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Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands

Cytochrome P450 3A (CYP3A) subfamily enzymes are involved in the metabolism of 40%
of drugs in clinical use. Twin studies have indicated that 66% of the variability in CYP3A4
activity is hereditary. Yet, the complexity of the CYP3A locus and the lack of distinct drug
metabolizer phenotypes has limited the identification and clinical application of CYP3A
genetic variants compared to other Cytochrome P450 enzymes. In recent years evidence
has emerged indicating that a substantial part of the missing heritability is caused by low
frequency genetic variation. In this review, we outline the current pharmacogenomics
knowledge of CYP3A activity and discuss potential future directions to improve our genetic
knowledge and ability to explain CYP3A variability.

Keywords: CYP3A locus, CYP3A4, CYP3A5, genetic variants, enzyme activity, missing heritability,
pharmacogenomics

INTRODUCTION

The Cytochrome P450 CYP3A subgroup forms the largest proportion of CYP protein in the human
liver and small intestine (Shimada et al., 1994; Rendic, 2002) and is involved in the metabolism of up
to 60% of currently used drugs (Plant, 2007; Zanger et al., 2008). The CYP3A locus is located on
Chromosome seven and consists of four distinct genes CYP3A4, CYP3A5, CYP3A7, CYP3A43, and
three pseudogenes (Finta and Zaphiropoulos, 2000; Gellner et al., 2001). Notably, the four coding
genes share more than 85% of their amino-acid sequence and have a partially overlapping substrate
spectrum (Williams et al., 2002). However, the contribution to drug metabolism varies considerably
between the CYP3A genes (Ozdemir et al., 2000; Lamba et al., 2002). Of the entire CYP3A enzyme
family, the CYP3A4 and CYP3A5 enzymes are the most abundantly expressed proteins accounting
for more than 95% of total CYP3A mRNA pool (Koch et al., 2002). CYP3A7, on the other hand, is
most prominent in fetal liver cells and slowly diminishes after birth. CYP3A43 expression is almost
negligible compared to the other enzymes (<5% of total mRNA).

CYP3A activity is characterized by substantial inter-individual heterogeneity. For instance,
CYP3A4, the predominant isoform of CYP3A, shows a 10-100-fold inter-individual variability
in enzyme activity (Perera, 2010). One of the causes of the variability in CYP3A activity is the
presence of genetic variants in the genes encoding the CYP3A enzymes. The clinical importance of
several of these variants has indeed been reported in many patients (Evans and Relling, 1999; Zanger
etal., 2008; Zanger and Schwab, 2013). Interestingly, there are currently only two haplotypes that are
used in clinical practice, the CYP3A5*3 allele resulting in a complete loss-of-function, and the
CYP3A4*22 allele resulting in a decreased enzyme activity (Kuehl et al., 2001; Wang et al., 2011). By
combining CYP3A5*3 and CYP3A4*22 more than 60% and 20% of the observed variability in
tacrolimus and cyclosporine trough blood level could be explained respectively (Elens et al., 2011).
Recommendations on how to apply CYP3A5 genotyping results to optimize drug and dose selection
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are included in clinical guidelines from the CPIC (Clinical
Pharmacogenetic Implementation Consortium) (Birdwell et al.,
2015) and for CYP3A4 and CYP3A5 by the DPWG (Dutch
Pharmacogenomics Working Group) (Swen et al, 2011)
(https://www.knmp.nl/index.php/media/1058).

Besides the genetic variants that form the CYP3A5*3 and
CYP3A4*22 alleles, the CYP3A locus contains many more rare
variants which are expected to play a role in enzyme activity and
drug response. Using a repeated drug administration method
Ozdemir et al. compared standard deviations for inter- and intra-
person variation in the disposition of 10 different CYP3A4
substrates, including midazolam, and cyclosporine. Analyses of
the disposition parameters of these orally administered substrates
suggested that at least 60% of the variability in composite
CYP3A4 activity is under genetic control (Ozdemir et al,
2000). Furthermore, substantial missing heritability in CYP3A
pharmacogenomics has been reported (Klein and Zanger, 2013).
A twin study compared the differences of metabolic similarity
between monozygotic (MZ) and dizygotic (DZ) twins
(Rahmioglu et al., 2011). In this cohort of 367 healthy twins,
66% (confidence interval: 50%-77%) of the induced CYP3A4
activity variation was found to be hereditary, while only ~20%
was explained by current clinical PGx based on a GWAS study
(Oetting et al., 2018). In this review, we outline the current
pharmacogenetics knowledge of CYP3A activity and discuss
potential future directions to improve our genetic knowledge
and ability to explain CYP3A variability.

