CompactFeatureLearning (Ggq, G4, Gas, Gas);

F, + CompactFeatureLearning(Gyp, Gy, Gps);

Gips  merge(Ggp, Gpo):

foreach {d;, p;, {0ij1,.--,0ijx}} € Gaps do
| {di, pj, dps} SelectRepresentative({d;, pj, {dij1, - -, Gi gt}

Eq, . Ep; <~ HinSAGE(DPD, F,, Fg);  /» Ep; is embedding of protein nodes and
Edj drug nodes =/

Embedding of {d;, pj, §s} edges < LinkEmbedding(Ey,.E;,):

2.1 Construction of the DPD Graph

We constructed a schema of a DPD heterogeneous graph
(Figure 1A). Diseases in this graph are bridges between drugs
and proteins; they are labels on edges connecting drugs and
proteins. This graph is constructed from three different
heterogeneous sub-networks (i.e., drug-protein interaction,
protein—disease association, and drug-disease association).

Each edge in this graph connects drugs and proteins and
has diseases as their label. This means we can have a triple of
(drugs, proteins, and diseases) for each link {d;, p;, {8;;,15 - - - >
0;k}}. Each drug and protein has a feature vector constructed
by a compact feature learning method (Luo et al., 2017). The
input for the compact feature learning method is different
types of sub-networks (i.e., drug-protein interactions (Gg;),
drug-drug interactions (Gg,), drug-disease associations
(Gas), drug-side-effect associations (Gg,), protein-disease
associations  (Gps), protein-protein  similarity (G,),
drug-drug similarity (G,), and protein—protein interactions
(Gyp)) that have side information from a different view of each
entity (i.e., drugs and proteins). The output of the compact
feature learning method is a matrix representation of the
entity (i.e.,, drugs and proteins) features. The compact
feature learning method integrates diverse information
from the heterogeneous network by foremost combination
of the network diffusion algorithm (random walk with restart)
with a dimensionality reduction technique (diffusion
component analysis) to obtain informative but low-
dimensional vector representations of nodes in the network
(Luo et al., 2017).
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FIGURE 1 | Pipeline of DR-HGNN. (A) Creating Heterogeneous Drug-Disease-Protein Network: using the DTINet dataset, a meta-graph is created, which can be

presented as a Heterogeneous Graph (on the right). (B) Multi-label Problem Transformation: A problem transformation technique is used since the Heterogeneous Graph
from step A is multi-labeled. (C) Link Embedding Using Heterogeneous GraphSAGE: With matrix representation of each protein and drug and the heterogeneous graph
from step B, Heterogeneous GraphSAGE embeds links between nodes of this heterogeneous graph.
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TABLE 1 | Comparison of GNN methods.

Method Handle bipartite graph
HINSAGE Yes
GraphSAGE Yes
GCN No
GAT Yes
Finally, based on drug-protein and protein-disease

associations, we labeled the edges the in drug-protein
interaction network to create our DPD graph (Ggs).

Gps — merge(de, Gpﬁ): (1)

where merge joins adjacency matrices of Gy, and G,s. Here, the
joining is carried out on protein names. The G graph
constructed here can be presented as the triple of (drugs,
proteins, and diseases) {d;, pj, {81, - - . » 8ijut}

2.2 Multi-Label Problem Transformation

The constructed Ggps has multi-label edges (Figure 1B). Not all
labels are equally important to the characterization of the edges.
Hence, we need a multi-label ranking approach to choose just one of
the labels as the labels’ representative. One-hot encoding of labels in
the Ggps graph can be sparse and large. Hence, instead of using a
neural network for dealing with our multi-labeled edges, we
proposed a method as a prepossessing step to transform our
multi-label problem into a single-label problem (Tsoumakas
et al, 2009). This method transforms the multi-label learning
task into a multi-class or single-label classification task. In other
words, LP models the joint distribution of labels. It treats each label
subset in the multi-label training set as a class of a multi-class task,
and the prediction will be one of these subsets (Chu et al., 2021). For
this purpose, for each set of labels for each pair of drug-protein, we
used one of the labels as the representative of that set.

For selecting this representative label, we selected the label with less
frequency among all sets of labels and more mutual information. This
representative label is more informative than other labels since these
labels have a more distinctive ability based on the law of frequency.
This new DPD network is a compressed version of G, and every
link in this graph can be also presented as unique {d;, p;, dx'}. For this
purpose, first, we counted the frequency of each disease in the Ggs
graph and then we selected one disease for each pair of drugs and
proteins that has the least appearance in the network. This disease is
the new label for the drug-protein association.

2.3 Edge Embedding Using Heterogeneous
GraphSAGE

Standard message passing GNNs cannot trivially be applied to
heterogeneous graph data as the same functions cannot process
node and edge features from different types due to differences in
the feature type and size (Fey and Lenssen, 2019). To avoid this
problem, here, we used a generalized version of the GraphSAGE
algorithm (Hamilton et al., 2017) for heterogeneous graphs called
HinSAGE (Data61, 2018).

