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Background: The inflammatory response in the tumor immune

microenvironment has implications for the progression and prognosis in

glioma. However, few inflammatory response-related biomarkers for lower-

grade glioma (LGG) prognosis and immune infiltration have been identified. We

aimed to construct and identify the prognostic value of an inflammatory

response-related signature, immune infiltration, and drug targets for LGG.

Methods: The transcriptomic and clinical data of LGG samples and

200 inflammatory response genes were obtained from public databases. The

LGG samples were separated into two inflammatory response-related subtypes

based on differentially expressed inflammatory response genes between LGG

and normal brain tissue. Next, inflammatory response-related genes (IRRGs)

were determined through a difference analysis between the aforementioned

two subtypes. An inflammatory response-related prognostic model was

constructed using IRRGs by using univariate Cox regression and Lasso

regression analyses and validated in an external database (CGGA database).

ssGSEA and ESTIMATE algorithms were conducted to evaluate immune

infiltration. Additionally, we performed integrated analyses to investigate the

correlation between the prognostic signature and N 6-methyladenosine mRNA

status, stemness index, and drug sensitivity. We finally selected MSR1 from the

prognostic signature for further experimental validation.

Results: A total of nine IRRGs were identified to construct the prognostic

signature for LGG. LGG patients in the high-risk group presented

significantly reduced overall survival than those in the low-risk group. An

ROC analysis confirmed the predictive power of the prognostic model.

Multivariate analyses identified the risk score as an independent predictor for

the overall survival. ssGSEA revealed that the immune status was definitely
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disparate between two risk subgroups, and immune checkpoints such as PD-1,

PD-L1, and CTLA4 were significantly expressed higher in the high-risk

group. The risk score was strongly correlated with tumor stemness and

m6A. The expression levels of the genes in the signature were significantly

associated with the sensitivity of tumor cells to anti-tumor drugs. Finally, the

knockdown of MSR1 suppressed LGG cell migration, invasion,

epithelial–mesenchymal transition, and proliferation.

Conclusion: The study constructed a novel signature composed of nine IRRGs

to predict the prognosis, potential drug targets, and impact immune infiltration

status in LGG, which hold promise for screening prognostic biomarkers and

guiding immunotherapy for LGG.

KEYWORDS

lower-grade glioma, inflammatory response, immune characteristics, prognostic
signature, drug targets

Background

Gliomas are the most frequent intracranial tumors in the

central nervous system (CNS) and exhibit a dismal prognosis

(Ostrom et al., 2021). According to the WHO histopathological

grading system, lower-grade gliomas (LGGs) include grade II and

III astrocytomas, oligodendrogliomas, and oligoastrocytomas

(Brat et al., 2015). Although the prognosis of LGG patients is

generally good, the nature of invasiveness and malignant

progression makes the treatment of LGG challenging (Yue

et al., 2012). Currently, the main treatment for LGG patients

consists of surgery followed by radiotherapy and adjuvant

chemotherapy. However, the existing therapies for LGG are

ineffective and frequently induce hypermutated recurrent

neoplasms (Johnson et al., 2014), highlighting the need for a

novel understanding of molecular mechanisms underlying LGG.

Inflammation is closely related to tumor progression. As

early as 1863, Rudolf Welshaw first described inflammatory cells

infiltrating the tumor (“lymphoreticular infiltration”) and

hypothesized that the cancer was triggered by infection and

chronic inflammation (Balkwill and Mantovani, 2001). In

recent years, the crucial role of inflammation in the

occurrence and development of tumors has become a research

hotspot (Grivennikov et al., 2010; Greten and Grivennikov,

2019). Growing evidence suggests that tumor-promoting

inflammation is a chief hallmark of neoplasm (Hanahan and

Weinberg, 2011; Hanahan and Coussens, 2012). Systemic

inflammation markers, such as C-reactive protein,

neutrophil–lymphocyte ratio, and platelet–lymphocyte ratio,

have been identified as pivotal parameters that can forecast

the cancer prognosis in multiple cancers (Wang et al., 2016),

including glioma (Lee et al., 2020). However, the levels of

neutrophils, lymphocytes, and platelets in peripheral blood

were insufficient to evaluate alterations in inflammatory

microenvironments within a neoplasm tissue. Like other

malignancies, the initial development of gliomas has also been

shown to be closely associated with the inflammatory response

and immune state (Michelson et al., 2016); however, the potential

mechanism of the inflammatory response in glioma remains

unknown.

In recent years, a series of potential diagnostic or predictive

biomarkers, as well as prognostic signatures or subtypes, for

glioma have been identified based on public databases, including

The Cancer Genome Atlas (TCGA), Chinese Glioma Genome

Atlas (CGGA), and Gene Expression Omnibus (GEO). In LGG,

Ni et al. (2020) have found 25 tumor immune-related prognostic

genes, which provide the basis for predicting clinical outcomes in

this disease. Another research established an immune-related

radiosensitivity prognostic signature that could effectively

predict the prognosis of LGG patients receiving radiotherapy

(Yan et al., 2022). Studies have identified immune-related subsets

in diffuse glioma (Zhou et al., 2020), LGG (Yang et al., 2022), and

isocitrate dehydrogenase (IDH) wild-type LGG (Wu et al., 2020),

which provided potential immunotherapy targets for different

types of glioma. Wang et al. (2021) found that REXO2 and

RUNX1 contributed to the heterogeneity and prognosis of the

IDH wild-type LGG. However, the relationship between an

inflammatory response and the LGG prognosis remains

largely unexplored. A comprehensive analysis was conducted

to explore inflammatory response-related prognostic makers in

LGG to gain an insight into the role of the inflammatory response

in tumorigenesis and development.