Known CYP3A4 and CYP3A5 Haplotypes

There are 34 defined *-haplotypes for the CYP3A4 and five in the
CYP3A5 gene designated by PharmVar (https://www.pharmvar.
org/). Recently, three CYP3A5 alleles (CYP3A5*2, *4, and *5) have
been reclassified as part of the CYP3A5*3 suballeles (Rodriguez-
Antona et al,, 2022). Among those haplotypes, the most widely
studied genetic variant is the CYP3A5*3 allele (rs776746),
characterized by a splice defect in intron 3. This loss-of-
function variant generates a premature stop codon that causes
a lower amount of functional protein (Kuehl et al, 2001).
Notably, CYP3A5*3 allele is common but the allele frequency
differs between ethnicities, with the frequency of approximately
up to 0.92 in European Americans (EA) and fluctuating between
0.24 and 0.84 in non-European populations according to the
PharmGKB frequency table (https://www.pharmgkb.org/page/
cyp3a5RefMaterials). A CYP3A5*3/*3 diplotype results in a
10-30 fold lower CYP3A5 expression level compared to
CYP3A5*1/*3 (Hustert et al., 2001a; Lin et al, 2002). In
clinical practice, individuals are categorized into three distinct
CYP3A5 activity groups: CYP3A5 expressors (carrying two *I
alleles), heterozygous expressors (carrying one *I allele and one
*3 allele) and non-expressors (carrying two *3 alleles) of which
the last group is the most common. These predicted metabolizer
phenotypes can help explain differences in drug metabolism. For
example, the dose corrected tacrolimus concentration after
transplantation in patients who carried at least one CYP3A5*1
allele was significantly lower compared to CYP3A5 non-
expressor after the first month following transplantation (I.
49 + 0.88 vs. 3.11 + 4.27, p = 0.01), which lasted for the first

Missing Heritability in CYP3A Locus

year post transplantation (Zheng et al., 2004). For this reason, the
CYP3A5%3 allele is included in the CPIC, DPWG, RNPGx
(French National Network of Pharmacogenetics), and
IATDMCT (International Association of Therapeutic Drug
Monitoring and Clinical Toxicity) guidelines as being
associated with tacrolimus metabolism leading to the
recommendation to increase 1.5—2.5 fold initial dosage in *I
carriers (Swen et al.,, 2011; Birdwell et al., 2015; Picard et al,,
2017). In addition, two other key haplotypes CYP3A5*6
(rs10264272, ¢.624G > A) and CYP3A5*7 (rs41303343, c.
1035dup) are included in the guidelines (Birdwell et al., 2015).
CYP3A5*6 causes a splicing defect, and CYP3A5*7 results in a
frameshift. These two alleles have a frequency of 11%-19% in the
African population but have not been observed or with extremely
low frequency in non-African populations (https://www.
pharmgkb.org/page/cyp3a5RefMaterials). Both haplotypes are
associated with no CYP3A5 catalytic activity and contribute to
tacrolimus pharmacokinetics variability (Campagne et al., 2018),
explaining about 6% of the variability in tacrolimus trough
concentrations in African American patients (Oetting et al,
2016).

Besides CYP3A5*3, CYP3A4*22, located in the most
predominant isoform of CYP3A, is the second *-allele that is
often used in clinical practice. The CYP3A4*22 allele
(rs35599367) is characterized by a G > A substitution in
intron 6, resulting in an increased formation of a truncated
alternative splice variant in vitro (Wang and Sadee, 2016). The
allele frequency in the Caucasian population ranges from 3% to
—5%, which is higher than compared to other populations, for
example less than 1% in the Asian population. Notably, patients
carrying CYP3A4*22 had a 1.7 to five fold decreased CYP3A4
mRNA or protein expression level (Elens et al., 2011; Wang et al.,
2011; Wang and Sadee, 2016), explaining 12% of CYP3A4 activity
variability (Wang et al, 2011). Moreover, the reduced activity
caused by the CYP3A4*22 allele was verified with several CYP3A
substrates in vivo (Elens et al., 2012; Elens et al., 2013a; de Jonge
et al,, 2015), and its contribution to variability in CYP3A activity
and its potential clinical usage were summarized by Elens et al.
and Mulder et al. (Elens et al., 2013b; Mulder et al., 2021). While
CYP3A4 is involved in the metabolism of many drugs, there are
currently no clinical guidelines available that include CYP3A4
genetic variants. This is potentially explained by the low
frequency of the variants in combination with a relatively
modest effect on enzyme function which makes it more
difficult to ascertain a connection between genotypes and drug
metabolism and clinical outcomes.