DR-HGNN

Handle different node
feature sizes

Handle heterogeneous graph

Yes Yes
No Yes
No No

No Yes

Looking at Table 1, HinSAGE can provide us with the features
we want from our GNN, while other methods such as the graph
attention network (GAT), graph convolutional network (GCN),
and GraphSAGE cannot be performed on heterogeneous
networks without implementing message and update functions
individually for each edge type.

HinSAGE separate neighborhood weight matrices (Wyeign’s)
for every unique ordered tuple of (Ny, E, N,) where N; and N, are
node types (here, N; is for drugs, and N, is for proteins), and E is
an edge type (here, E is for disease) to support heterogeneity of
nodes and edges. HinSAGE also will distinct self-feature matrices
Wieie for every node type, where W is a unique self-edge type
for every node type.

As for feature update rules, aggregation (mean) of features
from the neighbors of node v via edges of type r is being used:

1 -1
h’;\,r(v)er o Y D,[r]. ©)

ueN, (v)

(Data61, 2018).
Meanwhile, forward pass through layer k is as follows:

hl‘j = G(va,selfDP [hl‘jil] + er(,selfhllc\ly(v) + bk) (3)
(Data61, 2018).

Here, W§  is the weight matrix for self-edges for node type t,
and is of shape di x dj_;. Also, W’:’Sdf is the weight matrix for
edges of type r and is of shape %" X di1(r). D, [.] is a random
dropout with probability p applied to its argument vector. o is the
nonlinear activation. by is an optional bias, while h’; is the output
for node v at layer k. r indicates the edge type from node v to node
u (ris defined as the unique tuple (¢,, ., t,,)), where t, indicates the
type of node v, and ¢, indicates the relation type. N,(v) is a
neighbor of the node v via the edge type r. di_; (r) = dim (h}f\]y (V))
is the dimensionality of (k — 1)-th layer’s features of node v’s
neighbors via edge type r. The number of trainable parameters

per layer k for this model is as follows:
T\didr + Redydir +di = (T + R)didi-r +di, (4)

(Data61, 2018).

supposing that the dimensionalities of all destination node
features for all edge types r are all equivalent, that is, dy_;(r) =
di-_1Vr, the number of all node types in the graph is T,, and the
number of all edge types is R,.

The HinSAGE algorithm requires two types of input: node features
and an adjacency matrix of the heterogeneous graph. Here, drugs and
proteins are our nodes, and we used the compact feature learning
method to obtain their feature vectors. Compact feature learning is a
random walk-based algorithm. First, a random walk algorithm with
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TABLE 2 | Number of nodes and edges of individual types in the constructed
heterogeneous network on DTINet (Luo et al., 2017).

Node Number of edges

Drug Protein Disease Side effect
Drug 10, 036 1, 923 199, 214 80, 164
Protein 1,928 7, 363 1, 596, 745 -
Number of nodes 708 1, 512 5, 603 4,192

restart (RWR) is used to compute the diffusion states of individual
networks. Then, the low-dimensional representations of feature
vectors for each node are obtained by minimizing the difference
between the diffusion states s; and the parameterized multinomial
logistic models §;. The low-dimensional feature vectors obtained from
the previous step encode the relational properties (for example,
similarity), association information, and topological context of each
node in the heterogeneous network (Luo et al,, 2017). As for the
adjacency matrix of the heterogeneous graph, we constructed a DPD
graph in Section 2.1.

After having embeddings of each node, we can use a function that
predicts a multi-class edge classification output from (source: drug;
destination: protein) node embeddings (node features). For this
purpose, this layer combines (source: drug; destination: protein)
new embeddings from HinSAGE layers into edge embeddings.

3 METHODOLOGY

This section demonstrates the efficacy and efficiency of the DR-
HGNN frameworks for DR tasks and compares them with three
state-of-the-art DR algorithms. Five aspects are discussed in the
following four subsections: datasets in both our proposed model
and the competing models, experiment setting, results of
competing methods, and case studies of our proposed model.

3.1 Material and Data

In this study, the DTINet data set from Luo et al. (2017) is used.
DTINet is a heterogeneous network with 12,015 nodes and 1,895,445
edges in total and is originally constructed for predicting missing DTI
(drug-target interaction) edges. Luo et al. (2017) compiled various
curated public drug-related databases (DrugBank (Wishart et al,
2006), the Comparative Toxicogenomics Database (CTD) (Davis
et al, 2019), the Human Protein Reference Database (HPRD)
(Keshava Prasad et al, 2009), and Side Effect Resource (SIDER)
(Kuhn et al, 2010)) (Table 2) to create DTINet. The DTINet
network integrates four types of nodes (that is, drugs, proteins,
diseases, and drug side effects) and six types of edges (that is,
drug-protein interactions, drug-drug interactions, drug-disease
associations, ~ drug-side effect associations, protein-disease
associations, and protein—protein interactions).