The present study acquired the mRNA expression profiles

and corresponding clinical data of the LGG patients from

public databases. Then, we constructed two inflammatory

response-related subtypes based on differentially expressed

inflammatory response genes (DE-IRGs) between the LGG

samples and normal brain tissues from the TCGA and

Genotype-Tissue Expression Project (GTEx) cohorts,

respectively. By using differential expression analyses in

these two subtypes, univariate Cox regression and the least

absolute shrinkage and selection operator (LASSO) Cox
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regression analysis, we finally established a prognostic

signature and validated the reliability and stability of this

model through the CGGA cohort. A functional enrichment

analysis was also carried out to investigate its potential

mechanisms. Furthermore, we also investigated the

relationships between risk scores and immune

characteristics. Finally, we analyzed the association of

prognostic gene expression with tumor stemness, N6-

methyladenosine (m6A) mRNA status, and cancer

chemoresistance to bring a novel perspective on predicting

the prognosis and improving treatment strategies for patients

with LGG; and identified MSR1, associated with the

migration, invasion, epithelial–mesenchymal transition

(EMT), and proliferation of LGG cells, as a potential drug

target.

Materials and methods

Data collection

The study design is shown in the flowchart (Figure 1). The

RNA sequencing (RNA-seq) data with the format of

fragments per kilobase of per million (FPKM) and the

FIGURE 1
The overall procedure flow chart illustrating the data collection and analysis process.
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corresponding clinical information of LGG patients were

obtained from the TCGA database (https://portal.gdc.

cancer.gov). The RNA-seq data in normal brain tissues

were downloaded from the database of the GTEx on the

UCSC Xena website (https://xena.ucsc.edu/). The validation

datasets, including the RNA-seq and corresponding clinical

data of LGG, were downloaded from the CGGA database

(http://www.cgga.org.cn/). Inflammatory response genes

(IRGs, listed in Supplementary Table S1) were retrieved in

the molecular signatures database (MSigDB, http://www.gsea-

msigdb.org/gsea/msigdb/index.jsp).

Identification of differentially expressed
inflammatory response genes between
normal and cancer samples

To compare with GTEx data, gene expression RNA-seq of

LGG in TCGA was also downloaded from the UCSC Xena

website. Both profiles were re-computed from raw RNA-Seq

data by the UCSC Xena project and converted to the format

as log2 (FPKM+1). The “normalizeBetweenArrays” function

in the “limma” package of R was performed for the quantile

normalization of combining the TCGA and GTEx data. The

DE-IRGs were identified using the “limma” R package with a

false discovery rate (FDR) < 0.05 and |log2FC| ≥ 2. A

protein–protein interaction (PPI) network for the DE-

IRGs was constructed from Search Tool for the Retrieval

of Interacting Genes (STRING), v11.0 (https://string-db.org/

). The correlation network of the DE-IRGs was displayed

using “reshape2” and “igraph” R packages.

Clustering analysis based on differentially
expressed inflammatory response genes

We then performed a consensus clustering analysis with

all LGG patients in the TCGA cohort based on the DE-IRGs

to explore the connections between the expression of the DE-

IRGs and LGG subtypes, leading to distinct molecular

characteristic clinical outcomes. A consensus clustering

analysis was performed using the “ConsensusClusterPlus”

R package and 1,000 repetitions were performed to guarantee

the stability of our classification. The highest intragroup

correlations and the lowest intergroup correlations were

shown with clustering variable (k) = 2 when k increased

from 2 to 10. The overall survival (OS) time between the two

clusters was compared with the “survival” and “survminer” R

packages. The clinical characteristics, such as age, gender,

grade, and molecular features including IDH1 status, 1p/19q

codeletion, MGMT promoter status, and ATRX status

between the two clusters, were displayed in a heatmap

using the “pheatmap” R package.

Construction and validation of an
inflammatory response-subtype-related
gene prognostic signature

The differentially expressed genes between the

inflammatory response-related subtypes, namely,

inflammatory response subtype-related genes (IRRGs), were

selected by the “limma” R package with FDR <0.05 and |

log2FC| ≥ 2 in the TCGA cohort. Samples with follow-up

time >30 days were kept. The univariate Cox regression

analysis based on IRRGs was performed via the “survival”

R package with p < 0.001 as the criterion to select prognostic

IRRGs. Based on these prognostic IRRGs, the LASSO Cox

regression analysis was then utilized to narrow down the

candidate genes with a tenfold cross-validation and

construct the prognostic model using the “glmnet” R

package. The risk scores of the patients were calculated by

the formula as follows: Risk Score = ∑i
1Coef(i)*Exp(i)where

Coef and Exp represented the coefficient and the expression

level of every retained gene in the TCGA cohort, respectively.

Using the median risk score of the TCGA cohort as the cutoff,

patients in the TCGA and CGGA cohorts were sorted into

high-risk and low-risk groups, respectively.

We performed a principal component analysis (PCA) and

a t-distributed Stochastic Neighbor Embedding (t-SNE)

analysis based on the expression levels of the genes in the

prognostic signature to explore the distribution of different

groups in the two cohorts with “Rtsne” and “ggplot2” R

packages. The Kaplan–Meier (KM) analysis was

implemented between the high- and low-risk groups via

“survival” and “survminer” R packages in the train and

validation cohorts. We applied time-dependent receiver

operating characteristic (ROC) curves to examine the

efficiency of the prognostic signature by “survival”,

“survminer”, and “timeROC” R packages in the two

cohorts. Furthermore, univariate and multivariate Cox

regression analyses were performed in the two cohorts to

explore the independence of the risk score and other clinical

characteristics including grade, gender, age, IDH1 status, 1p/

19q codeletion, and MGMT promoter status using the

“survival” R package. A nomogram was also constructed

integrating the prognostic signature to predict 1, 3, and 5-

year OS of LGG patients in the TCGA cohort.