In addition to these two well-recognized haplotypes, there are
37 additional *-allele haplotypes defined for CYP3A4 and
CYP3A5. A recently published review presented a
comprehensive summarization of all CYP3A5 *-alleles
(Rodriguez-Antona et al., 2022). Here we give an overview of
all CYP3A4 *-alleles. Notably, for the CYP3A4, most of *-alleles
are characterized by core variants which are rare (Minor allele
frequency (MAF) < 1%), or very rare (MAF <0.1%). The only
exception is CYP3A4*36, for which the global frequency is up to
0.42 based on the 1,000 Genomes. All CYP3A4 alleles and in vivo
evidence of their potential impact on enzyme activity are shown
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TABLE 1 | Overview of core variants of CYP3A4 haplotype®.

Missing Heritability in CYP3A Locus

Allele rs ID Nucleotide changes Amino VEP annotation In vivo
(cDNA) acid evidence of
changes function variability
2 rs55785340 664T > C S222P Missense
*3 rs4986910 13347 > C M445T Missense
*4 rs55951658 352A > G 1118V Missense
*5 rs55901263 653C > G P218R Missense
*6 rs4646438 830_831 insA D277fs Frameshift
*7 rsb6324128 167G > A G56D Missense
*8 rs72552799 389G > A R130Q Missense Decreased CYP3A4 activity Apellaniz-Ruiz et al. (2015b)
*9 rs72552798 508G > A V170l Missense
*10 rs4986908 520G > C D174H Missense
*11 rs67784355 1088C > T T163M Missense
*12 rs12721629 1117C>T L373F Missense
*13 rs4986909 1247C > T P416L Missense
*14 rs12721634 44T > C L15P Missense
*15 rs4986907 485G > A R162Q Missense
*16 rs12721627 554C > G T185S Missense
*17 rs4987161 566T > C F189S Missense
*18 rs28371759 878T > C L293P Missense Increased tacrolimus clearance Liu et al. (2017), increased cyclosporine
clearance Xin et al. (2014)
*19 rs4986913 1399C > T P467S Missense
*20 rs67666821 1461_1462 insA P488fs Frameshift Decreased tacrolimus clearance Gomez-Bravo et al. (2018)
21 rs201821708 956A > G Y319C Missense
22 rs35599367 522-191C > T Intron variant Decreased enzyme activity®
*23 rs57409622 484C > T R162W Missense
*24 rs113667357 B600A > T Q200H Missense
*26 rs138105638 802C > T R268X Missense Decreased tacrolimus clearance Werk et al. (2014)
*28 rs570051168 64C > G L22Vv Missense
*29 rs1449865051 337T > A F113l Missense
*30 rs778013004 388C > T R130X Missense
*31 rs1303250043 972C > A H324Q Missense
*32 rs368296206 1004T > C 1335T Missense
*33 rs756833413 1108G > T A370S Missense
*34 rs774109750 1279A > G 1427V Missense
*35 rs188389063 7C>G L3V Missense

36 rs2242480 1026 + 12G > A
*37 rs35599367 522-191C > T, 1334T  M445T

rs4986910 >C missense

Intron variant
Intron variant,

Substrate-dependent®

AAllele definitions are based on PharmVar. In vivo functionality is based on literature as activity is not reported in PharmVar. Therefore, we performed a literature search for each CYP3A4

*-allele in the table with Pubmed.
PExplanations in detail were described in the tex.

in Table 1. As the impact of these alleles are not assigned in
PharmVar, the summarized impact of the alleles is based on
available literature with in vivo evidence. CYP3A4*8 was detected
with whole-exome sequencing in a patient with a severe
paclitaxel-induced peripheral neuropathy due to diminished
CYP3A4 enzyme activity (Apelliniz-Ruiz et al, 2015b).
Notably, the CYP3A4*18 haplotype is associated with a
decreased midazolam metabolism but also results in a gain-of-
function in the clearance of certain substrates such as sex steroids.
These substrate specific effects may be attributed to structural
changes in substrate recognition sites that results in catalytic
activity variation (Kang et al., 2009). Besides, CYP3A4*1G, which
has been redesignated as CYP3A4*36, has been reported a
substate-dependent impact on CYP3A4 activity as well (Yuan
et al, 2011; Dong et al, 2012; He et al, 2014). Notably,
CYP3A4*1G has high linkage disequilibrium with CYP3A5*3
and significantly related with a IncRNA, AC069294.1, that
caused down-regulated CYP3A4 and CYP3A5 expression