Based on chemical structures of drugs and primary sequences
of proteins, they also built multiple similarity networks to further
augment the network heterogeneity, providing diverse
information from a multiple-view perspective.  The
heterogeneous DPD graph has only 1,923 triples of {d;, p;, 0}
constructed by the DTINet data set. As shown in Table 2, the

DR-HGNN

DPD graph has 708 drug nodes and 1,512 protein nodes with 39
diseases, representing 5,603 diseases selected in Section 2.2.

3.2 Experimental Setup

CDR can be cast as a link prediction problem, and here, in this
study, we predicted the edges between drugs and proteins with the
diseases as their label. To evaluate the prediction performance of the
DR-HGNN model and the competing methods, we used 5-fold
cross-validation (5-CV) since other baseline methods also used 5-
CV. We added a matching number of non-interacting triples to the
known interacting drug-target—disease triples (DPD graph). Then,
data sets were five times shuffled to form five randomly ordered data
sets, each of which was divided into training (60%), validation (20%),
and test sets (20%) (Luo et al., 2017; Moon et al., 2021).

In experiments, the area under the receiver operating characteristic
curve (AUC-ROC) and precision-recall curve (AUPR) are used to
measure the performance of results. AUC-ROC and AUPR, as useful
measures of accuracy, have been considered, with a meaningful AUC
interpretation usually representing the overall performance of the
method (Sadeghi and Keyvanpour, 2019). We compared our
approach with five other DR methods in the following:

e DTINet (Luo et al, 2017), is a low-dimensional vector
representation-based method that extracts features from
the topology of the nodes in the integrated network and
predicts and computes drug—protein target interactions and
drug similarity measures through these representations.

e NMTF (Ceddia et al,, 2020), is a negative matrix factorization-
based method that imposes a non-negative constraint on the
factorized matrices during multiplication and update operations.

e LAGCN (Yu Z. et al, 2021), is a layer attention graph
convolutional network-based method for the drug-disease
association prediction.

e deepDR (Zeng et al, 2019), is an autoencoder-based
method for fusing the features and mining new drug
disease associations.

e KBMF (Gonen et al., 2013), is a kernelized bayesian matrix
factorization method that can make use of multiple side
information sources and can be applied in recommender
systems.

3.3 Performance Comparison

DR-HGNNs results outperform all five methods on the DTINet data
set. The parameters (that is, learning rate, dropout, optimizer function,
number of layers, and embedding dimensions) in these methods are
set to either their optimal values or recommended values reported in
the original works. Figure 2 reports the AUC-ROC of all compared
methods on the DTINet data. As shown in Figure 2, DR-HGNN
outperforms other methods with 0.964 and 0.93 for its AUC-ROC
and AUC-PR. An AUC-ROC and a loss history plot of DR-HGNN
can also be seen in Figure 4 for both the training and validation
datasets. Figure 2 also shows LAGCN with 0.94 for AUC-ROC, and
0.92 for AUC-PR is at the second place. deepDR also has the same
AUC-PR value as LAGCN, but its AUC-ROC is around 0.91. NMTF
as a matrix factorization-based method comes after neural network-
based methods with 0.93 and 0.86 for its AUC-ROC and AUC-PR,
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FIGURE 2 | AUC ROC and AUC PR values of prediction results obtained by applying DR-HGNN and other reported methods in 5-fold cross-validation.

TABLE 3 | Results of DR-HGNN on the TL-HBGI dataset (Wang et al., 2014).

Method AUC AUPR
TL-HGBI (Wang et al., 2014) 0.95 0.0492
NMF-DR (Sadeghi et al., 2021) 0.9902 0.4200
SCMFDD (Zhang et al., 2018) 0.97 0.1500
NTSIM (Zhang et al., 2017) 0.96 0.2631
DR-HGNN 0.9895 0.4560

respectively. Another matrix factorization-based method (KBMF) also
has an AUC-ROC of 0.79 and AUC-PR of 0.82.

To illustrate the potential generalization of DR-HGNN, we
evaluated another well-known benchmark dataset called the TL-
HGBI dataset (Wang et al, 2014) with a 5-fold cross-validation
(Table 3). The TL-HBGI dataset (Wang et al., 2014) has 1,409 drugs
registered by the DrugBank database, 5,080 diseases listed by the
OMIM database, and 1,461 known relationships. Drug-drug
similarities were calculated based on their chemical structures, and
a  phenotype-based disease-disease similarity dataset was
downloaded from MimMine. Table 3 shows that DR-HGNN
outperforms other methods in both AUC and AUPR metrics. The
results show that our approach can also compete with other methods
with the AUC-ROC measure and the AUC-PR measure.