Immune-related analysis in The Cancer
Genome Atlas and the Chinese glioma
genome atlas cohort

We performed a single-sample gene set enrichment

analysis (ssGSEA) to calculate enrichment scores for each

sample according to 29 immune data sets including immune

cell types and immune-related functions obtained from
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Bindea’s study (Bindea et al., 2013) using the “GSVA”,

“limma” and “GSEABase” R packages. Scores on the

immune cell and immune functions between the high- and

low-risk groups were compared in the two cohorts via

“limma”, “reshape2” and “ggpubr” R packages. Moreover,

based on the ESTIMATE algorithm, ESTIMATE score,

immune score, stromal score, and tumor purity were

calculated, and the relationship between these scores and

the risk score were evaluated to further explore the

relationship between the signature and tumor

microenvironment using “limma”, “ggplot2”, “ggpubr”,

and “ggExtra” R packages. The ssGSEA enrichment scores

and scores based on the ESTIMATE algorithm between the

high- and low-risk groups were shown using “pheatmap” and

“ggpubr” in R package. Given the importance of checkpoint

inhibitor-based immunotherapies, the expression of immune

checkpoints including SIGLEC15, TIGIT, CD274, HAVCR2,

PDCD1, CTLA4, LAG3, and PDCD1LG2 were also

compared between the high- and low-risk groups by

“ggplot2” and “ggpubr” R packages.

Functional enrichment analysis and
chemotherapy sensitivity analysis

The differentially expressed genes (DEGs) between the

high- and low-risk groups were filtered with FDR <0.05 and |

log2FC| ≥ 1.585. Gene Ontology (GO), including the

biological process (BP), cellular component (CC), and

molecular function (MF) categories, and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis were

conducted based on the DEGs between the high- and low-risk

groups with “clusterProfiler”, “org.Hs.eg.db”, “enrichplot”,

and “ggplot2” R packages.

The drug sensitivity data of NCI-60 cancer cell lines were

downloaded from the CellMiner website (https://discover.nci.nih.

gov/cellminer), and 218 drugs approved by the FDA were selected.

The Pearson correlation analysis was implemented to explore the

relationship between prognostic gene expression and drug sensitivity.

Stemness index analysis and m6A-related
gene analysis

The DNA methylation-based stemness indices (mDNAsi)

and the mRNA expression-based stemness index (mRNAsi) for

TCGA were acquired by machine learning from a previous

research study (Malta et al., 2018), and the correlation

analysis between risk score and cancer stemness index was

performed using the Spearman correlation test. In addition,

the expression levels of the m6A-related genes were compared

between the high- and low-risk groups according to a previous

study (Li et al., 2019).

Cell culture and real-time quantitative
polymerase chain reaction

Human glioma cell lines (SHG44 and HS683) used in the

present study were drawn from Xiangya Medical School of

Central South University (Changsha, China), maintained in a

DMEM medium (Invitrogen) containing 10% fetal calf serum

(Gibco) and incubated in a humidified atmosphere with 5% CO2

at 37°C. Small interfering RNAs (siRNAs) targeting MSR1

(Product number: siBDM0001) were purchased from

Guangzhou RiboBio Co., Ltd. (Guangzhou, China). According

to the manufacturer’s instructions, Lipofectamine 2000 (Thermo

Fisher Scientific) was used for siRNA transient transfection. Total

RNA was harvested from cells using the Trizol lysis method and

reverse transcribed into complementary DNA (cDNA) using the

TransScript All-in-One First-Strand cDNA Synthesis SuperMix

for qPCR kit (Transgen, China). According to the manufacturer’s

protocol, qRT-PCR was performed using the SYBR GreenMaster

Mix (Vazyme) to detect the mRNA expression levels. The 2−△△Ct

method was used to calculate relative gene expression levels. The

primers were synthesized and designed by Sangon Biotech

(Shanghai, China) and their detailed sequences are given

below: MSR1, Forward, 5′-GCAGTGGGATCACTTTCACAA-
3′, Reverse, 5′-AGCTGTCATTGAGCGAGCATC-3’; β-actin,
forward, 5′-CATGTACGTTGCTATCCAGGC-3′, Reverse, 5′-
CTCCTTAATGTCACGCACGAT-3’. The experiments were

repeated thrice with β-actin as the housekeeping control gene.

Transwell migration and invasion assays

Transwell migration and invasion assays were conducted as

previously described (Tang et al., 2014). Each experiment was

replicated thrice with three wells per group per assay.

Western blot

The Western blot assay was performed as described

previously. In short, 50 μɡ of proteins were run on a 10%

SDS-PAGE gel and then transferred onto Polyvinyldifluoride

(PVDF) membranes (Millipore). 5% non-fat milk in a TBST

buffer was used for 1 h to block the membranes. After that, the

membranes were incubated with primary antibodies at 4°C

overnight, and then with secondary antibodies at room

temperature for 60 min. Primary antibodies included mouse

anti-beta actin (cat. no. ab8226; dilution, 1:1,000; Abcam),

rabbit anti-ZO-1 (cat. no. 21773-1-AP; dilution, 1:2,000;

Proteintech), rabbit anti-vimentin (cat. no. 10366-1-AP;

dilution, 1:2,000; Proteintech). Secondary antibodies consisted

of horseradish peroxidase (HRP)-conjugated goat anti-rabbit

and goat anti-mouse IgG (dilution, 1:10,000; Sigma). Blots

were developed with a chemiluminescent HRP substrate (Cat.
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no. WBKLS0500; Millipore) and visualized in a Bio-Rad

Universal Hood II machine.

Cell proliferation assay

Cell proliferation was determined by the Cell Counting

Kit-8 (CCK-8) assay according to the manufacturer’s

protocol. Briefly, we plated cells at a concentration of 1 ×

103 cells per well in 96-well plates following transfection for

48 h. At each observed time point, the medium in the well was

removed and replaced with 100 μl CCK8 solution (10 µl

CCK8:100 µl culture medium). After incubation for 2 hours

at 37°C, we measured the optical density (OD) of the

supernatant in each well at wavelengths of 450 nm.