(Collins and Wang, 2022). Furthermore, the interaction of
CYP3A4*1G and CYP3A5*3 on drug pharmacokinetics, for
instance, tacrolimus (Miura et al,, 2011; Zuo et al., 2013) and
sirolimus (Zhang et al., 2017) has been reported. For CYP3A4*20,
aloss-of -function allele caused by a frameshift variant, it has been
suggested that this variant causes an equal functional alteration as
CYP3A4*22, given that in CYP3A5 non-expressors the phenotype
of a heterozygous CYP3A4*20 carrier was close to that of a
CYP3A poor metabolizer (Lloberas et al., 2018). Moreover,
CYP3A4*20 presents a higher frequency and founder effect in
the Spanish population, which highlights the contribution of rare
CYP3A functional alleles in a specific population (Apellaniz-Ruiz
et al.,, 2015a). However, given the extremely low frequency of
most of those additional *-alleles, there is not enough evidence for
their functionality in vivo and for the clinical impact of these
*-alleles. Several studies assess activities of these alleles in vitro
(Fang et al., 2017; Xu et al,, 2018; Li et al., 2019; Lin et al., 2019;
Yang et al., 2019; Kumondai et al., 2021). Notably, their predicted
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TABLE 2 | Summary of CYP3A4 and CYP3AS5 allele number classified by VEP (variant effect predictor) annotation.

VEP Annotation

Frameshift variant
Intron variant
Missense variant
Splice acceptor variant
Splice donor variant
Splice region variant
Start lost

Stop gained

Stop lost

3'prime UTR variant
5'prime UTR variant
Inframe deletion
Inframe insertion
Synonymous variant

Number of variants in CYP3A4 N (%)

Missing Heritability in CYP3A Locus

Number variants of in CYP3A5 N (%)

All alleles

20 (0.0057%)
4,472 (97.2661%)
218 (0.2206%)
1 (0.0004%)
3 (0.0004%)
32 (0.0138%)
1 (0.0004%)\
10 (0.0012%)
0
216 (2.3511%)
29 (0.0124%)
4 (0.0004%)
1 (0.00004%)
75 (0.1275%)

MAF<1%

20 (0.143%)

4,393 (89.829%)

218 (5.531%)
1 (0.009%)
3 (0.010%)
32 (0.346%)
1 (0.009%)
10 (0.030%)
0
211 (3.402%)
29 (0.310%)\
4(0.011%)
1 (0.001%)
74 (0.368%)

MAF<0.1%

20 (0.474%)

4,288 (87.122%)

212 (4.541%)
1 (0.030%)
3 (0.034%)
32 (1.145%)
1 (0.030%)
10 (0.101%)
0
205 (4.243%)
29 (1.025%)
4 (0.037%)
1 (0.004%)
74 (1.215%)

All alleles

24 (0.3997%)
4,641 (69.1792%)
199 (0.2909%)
8 (7.9761%)

5 (0.0032%)
45 (0.1997%)
2 (0.0001%)
15 (0.0078%)
2 (0.7525%)
1027 (20.2284%)
108 (0.4166%)
3 (0.0004%)

1 (0.00007%)
71 (0.5452%)

MAF<1%

23 (1.149%)
4,559 (70.517%)
199 (4.056%)
7 (0.021%)

5 (0.045%)
44 (0.872%)
2 (0.002%)
15 (0.108%)

1 (0.001%)
1000 (20.770%)
107 (2.147%)
3 (0.006%)

1 (0.001%)
69 (0.303%)
6,035 (100%)

MAF<0.1%

21 (0.183%)
4,445 (77.117%)
195 (2.935%)
7 (0.069%)
5 (0.147%)
43 (1.245%)
2 (0.007%)
15 (0.353%)
1 (0.003%)
968 (15.899%)
105 (1.033%)
3 (0.020%)
1 (0.003%)
69 (0.987%)
5,380 (100%)

Total 5,082 (100%) 4,997 (100%) 4,880 (100%) 6,151 (100%)
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FIGURE 1| Allele frequency of CYP3A4 and CYP3A5 variations by VEP annotation. Total 5,082 variants in CYP3A4 (A,B) and 6,035 variants in CYP3A5 (C,D) are
classified by VEP annotation. VEP annotations are separated by the impact on the coding sequence. Four common variants (MAF>1%) in CYP3A5 are marked
separately in Supplementary Figure S1. Note that stop lost variants were only reported in CYP3A5. VEP: Variant effect predictor.

function is shown to differ between substrates. For instance, the
intrinsic clearance values of CYP3A4*14 and CYP3A4*15
haplotypes were higher compared to wild type for regorafenib
(Li et al,, 2019) and cabozantinib (Lin et al., 2019). By contrast,
intrinsic clearance values were decreased for ibrutinib (Xu et al.,

2018). Moreover, Ketoconazole, a CYP3A4 inhibitor alters the
function of CYP3A4*14 and CYP3A4*15 in vitro (Lin et al., 2019),
which warranted drug-drug interaction plays a significant role in
observed enzyme activity. Besides, the variability of enzyme
activity caused by some of those *-alleles might be too
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moderate to be identified, especially when influenced by diverse
genetic and non-genetic factors in vivo. As a result, most of the
currently reported haplotypes in CYP3A4 and CYP3A5 failed to
be taken into account in clinical practice.