3.4 Impact of Parameter Settings

We adjusted the parameters to achieve optimal performances. We
showed the effect of using different learning rate parameters and
dropout for the Adam optimizer in Table 4 with 50 epochs. Based on

TABLE 4 | AUC ROC results for DR-HGNN based on different parameters.

Adam Learning rate

optimizer 1.00E+00 1.00E-01 1.00E-02 1.00E-03 1.00E-04

Dropout 0  0.8245 0.9566 09487  0.9639 0.8734
01 08678 0.9165 0.954 0.9647  0.8868
0.2  0.8605 09365 09635  0.8903 0.8778
03 09333 0.916 09594 09167 0.8317
04 0898 09307  0.8955 0.937 0.827
05 09492 0.9519 0.8986  0.9606  0.8319
06 0888 0.9469 0.892 0.9068 0.8687
0.7  0.8682 0.8923 0.8682 0.961 0.7054
0.8  0.9501 0.93 09106  0.9448 0.6968
09 08922 09457 09357  0.9298 0.8472

this experiment, the optimal learning rate and dropout for the Adam
optimizer with L, regularization was for 0.001 learning rate and 0.1
dropout. We also experimented with the size of the embedding. To
investigate the effect of layer numbers on model performance, we
compared results with a different number of layers in DR-HGNN on
the DTINet dataset. Figure 3 showed the model performance along
with the increase in layer numbers and embedding dimension.

We observed that one layer has the lowest performance,
suggesting that a shallow network cannot sufficiently propagate
the node feature to fuse heterogeneous information, especially for
the complex DPD network. Moreover, we found that DR-HGNN
achieved significant improvement with two layers’ structure. But with
more than two layers, the model performance tends to decrease. We
believe that GraphSAGE behaves similarly to graph convolutional
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networks (GCNs). A shallow GraphSAGE (1-layer) may not learn
sufficient information, and more layers could lead to an over-
smoothing issue. Other related works on the GNN also show that
two layers are usually enough for capturing the knowledge of the
network (Niu et al., 2021; Wang et al., 2020; Li et al,, 2019; Chen et al.,
2020). Figure 4 also shows the effect of embedding dimension on the
DR-HGNN performance. Based on the results of this experiment, we
chose the embedding dimension of 256 since the model has superior
AUC-ROC and AUC-PR performance with this dimension size.

3.5 Case Study

In this section, we conducted case studies to evaluate the
capability of DR-HGNN in predicting novel drug-disease
associations. The relationships between drugs and diseases in
the DTINet dataset not only have therapeutic ones but also have
drug side effects. Thus, the model predicts both types of relations.
Here, we discussed examples of both potential therapeutic
relationships and potential side effects.

For verification of the prediction, along with a manual PubMed
search, we have examined a publicly available Web server named
ChemoText (Capuzzi et al, 2018). For example, hypertension (high
blood pressure) has associations with the protein NADH
dehydrogenase, subunit 1 (complex I) (Uniprotld: P03886).
Halothane (DrugBankID: DB01159), a general inhalation anesthetic

used for the induction and maintenance of general anesthesia, has also
been interacting with P03886. Chemotext and also Pubmed search also
validate our connection between hypertension and halothane
(Enderby, 1960). The other relationships we validated are between
desflurane (DrugBank ID: DB01189), sevoflurane (DrugBank ID:
DB01236), and pregabalin (DrugBank ID: DB00230) with
hypertension and the shared protein of P03886. As for side effects,
we validated nicotine (DrugBank ID: DB00184) associations. We
found exciting relationships between nicotine with hyperalgesia.
Nicotine is short-term pain relief, however, over time, it may
increase pain intensity (Ditre et al, 2018). Nicotine also has an
association ~ with  diabetic  nephropathies and  pregnancy
complications through proteins P30926 and P36544, respectively.

4 DISCUSSION AND CONCLUSION

In this study, we presented a framework based on the GNN for drug
repurposing. We created a heterogeneous drug-disease—protein
network using multi-label problem transformation as input for
heterogeneous GraphSAGE for repurposing drugs. Although we
obtained satisfactory results, DR-HGNN has some limitations.
First, we used several networks to create a heterogeneous drug
repurposing network. However, in the future, we plan to consider
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more networks such as miRNA and genes to make a richer
heterogeneous graph. Second, having multi-labeled edges in the
drug-disease—protein network in the CDR task is a challenge that
should be addressed. DR-HGNN uses the problem transformation
approach for handling multi-label edges. MLC in drug repurposing
has other challenges, such as label size imbalance. We can propose
and use different solutions for this challenge in future work. All in all,
DR-HGNN has the potential to be used for predicting edges in other
biomedical networks, such as the drug-target interaction.
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