Arsenic trioxide sensitivity assay

The sensitivity of glioma cells (U251 and T98G) to arsenic

trioxide was measured with CCK-8 assay and 5-Ethynyl-2′-
deoxyuridine (EdU) staining. For the CCK-8 assay, after 24 h

of transfection, the transfected cells were seeded in 96-well

plates (5 × 103 cells per well) and then incubated overnight to

enable the attachment. The medium without glioma cells was

used as a blank control. Then, the transfected cells were

treated with arsenic trioxide at a concentration of 4 μM for

24, 48, and 72 h. Lastly, the cell viability was assessed using the

CCK-8 assay described previously. This formula was used to

calculate cell viability: Cell viability = (ODt—ODt-blank)/

(OD0h—OD0h-blank). As for the EdU staining, after 24 h of

transfection, the transfected cells (5 × 104 cells per well) were

cultured in 96-well plates overnight. Following the attachment

of the cells, they were cultured with arsenic trioxide at a

concentration of 4 μM for 48 h. After that, the cells were

incubated with an EdU solution at a concentration of

50 µM for 3 hours at 37°C. Next, we followed the standard

staining procedure (Product number: C10310-3, Guangzhou

RiboBio Co., Ltd.). Cell nuclei were stained with

Hoechst33342 (Guangzhou RiboBio Co., Ltd.). The

percentage of EdU-positive cells was calculated by EdU-

positive cell count/Hoechst-stained cell count × 100%.

Statistical analysis

All statistical analyses were accomplished by using R version

4.0.2 (https://www.r-project.org). The correlation was assessed

by using Pearson correlation analysis. OS was detected by using

the KM method and evaluated by the log-rank test. Cox

regression analysis was used for determining survival status.

The two groups were compared using a student’s t-test. Two-

tailed p < 0.05 was considered statistically significant.

Results

Identification of differentially expressed
inflammatory response genes and
classification of LGG patients in the
Cancer Genome Atlas cohort

We explored the expression of the 200 IRGs between

529 LGG samples and 1,152 normal brain samples, and

54 IRGs were differentially expressed, with 46 upregulated

and 8 downregulated in LGG samples. The PPI analysis

detected the interactions of these DE-IRGs with an interaction

score set at 0.9 and revealed that C3AR1, FPR1, LPAR1, GPR183,

APLNR, GNAI3, TLR2, and CYBB were hub genes (Figure 2A).

The correlation network of these DE-IRGs is showed in

Figure 2B.

The consensus clustering analysis was performed

according to the 54 DE-IRGs in the LGG samples to

investigate the connections between the expression of the

DE-IRGs and LGG subtypes. The number of clusters was

represented by the letter “k” and consensus matrices showed

that the intergroup correlations were the highest and the

intragroup correlations were low with k = 2 (Figure 2C). It

was observed that cluster 1 had a significantly poorer OS than

cluster 2 (Figure 2D). Moreover, we compared the clinical

manifestations including age, gender, grade, and molecular

characteristics such as IDH1 status, 1p/19q codeletion,

MGMT promoter status, and ATRX status between the

two clusters. It was observed that patients with wild-type

IDH1, non-codel 1p/19q, unmethylated MGMT promoter,

and mutant ATRX status were statistically prominent in

cluster 1 (Supplementary Figure S1).

Development and validation of a
prognostic signature in The Cancer
Genome Atlas and Chinese glioma
genome atlas cohorts

The genes between the two clusters were compared, and

183 DEGs were identified with 71 genes upregulated and

112 genes downregulated in cluster 2 compared to cluster 1 in

the TCGA cohort (Supplementary Table S2). The univariate Cox

regression analysis was applied to screen survival-related genes

based on the 183 DEGs, and 74 of them were correlated with OS

(Figure 3A). After the LASSO Cox regression analysis, nine genes

were selected based on the optimum λ value and constructed as a
prognostic signature (Figures 3B, C). The risk score was

calculated as follows: risk score = (0.0082 × expression of

PLA2G2A) + (0.0105 × expression of MSR1) + (0.0611×

expression of ABCC3) + (0.1737× expression of

COL8A1)—(0.0052 × expression of SVOP) + (0.0091×

expression of CXCL10) + (0.0365× expression of NAPSB) +
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(0.0178× expression of SAA1) + (0.1288 × expression of

CHI3L1).

Based on the median score in the TCGA cohort as the threshold,

the LGG patients in the TCGA and CGGA cohorts were divided into

low-risk and high-risk groups separately. TheKMcurve indicated that

a shorter survival time or lower survival probability of patients was

shown in the high-risk group compared to the low-risk group with 1,

3, and 5-year AUC values of 0.881, 0.836, and 0.712, respectively, in

the TCGA cohort (Figures 4A, B). The distribution of risk scores and

survival status of the LGG patients was also illustrated. The LGG

patients’ risk of death increased, and survival probability decreased

along with the risk score rising in the TCGA cohort (Figures 4C, D).

The PCA and t-SNE analyses showed that LGG patients in the high-

and low-risk groups were significantly separated into two clusters

according to the expression of the nine prognostic genes in the TCGA

dataset (Figures 4E,F).

Similarly, we validated the risk prediction formula in the

CGGA cohort and identified that LGG patients with high-

risk scores had a shorter survival time (Figure 4G). The ROC

curve analysis displayed that the AUC values corresponding

to 1, 3 and 5-year survival times were 0.750, 0.785, and

0.771 in the CGGA cohort (Figure 4H). With increasing risk

scores, the LGG patients’ survival time decreased, and the

number of deaths escalated (Figures 4I, J). Additionally, the

FIGURE 2
Identification of the DE-IRGs and sub-clusters based on these genes. (A) A PPI network showing the interactions of the DE-IRGs (interaction
score = 0.9). Circles in red denote upregulated genes, and green symbolizes downregulated genes in the LGG samples compared with normal brain
tissues. (B) The correlation network of the DE-IRGs. The red line showed a positive correlation, and the blue line showed a negative correlation. The
depth of the color reflects the strength of the relevance. (C) Patients with LGG were classified into two clusters according to the consensus
clustering matrix (k = 2). (D) Kaplan–Meier curves for the OS of patients between the two clusters. DE-IRGs: differentially expressed inflammatory
response genes; PPI: protein–protein interaction; LGG: lower-grade glioma; OS: overall survival.
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PCA and t-SNE analyses performed on the CGGA cohort

confirmed that the low-risk and high-risk groups’ patients

were distributed in different directions (Figures 4K, L).