Rare Variants in the CYP3A Locus

As mentioned, genetic variants in the CYP3A genes are related to
CYP3A enzyme activity and, thereby drug response. However,
currently used PGx approaches focusing on the well-known
*-alleles, explain only a small proportion of the overall
variability in the pharmacokinetics of CYP3A substrates. A
recently published twin study revealed that up to 73% of the
variability in CYP3A activity is attributed to genetic factors but
only a part of this could be explained by PGx (Matthaei et al,
2020). This missing heritability suggests a role of more impactful
variants inside and outside the CYP3A locus beyond the currently
known and used haplotypes. For instance, a study showed that
rare variants in CYP3A4 may account for up to 99% of the
functional variability (Kozyra et al., 2017). This proportion is
much higher than some other pharmacogenes, in which rare
variants contribute to 30%-40% of the variability.

Numerous genetic variants have been detected in the CYP3A
locus, as shown in the data from The Genome Aggregation
Database  (gnomAD)  (https://gnomad.broadinstitute.org/).
More than 90% of genetic variants in this locus are rare, with
a MAF of less than 1% (Table 2). In CYP3A4, a total of 5,082
variants are identified. Of these, only 85 are common (MAF >1%)
(Figures 1A,B). All common variants are either located in non-
coding regions or are synonymous variants, which do not result
in amino acid changes. By contrast, all 285 non-synonymous
variants are rare (MAF <1%) of these 218 are missense variants.
In addition, there are 32 and 20 splice region variants and
frameshift variants, respectively, which is more than the rest of
the Variant Effect Predictor (VEP) annotation groups. Finally,
there are over four thousand rare intronic variants. For CYP3A5
(Figures 1A,C,D), a total of 6,151 variants are identified, of which
116 are common. Those common variants were mostly intronic
or in the 3'untranslated region (3'-UTR) except for four variants
which were non-synonymous (Figure 1D; Supplemental Figure
S1). Moreover, 199 missense variants were detected in CYP3A5,
all of which are rare, which is much more than other variant
types. Notably, over 51% of all rare variants in the CPY3A4 and
CYP3A5 genes were detected only in non-European populations.
On the other hand, around 31% of all rare variants are limited to
the European (non-Finnish) population [1576 (31.5%) and 1873
(31.0%) for CYP3A4 and CYP3A5 respectively]. These findings
highlight the differences between ethnicities (https://gnomad.
broadinstitute.org/).

For both CYP3A4 and CYP3A5, intronic variants are the most
common type of variants, accounting for 97% and 69% of the
single nucleotide variants (SNVs), respectively (Table 2).
Although an intron is not translated, intronic variants are still
of importance as they can influence splicing. For example, the
core variant of the CYP3A4*22 allele is a deleterious intronic
variant. Furthermore, rs4646450, located in the CYP3A5 intron
region, was associated with decreased protein expression and
CYP3A4 activity, explaining 3%-5% of the variability (Klein et al.,

Missing Heritability in CYP3A Locus

2012). By contrast, most of common variants do not seem to
cause alterations which can influence CYP3A activity. Moreover,
a genome-wide associated study failed to identify any common
variants related to induced CYP3A4 activity within 310 twins
(Rahmioglu et al., 2013). Therefore, in the CYP3A locus, rare
variants are the most likely to contribute profoundly to the
variability of CYP3A enzyme activity. Notably, the log-
transformed distribution of midazolam clearance showed a
unimodal pattern (Lin et al., 2001), which suggests that the
genetic impact on CYP3A activity could be attributed to a
large number of small impact variants rather than only a few
high impact ones.

Genetic Factors Outside the CYP3A Locus

While variants within the genes in the CYP3A locus can influence
CYP3A enzyme activity, variability in expression can also play a
role. Transcriptional regulation of CYP3A expression has been
reported in many studies (Yuan et al, 2020). Among those
transcriptional factors, two predominant nuclear receptors,
pregnane X receptor (PXR, NRII2) and constitutive
androstane receptor (CAR, NRII3), have been repeatedly
associated with altered CYP3A activity (Lolodi et al, 2017).
These are ligand-activated nuclear receptors which, after being
activated by specific ligands, heterodimerize with the retinoic acid
receptor (RXR; NR2BI). Subsequently, they bind to the 5'
regulation region of target genes at the hormone-responsive
elements (HREs) motif (Chen et al., 2012; Banerjee and Chen,
2013; Tebbens et al., 2018). Several HREs share the typical nuclear
structure, implying the overlapping of downstream genes. But the
expression regulation effect varies between target genes (Timsit
and Negishi, 2007). Studies have shown that CYP3A isoforms are
mainly regulated by PXR (Mbatchi et al., 2018). More functional
nuclear receptor SNVs related to CYP3A activity and CYP3A
substrate metabolism are summarized in Table 3. Moreover, the
interaction between nuclear receptors also plays a role in CYP3A
activity variation. Hepatocyte nuclear factor-4a (HNF4a) is a
liver-enriched nuclear receptor and is associated with CYP3A4
and CYP3A5 expression (Jover et al,, 2001). HNF4« not only
regulates CYP3A4 transcription directly by binding to two
CYP3A4 5' upstream regions featured with direct repeat (DR)
1-type motifs (Tegude et al., 2007) but also serves as a coactivator
that interacts with the other two CYP3A4 regulators PXR and
CAR, resulting in CYP3A4 expression variability. One of the
HNF-4a polymorphisms (rs2071197), combined with PXR*IB,
was related to the concentration-to-dose (C/D) ratios of
carbamazepine, wild type HNF-4«a carriers had higher C/D
ratios in PXR*IB genotype rather than PXR*IB non-carriers
(Saruwatari et al., 2014). Furthermore, the CYP3A4 mRNA
expression in pediatric livers could be better predicted with
the model, including the expression level of HNF-4a, PXR,
CAR, and their heterodimer partner RXRa (Vyhlidal et al,
2006). The interaction of transcriptional factors implies that
the expression of CYP3A is the combined effect of multiple
transcription factors. More CYP3A transcription regulators
were reported recently. For instance, the TSPYL family
suppressed the CYP3A4 expression and one SNV in TSPYLI,
rs3828743, reversed the suppression effect (Qin et al., 2018). In
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TABLE 3 | Summary of single nucleotide variants in CYP3A4 transcriptional factors associated with variability of CYP3A4 activity.

Gene rsiD

NR1I2
(PXR)

rs3814058

rs2276706

rs15623127

rs3814055

rs2472677

rs1523130
rs13085558

rs3732359

rs3732360

rs3814057

rs7643645

rs6785049

NR1I3
(CAR)

rs11265572

rs201406656

1-161229921-
A-G?

NR1I1
(VDR)

rs1544410

rs4516035

rs11568820

MAF
(%)

38.3

58.9

38.3

44.9

58.2
141

73.8

19.6

34.9

58.3

1.0

0.006

0.0007

38.8

39.9

28.1

Location

3'UTR

Intron1

5'UTR

5'UTR

Intron 1

5'UTR
Intron 1

3'UTR

3'UTR

3'UTR

Intron 1

Intron 5

5'flanking

region

Exon7

Exon9

Intron9

Intron1

Intron1

Nucleotide
changes

G>A

C>T

C>T

G>A

C>T/C>G

A>C/A>T

A>G

G>A

G>T

A>G

A>G

G>AG>T/

G>C

A>G

G>A

Effect Sample
Transcriptional CYP3A Substrate size
regulator activity metabolism

Decreased decreased Decreased 300

expression repaglinide
clearance

Decreased decreased No effect on 300 53*

expression everolimus
metabolis*

No change in RNA  Increased No effect on 52* 336

expression CYP3A4 tacrolimus

mRNA clearance
expression*®

Higher PXR No effect or 35

promotor activity decreased 32* 240

(in vitro) tacrolimus
clearance*

Higher mRNA level  Increased* Increased 16
Atazanavir 45* 109*
apparent
clearance”

Decreased 128
Increased 17
(Female)
Increased Increased 53
midazolam
clearance
Increased Increased 53
midazolam
clearance

Increased PXR Affected the 44* 172

mMRNA expression*® concentration of
Voriconazole

Decreased PXR Decreased 16

MRNA expression CYP3A4

mRNA level
2-fold higher ~ Decreased 83
CYP3A4 Tacrolimus
expression clearance
Increased log- 96
transformed
tacrolimus C/D
ratios

Lower CYP3A4

transactivation

effect (in vitro)

Lower CYP3A4

transactivation

effect (in vitro)

Decreased 30
intestine

CYP3A4

expression

Higher 210
CYP3A4

expression

and activity

Decreased Higher 30

transactivation of CYP3A4

VDR promoter expression
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TABLE 3 | (Continued) Summary of single nucleotide variants in CYP3A4 transcriptional factors associated with variability of CYP3A4 activity.