Independent prognostic value of the
signature

Univariate and multivariable Cox regression analyses were

performed in the TCGA and CGGA cohorts to evaluate whether

the risk score could serve as an independent prognostic factor.

The univariate Cox regression analysis revealed that risk score,

age, grade, IDH1 status, 1p/19q codeletion, and MGMT

promoter status could be taken as prognostic factors in the

TCGA (Figure 5A) and CGGA cohorts (Figure 5B). The

multivariable Cox regression analysis revealed that risk score,

as well as age, grade, and 1p/19q codeletion, could be taken as

independent prognostic factors in the TCGA cohort (Figure 5C),

and risk score, as well as grade and 1p/19q codeletion, could be

considered independent prognostic factors in the CGGA cohort

(Figure 5D). In addition, the relationship between the expression

of genes in the signature and clinical characteristics is displayed

FIGURE 3
Construction of the prognostic IRRG signature. (A) Univariate Cox regression analysis of OS based on IRRGs in the TCGA cohort. (B) LASSO
regression of the 74 OS-related IRRGs. (C) Cross-validation for tuning the parameter in the LASSO regression. IRRG: inflammatory response
subtypes-related gene; OS: overall survival; TCGA: The Cancer Genome Atlas; LASSO: the least absolute shrinkage and selection operator.
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FIGURE 4
Validation of the prognostic IRRG signature. (A) KM curves for the OS of patients with LGG in the high- and low-risk groups in the TCGA cohort.
(B) The ROC curve at 1-, 3-, 5-years for survival prediction of the signature in the TCGA cohort. Distribution of the risk score (C) and survival status (D)
for each patient in the TCGA cohort. PCA plot (E) and t-SNE analysis (F) based on the nine prognostic signature genes in the TCGA cohort. (G)
Similarly. KM curves for the OS of each patient in the CGGA cohort. (H) The ROC curve analysis of the risk score signature in the CGGA cohort.
Distribution of the risk score (I) and survival status (J) for each patient with LGG in the CGGA cohort. PCA plot (K) and t-SNE analysis (L) based on the
nine prognostic signature genes in the CGGA cohort. IRRG: inflammatory response-related gene; KM: Kaplan–Meier; OS: overall survival; LGG:
lower-grade glioma; TCGA: The Cancer Genome Atlas; ROC: receiver operating characteristic; PCA: principal component analysis; t-SNE:
T-distributed Stochastic Neighbor Embedding; CGGA: Chinese Glioma Genome Atlas.
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FIGURE 5
Assessment of the risk scores and the predictive value of clinical variables. Forest charts of the risk scores combining common clinical variables
based on the univariate Cox regression analysis in the TCGA cohort (A) and the CGGA cohort (B). Forest charts of the risk scores combining common
clinical variables based on themultivariate Cox regression analysis in the TCGA cohort (C) and the CGGA cohort (D) showed the significance and HR
values of risk scores and clinical characters. (E) Heatmap presented the association of risk and clinical information based on the nine-gene
signature. **p < 0.01, ***p < 0.001. TCGA: The Cancer Genome Atlas; CGGA: Chinese Glioma Genome Atlas; HR: hazard ratio.
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in Figure 5E. The nomogram presented the contribution of each

influencing factor and revealed that the risk score was the leading

factor for predicting OS compared to other factors (Figure 6).

Immune status and tumor
microenvironment analysis

To explore the correlation between risk score and immune

status, the enrichment scores of 16 types of immune cells and

13 types of immune-related pathways based on ssGSEA were

compared between the high- and low-risk groups in the TCGA

and CGGA cohorts. Among the immune cell terms, aDCs,

B cells, CD8+ T cells, iDCs, macrophages, pDCs, T helper

cells, TIL, and Treg were generally and significantly of high

abundance in the high-risk group than in the low-risk group; in

contrast, the abundance of NK cells was significantly higher in

the low-risk group than in the high-risk group in the TCGA

cohort (Figure 7A). Similarly, as depicted in Figure 7B, the

abundance of aDCs, B cells, CD8+ T cells, DCs, iDCs,

macrophages, mast cells, pDCs, T helper cells, Th2 cells, TIL,

and Treg were significantly higher in the high-risk group while

Th1 cells were expressed significantly higher in the low-risk

group in the CGGA cohort. Additionally, all the 13 immune-

related pathways were significantly upregulated in the high-risk

group in the two cohorts (Figures 7C, D). In the analysis of the

immune microenvironment, the correlation between the risk

score and immune infiltration revealed that the ESTIMATE

score, immune score, and stromal score were positively

relative to the risk score in the TCGA cohort, and tumor

purity was negatively relative to the risk score (Figures 8E–H).

The ssGSEA enrichment scores and scores based on the

ESTIMATE algorithm between the high- and low-risk groups

are shown in the heatmap (Figure 7I). Moreover, the expression

of immune checkpoints including SIGLEC15, CD274, HAVCR2,

PDCD1, CTLA4, and PDCD1LG2 were all higher in the high-

risk group than in the low-risk group in the TCGA cohort

(Figure 7J).

Biological function and cancer cell
sensitivity to chemotherapy

For a further study of the gene functions between the high-

and low-risk groups, 43 DEGs were selected between these two

groups, with 38 genes upregulated and five genes

downregulated in the high-risk group (Supplementary

Table S3). The GO enrichment analysis indicated that the

DEGs were mainly correlated with the cellular response to

interferon-gamma, trans-Golgi network membrane, and

FIGURE 6
The nomogram for predicting 1-, 3-, and 5-year survival outcomes of LGG patients integrating prognosticmarkers including grade, gender, age,
IDH1 status, 1p/19q codeletion, ATRX status, and MGMT promoter status in the TCGA cohort. LGG: lower-grade glioma; TCGA: The Cancer Genome
Atlas.
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peptide binding (Figure 8A). The KEGG enrichment analysis

showed that the DEGs were primarily associated with herpes

simplex virus 1 infection (Figure 8B).