Gene rsiD MAF Location Nucleotide Effect Sample References
(%) changes Transcriptional CYP3A Substrate size
regulator activity metabolism
rs731236 38.7 Exon 9 A>G Decreased 60% No 114 Betts et al. (2015)
VDR gene association
expression with mRNA
expression of
CYP3A4
HNF4a rs2071197 10.8 Intron 1 G>A G allele may Associated with 168 Saruwatari et al. (2014)
diminish HNF-4« CBz
expression concentrations
stratified by
PXR*1B
NR3C1 rs258747 51.4 3'flanking A>G Lower 148 Klein et al. (2012)
(GR) region CYP3A4
activity
PPARA rs4253728 251 Intron3 G>A AA homozygotes Explained 5%  Lower 2-OH- 46* 148 Klein et al. (2012); de
had 1.6-fold lower  CYP3A4 atorvastatin/ Keyser et al. (2013)
PPARA protein activity atorvastatin
level* variation AUC_., ratio in vivo
rs4823613 28.2 Intron3 A>C/A>G Explained 9% 148 Klein et al. (2012)
CYP3A4
activity
variation
ARNT rs2134688 89.1 Intron4 G>A Lower 150 Klein et al. (2012)
CYP3A4
mRNA and
protein
expression
TSPYL1 rs3828743 241 Exon1 G>AG>T Increased Increased 89* Qin et al. (2018)
CYP3A4 abiraterone
expression (In  clearance (in vitro)
vitro) and decrease the
response rate of
abiraterone* (in
vivo)
PGRMC2 rs3733260 18.8 Intron1 G>T Decreased 147 Klein et al. (2012)
CYP3A4
activity
AThere is no rsID available for this variants in the database.
addition to transcriptional regulation, the CYPP450 et al, 2017). Overall, while some genetic factors outside the

oxidoreductase (POR) is reported to influence CYP3A activity
by participating in electron transfer to the CYP3A enzyme
(Masters, 2005). Indeed several studies showed that a common
variant POR*28 (rs1057868) was associated with lower C/D ratios
and higher dose requirement of tacrolimus (de Jonge et al., 2011;
Suetsugu et al., 2019; Nakamura et al., 2020) and cyclosporin A
(Cvetkovi¢ et al,, 2017). In addition, epigenetic regulation of the
CYP3A enzymes is an emerging research field (Tang and Chen,
2015). Several mechanisms have been revealed particularly in
microRNA (miRNA) involved in transcriptional and post-
transcriptional regulation (Wei et al., 2014; Ekstrom et al,
2015). Notably, miRNA not only targets the 3'-untranslated
region (3'UTR) of CYP3A4 directly (Pan et al., 2009) but also
impacts the function of CYP3A4 transcriptional factors, for
instance, HNF4a (Takagi et al., 2010) and VDR (Pan et al,
2009). More mechanisms of epigenetic regulation and related
miRNA have been reviewed but a detailed description is outside
the scope of this manuscript (Dluzen and Lazarus, 2015; Lolodi

CYP3A locus have been linked to the variability of CYP3A4
expression or CYP3A activity, conflicting data are present and for
none of the variants there is sufficient evidence to support clinical
application.

Opportunities for Pharmacogenomics
Studies on CYP3A Missing Heritability

Based on a genome-wide association study (GWAS) consisting of
1,446 kidney transplant recipients, 12.5% of tacrolimus trough
concentration variability can be explained by CYP3A5*3 variants,
including both donor factors and recipient factors. The explained
variability increases to 16.9% after taking CYP3A4*22 into
account (Oetting et al., 2018). This study combined with the
two twin studies mentioned above encourages further exploration
of the missing heritability in CYP3A4. And as discussed in this
review, many of the variants in the CYP3A locus are of unknown
impact and are not included in the clinical *-nomenclature.
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FIGURE 2 | A Framework of future strategy for the CYP3A enzyme activity prediction.

Moreover, not for all known *-haplotypes the impact is known.
This limits the implementation of these variants and haplotypes
in clinical practice. As shown in Figure 2, in our opinion, these
future developments should focus on a unifying approach that
incorporates all (genetic) factors which can influence CYP3A
activity. For example, advanced prediction models, e.g., neural
network models, which incorporate rare variants, expression
regulation and non-genetic contributions, are expecting as a
promising strategy for future developments.

However, currently studies in genetic variants detection and
interpretation have inevitable limitations. GWAS analysis
identified some genetic variants associated with the variability
of CYP3A4 activity. However, by design GWAS analyses exclude
rare variants and sometimes even low-frequency variants
(MAF<5%) for reasons of quality control. As a result, GWAS
is incapable to identify rare variants associated with clinical
outcomes. Moreover, GWAS analysis generally relies on SNV
screening array, which has difficulty detecting variants in
complex genes and cannot detect novel variants. However,
these types of variants are abundantly present in the
CYP3A locus.