We obtained top 16 drugs with the maximum correlation

coefficient by constructing the conjunction between the

expression level of prognostic IRRGs in the signature and

sensitivity of chemotherapeutic agents. The results showed

that the expression of SVOP was positively correlated with the

sensitivity of Isotretinoin, Fluphenazine, Imiquimod,

Megestrol acetate, and Denileukin Diftitox Ontak but

negatively correlated with the sensitivity of Irofulven. The

expression of ABCC3 was negatively correlated with the

sensitivity of arsenic trioxide, DACARBAZINE, and

Carmustine. In addition, the expression of SAA1 was

positively correlated with the sensitivity of Dasatinib and

Midostaurin but negatively correlated with the sensitivity of

FIGURE 7
Immune-related analysis in the TCGA and CGGA cohorts. Comparison of the ssGSEA scores of immune cells between low- and high-risk
groups in the TCGA cohort (A) and the CGGA cohort (B). Comparison of the ssGSEA scores of immune-related pathways between low- and high-risk
groups in the TCGA dataset (C) and the CGGA dataset (D). The relationship between the risk score and ESTIMATE score (E), immune score (F), stromal
score (G), and tumor purity (H) in the TCGA cohort (I) Heatmap of the ssGSEA scores integrating the tumor purity, ESTIMATE score, immune
score, and stromal score of each sample calculated by ESTIMATE’s algorithm between the high- and low-risk groups in the TCGA dataset. (J)
Comparison of the expression level of immune checkpoints among high- and low-risk groups in the TCGA dataset. *p < 0.05, **p < 0.01, ***p <
0.001. TCGA: The Cancer Genome Atlas; CGGA: Chinese Glioma Genome Atlas; ssGSEA: single-sample gene set enrichment analysis; ESTIMATE:
Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data.
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Tamoxifen. What’s more, the higher the expression of

CXCL10 in cancer cells, the stronger the cancer cells’

sensitivity to LDK-378, brigatinib, alectinib, and PF-

06463922 (Figure 9).

Next, we verified whether the knockdown of ABCC3 was

associated with the increased sensitivity of glioma cells to

arsenic trioxide. We treated U251 and T98G cells with arsenic

trioxide at a concentration of 4 μM before the CCK-8 assay

and found that the knockdown of ABCC3 markedly enhanced

the repressive effect of arsenic trioxide on cell viability of

U251 and T98G cells, respectively (Figures 10A,B). Likewise,

the EdU assay showed a significantly lesser percentage of EdU-

positive cells in the Si-ABCC3 group compared with the

control group in both U251 and T98G cells after being

treated with arsenic trioxide for 48 h (Figures 10C,D). The

results suggested that the knockdown of ABCC3 elevated the

chemosensitivity of glioma cells to arsenic trioxide.

Correlation of the prognostic signature
with the stemness index and m6A

The mRNAsi and the mDNAsi have been applied to assess

cancer stem cell characteristics (Malta et al., 2018; Pan et al.,

2019). Our results showed that the risk score was significantly

positively correlated with mDNAsi while it was significantly

negatively associated with mRNAsi (Figures 11A,B), consistent

with a previous study (Malta et al., 2018), and demonstrated the

effectiveness of the predictive model from another aspect.

Consistent with the crucial roles of m6A as a post-

transcriptional gene regulatory mechanism, aberrant m6A

methylation has been found to affect numerous cellular

processes, including many related to tumorigenesis and tumor

progression. Our study found that m6A-related mRNAs

including ALKBH5, ZC3H13, YTHDC1, RBM15, FTO,

YTHDF2, WTAP, METTL3, and HNRNPC were differentially

expressed between high- and low-risk groups in the TCGA

dataset (Figure 11C).

Interference of MSR1 expression-
debilitated glioma cell migration, invasion,
epithelial–mesenchymal transition, and
proliferation

Among the nine signature genes, the MSR1 gene, encoding a

transmembrane protein expressed mainly by macrophages (also

known as CD204), was critical to a number of physiological and

pathological processes such as macrophage polarization,

pathogen clearance, and lipid metabolism (Canton et al.,

2013). A previous study suggested that immunoregulator

CD204 could serve as an immunotherapeutic target to

enhance T cell response induced by a specific dendritic cell

vaccine and anti-tumor immunity (Yi et al., 2011). Thus, the

MSR1 gene was chosen for further investigation in this article.

We compared the mRNA expression level of MSR1 between

LGG (TCGA database) and normal brain tissues (GTEx

database). As illustrated in Figure 12A, MSR1 was

FIGURE 8
Functional enrichment analyses based on the DEGs between the high- and low-risk groups in the TCGA cohort. (A) The bubble graph for GO
enrichment presented the top 10 terms in BP, CC, and MF. Circle size corresponded to enriched counts of genes, and the circle indicated the
q-values and the significance of the enriched GO terms. (B) The bar plot for the KEGG pathway analysis. The bar length corresponded to the number
of enriched genes in the corresponding pathway. The gradual color indicated the different degrees of KEGG enrichment, with red representing
the highest magnitude of KEGG enrichment. DEG: differentially expressed gene; TCGA: The Cancer Genome Atlas; GO: Gene Ontology; BP:
Biological Process; CC: Cellular Component; MF: Molecular Function; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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significantly upregulated in LGG samples compared with normal

brain tissue. We used siRNA to knockdown the expression of

MSR1 and then evaluated the effect of MSR1 on the biofunctions

of glioma cells, including migration, invasion, EMT, and

proliferation. Compared to Si-NC transfected cells, the

MSR1 expression in SHG44 and HS683 cells transfected with

Si-MSR1 was significantly downregulated (Figure 12B).

Afterward, transwell migration and invasion assays were

conducted to test glioma cell migration and invasion abilities.