The complexity of the CYP3A locus encourages the
application of advanced sequencing technologies. First of all,
next-generation sequencing (NGS) provides us with almost all
of the SNVs in the CYP3A locus. However, NGS generally relies
on short reads (100-200bp), which makes it limited in
characterizing complex regions extending that length.
Moreover, short-read sequencing still has limitations in
exploring the structural variation and providing phasing
information directly (Russell and Schwarz, 2020; van der Lee
et al., 2020). Besides NGS, long-read sequencing is a promising
solution for comprehensive genetic information collection
(Ameur et al,, 2019). With long-read sequencing, all single-
nucleotide variants and most of the structural variants can be
detected and those variants can often be phased directly, which is
crucial for phenotype prediction (van der Lee et al., 2020). The
accuracy and size of phased haploblocks of long-read sequencing

seems most prominent in the complex pharmacogenes. This
information can also be used to optimize models to predict
drug response by taking phasing and full gene sequencing into
account. Indeed, recently a continuous scale model based on full
gene variants data explored by long-read sequencing and neural
network improved the explanation of CYP2D6 activity variability
from 54% to 79% compared with the conventional phenotype
classification (van der Lee et al., 2021).

Nonetheless, these sequencing technologies come with higher
costs and significantly more data to analyze, resulting in
consideration of cost-benefit balance and the challenging of
novel variant interpretation. To assess the individual impact of
a large number of low frequency variants, and in the absence of in
vivo data, several in silico tools, including SIFT, PolyPhen-2, and
CADD have been developed. However, the predicted effect of
variants differed among in silico tools (Gulilat et al., 2019).
Moreover, compared with in vitro models, the accuracy of
those in silico prediction only reaches up to 80% for
pharmacogenetic purposes (Han et al.,, 2017). SIFT, PolyPhen-
2 show a higher false-negative rate in predicting gain-of-function
variants compared to loss-of-function (Flanagan et al., 2010).
Remarkably, neural network models have been developed to
predict the unknown function *-alleles in CYP2D6. This model
explains 47.5% of unknown function variants in *-alleles with
88% accuracy (Mclnnes et al., 2020), which encouraged the
further implementation of neural network based approaches.
By contrast, in vitro models provide us a better understanding
of the effects of variants, especially for rare variants (Kumondai
et al,, 2021). However, it is a costly and time-consuming process
to establish in vitro models for each individual CYP3A variant,
which can probably never be realized and hampers their clinical
implementation. Furthermore, by-design an in vitro system is not
useful to assess the effect of variants located in non-coding
regions, which occur frequently in the CYP3A locus.

Given the broad substrate spectrum of drugs affected by the
CYP3A enzymes and the presence of substrate-specific effects,
functional prediction based on in vitro data with only a limited
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number of substrates are controversial. Therefore, in vivo
evidence is considered the gold-standard to establish if
variants have a significant effect on enzyme activity, especially
for non-coding and synonymous SNVs. For novel missense
SNVs,  drug-related clinical information is  highly
recommended. However, particularly for the frequently
occurring low-frequency non-synonymous variants in the
CYP3A locus, this evidence is hard to generate. Indeed, quite
a few studies failed to detect functional variants or identify their
associations with clinical outcomes (Belmonte et al., 2018; Riera
et al., 2018). Moreover, lacking of clinical significance prevent
their further study only based on in vitro evidence.

Conventional drug metabolizer phenotypes distinguish three or
four metabolizer phenotype groups based on a limited number of
variants. This classification assumes a fixed effect of each variant,
where the predicted phenotype depends on the combined effects of
those several well-known variants. This same method is used for
almost all CYP-enzymes with in the end only five phenotype
categories (poor-, intermediate-, normal-, rapid- and ultra-rapid
metabolizers) (Caudle et al, 2017). However, it has been
demonstrated that enzyme activity is not categorical but
continuous. As a result, the conventional variant to metabolizer
phenotype interpretation which only includes a limited number of
well-known variants with fixed effects inevitably leads to missing
information. Previous studies have shown that, at least for CYP2D6, a
continuous model is able to better explain the enzyme activity
(McInnes et al.,, 2020; van der Lee et al., 2021). It can be expected
that the same principle holds true for CYP3A as well. Furthermore, in
the CYP3A locus more than one coding isoforms with considerable
overlapped substrate specificity contributes to the overall
CYP3Aenzyme activity, complicating the predictions even more.
As mentioned previously, CYP3A mediated clearance shows a
unimodal distribution which does not fit the current categorical
phenotype system. In the current system, the function of variants that
cause slight or moderate CYP3A activity variability could be obscured
by variants that have predominant effects, which further complicates
the analysis of the contribution of every variant in every CYP3A gene.
To deal with the complexity of the CYP3A locus, the use of artificial
intelligence (AI) is an opportunity. Al models could include all
variants detected to predict both variant effect as well as overall
enzyme activity without the use of the categorical models (Zou et al,,
2019).
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