Cell migration (Figure 12C) and invasion abilities (Figure 12D)

were dramatically decreased after MSR1 knockdown in glioma

SHG44 and HS683 cells. Considering that E-cadherin was not

expressed in the conventional glioma cell lines except the

SF767 cell, we detected the protein expression of two

common EMT markers (Vimentin and ZO-1) in SHG44 and

HS683 cells to investigate the EMT process in glioma. We

observed significantly decreased expression levels of vimentin

as well as dramatically increased expression levels of ZO-1 after

the MRS1 knockdown in SHG44 and HS683 cells (Figure 12E).

The CCK8 experiment showed a markedly reduced cell

proliferation after MSR1 down-regulation in SHG44 and

HS683 cells (Figure 12F). These findings indicated that

MSR1 was an oncogene associated with the migration,

invasion, EMT, and proliferation of glioma cells.

Discussion

Recent studies suggested that inflammation plays a pivotal

role in glioma initiation, progression, and prognosis (Yeung et al.,

2013; Li et al., 2014; Michelson et al., 2016). For instance, TNF-α
is a master regulator of the inflammatory response,

overexpressed and secreted in the neoplasm

microenvironment (Ramaswamy et al., 2019). TNF-α
strengthens glioma proliferation, migration, and therapy

resistance by activating NF-κB signaling (Guo et al., 2017;

Geeviman et al., 2018). These processes are related to gene

expression changes, including alterations in inflammation

FIGURE 9
The correlation between the prognostic gene expression and drug sensitivity. The top 16 drugs with the highest correlation with gene
expression in the predictive model were screened. The vertical axis shows the Z-scores of the drugs, and the horizontal axis represents the gene
expression. The larger the Z-score, the more sensitive the cancer cell is to the drug.
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genes. Some predictive signatures linked to autophagy,

immunity, ferroptosis, and pyroptosis have been constructed

in gliomas. However, the relationship between genomic

biomarkers based on inflammatory response and the clinical

outcome of LGG remains an outstanding question. The present

study found that the DE-IRGs can classify LGG patients into two

subtypes, which exhibited significant differences in clinical and

molecular features. A prognostic signature integrating nine

IRRGs was constructed in the TCGA cohort and validated in

the CGGA cohort. LGG patients were divided into “high” or

“low” risk subgroups using the median risk score as a cutoff

value. We found that the high-risk group was significantly linked

to older age, higher tumor grade, the wild status of IDH1, 1p/19q

non-codeletion, unmethylated status of the MGMT promoter,

FIGURE 10
Effect of ABCC3 knockdown on the sensitivity of glioma cells to arsenic trioxide. The cell viability of U251 (A) and T98G cells (B) in the Si-ABCC3
group was significantly inhibited compared with the control group following treatment with arsenic trioxide (4 μM) for 24, 48, and 72 h. EdU staining
showed that the proportion of EdU-positive cells of U251 (C) and T98G cells (D) in the Si-ABCC3 group markedly reduced compared to the control
group after being treated with arsenic trioxide (4 μM) for 48 h. Photographs (C) and (D) magnification: ×200; scale bar: 50 μm. The data are
presented as the mean ± SD for at least three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001. EdU: 5-Ethynyl-2′-deoxyuridine.
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and shorter survival. The multivariable Cox regression analysis

identified the inflammatory signature as an independent

prognostic marker for LGG in the training and validation

cohorts, similar to the classical prognostic factors, such as

tumor grade and 1p/19q codeletion.

To further elucidate the role of these nine genes in LGG, we

analyzed their main molecular functions. The prognostic

signature constructed in the present study consisted of nine

IRRGs (PLA2G2A, MSR1, ABCC3, COL8A1, SVOP, CXCL10,

NAPSB, SAA1, and CHI3L1), and all prognostic genes were risky

FIGURE 11
Correlation between the risk score and stemness index andm6A. The relationship between the risk score and stemness index based onmDNAsi
(A) and the stemness index based onmRNAsi (B) in the TCGA dataset. (C) The expression level of m6A-related genes between the high- and low-risk
groups in the TCGA dataset. *p < 0.05, **p < 0.01, ***p < 0.001. ns: non-sense; m6A: N6-methyladenosine; mDNAsi: DNA methylation-based
stemness index; mRNAsi: mRNA expression-based stemness index; TCGA: The Cancer Genome Atlas.
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factors, with the single exception of SVOP. Secreted PLA2,

PLA2G2A-encoded protein, was discovered to induce

proliferation in astrocytoma through the epidermal growth

factor receptor (EGFR), contributing to worsening the

prognosis of a tumor in an inflammatory microenvironment.

(Hernández et al., 2010). MSR1, encoding the class A

macrophage scavenger receptors, was reported to be

influential in cancer progression and metastasis in vitro and

in vivo (Shigeoka et al., 2015) and to be a marker of tumor-

infiltrated macrophages within the tumor microenvironment in

glioma (Miyasato et al., 2017). MSR1 could also be a target for

intensifying the current anti-glioma therapy (Sørensen and

Kristensen, 2022). Our in vitro experiments also confirmed

that MSR1 was involved in the migration, invasion, EMT, and

proliferation of glioma cells. Pessina et al. reported that

ABCC3 could protect NK cells from chemotherapy in a

murine model with malignant glioma and had significant

clinical implications for patients treated with chemo-

FIGURE 12
MSR1 knockdown impairs migration, invasion, EMT, and proliferation. (A) Relative RNA expression of MSR1 in LGG samples and normal brain
tissues. (B) The transfection efficiency of the MSR1 siRNA in SHG44 and HS683 cells was assessed via qRT-PCR. (C) Transwell migration assay and (D)
transwell invasion assay presented that MSR1 downregulation remarkably reduced the migration, invasion, EMT, and proliferation of SHG44 and
HS683 LGG cell lines. (E)Western blot analysis demonstrated the expression changes in EMTmarkers (ZO-1 and vimentin) in the indicated LGG
cell lines after MSR1 knockdownwith siRNA. (F)CCK8 assay evaluated the proliferation ability between control and Si-MSR LGG cells. *p < 0.05, **p <
0.01, ***p < 0.001. MSR1: macrophage scavenger receptor 1; EMT: epithelial-mesenchymal transition; LGG: lower-grade glioma; siRNA: small
interfering RNA.
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immunotherapy (Pessina et al., 2016). A high expression of

COL8A1 correlated with the poor overall survival in GBM

(Jiang et al., 2021). CXCL10 showed tumor-promoting

properties and the manifestation of chemokine receptor/ligand

pair CXCR3/CXCL10 had an essential role in the proliferation of

glioma (Maru et al., 2008). SAA1, a major acute-phase protein, is

highly expressed in response to inflammation and tissue injury,

and SAA1’s high expression is significantly linked to poor

differentiation of tumor cells (Sudo et al., 2021). A previous

study showed that increased mRNA level of CHI3L1 could be

associated with poor patient survival for glioblastoma and lower-

grade astrocytoma tumors (Steponaitis et al., 2016). These studies

were consistent with our results that PLA2G2A, MSR1, ABCC3,

COL8A1, CXCL10, SAA1, and CHI3L1 were risky factors. Few

articles study the relationship between glioma prognosis and

SVOP or NAPSB, which need to be further studied.

The malignant proliferation of glioma cells breaks the normal

homeostasis within normal brain cells, supporting the formation of

the tumor immune microenvironment characterized by an

immune-inflammatory response. A previous study has analyzed

the prognostic value as well as the effects on the immune

microenvironment of neuregulin family members in glioma

(Zhao et al., 2021). Another research explored the predictive

value of mutated genes and assessed their immune infiltration

in LGG (Lin et al., 2021). Our analysis also studied the correlation

between risk score and immune status after establishing the IRRG

signature. We found that the enrichment scores of immune cells

and immune-related pathways based on ssGSEAwere significantly

higher in the high-risk group than in the low-risk group, except for

NK cells. A previous study indicated that immune cells could enter

the central nervous system as a result of tissue injury or

inflammation caused by malignant gliomas (Rascher et al.,

2002), which was consistent with our findings and partially

explained why patients in the high-risk group with more

immune cells had a poorer prognosis than patients in the low-

risk group. In addition, the ESTIMATE algorithm suggested that

the risk score was positively correlated with the estimate score,

immune score, and stromal score but negatively with tumor purity,

further suggesting that inflammatory response and immune

regulation were imbalanced in the high-risk group and that the

risk signature could serve as a novel indicator of the immune

inflammatory response in LGG. Moreover, we also predicted the

immunotherapy response by the inflammation-related signature

and the result showed that a higher expression of PD-1, PD-L1,

and CTLA4, which have been demonstrated to be high-value

targets in regulating immunosuppression in glioma

(Wainwright et al., 2014), in the high-risk prognostic group

than low-risk prognostic group, suggesting that the patients in

the high-risk groupmight bemore suitable for immunotherapy. By

blockade of PD-1/PD-L1 and CTLA4, immune checkpoint

inhibitors can mitigate the suppressive effect on immune cells

within the tumor immune microenvironment and enhance

endogenous anti-tumor immunity.

Inflammatory cytokines have been demonstrated to correlate

oncogenic signaling with the production and maintenance of

cancer stem cells (CSCs) (Markopoulos et al., 2019). The

inflammatory microenvironment promotes angiogenesis and

tumor growth and generates a powerful niche supporting

CSCs (Stallone et al., 2019). A previous study suggested that

clinical stages and pathology features in glioma were positively

correlated with mDNAsi while being negatively correlated with

mRNAsi. (Malta et al., 2018), which was in accordance with our

results. The correlation indicated that the risk of the prognostic

signature might be strongly linked with the activity of CSCs and

demonstrated the effectiveness of the predictive model indirectly

from another aspect. Several recent pieces of research have

revealed a link between m6A modifications and inflammation-

related genes in tumor microenvironments (Hou et al., 2019;

Rong et al., 2019; Ding et al., 2020; Zhang et al., 2020). The low

expression of FTO, the first m6A RNA-demethylase identified,

was associated with poor outcomes in glioma (Xu et al., 2020), in

line with our correlation analysis, which implied that m6A RNA

modification might be directly or indirectly connected to

inflammation in LGG, providing a certain reference value for

our in-depth research or other people’s research in the future.

Analysis of the NCI-60 cell line set in the CellMiner database

indicated that the increased levels of the ABCC3 gene and

SAA1 gene in the signature were positively correlated to drug

resistance, such as tamoxifen and arsenic trioxide. It has been

confirmed that tamoxifen exhibited excellent therapeutic effects

on temozolomide-insensitive glioma cells (He et al., 2015).

Arsenic trioxide, an already FDA-approved drug for leukemia

treatment, has recently been reported as a novel anti-glioma drug

by regulation of apoptosis and autophagy (Fang and Zhang,

2020). Our results also confirmed that ABCC3 attenuated the

chemosensitivity of glioma cells to arsenic trioxide. Hence, LGG

patients with low expressions of ABCC3 or SAA1 might benefit

from arsenic trioxide or tamoxifen compared with patients with

high expressions of ABCC3 or SAA1. These relationships made

us hypothesize that the mechanisms of arsenic trioxide and

tamoxifen in glioma treatment might also be involved in

inducing an inflammation microenvironment. Thus, analyzing

the correlation of cancer cell sensitivity to chemotherapy

suggested that the inflammatory response subtype-related

prognostic molecules are promising for anti-tumor drug

development to improve the survival of LGG, and the

signature could be a potential indicator for targeted therapy.

Conclusion

In summary, the already established prognostic signature

based on nine IRRGs not only forecasted the prognosis of LGG

patients but also reflected the immune characteristics, tumor

stemness, m6A mRNA status, and cancer chemoresistance of

different risk groups. Our study provides a new constraint from
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inflammatory response in the development and progression of

LGG. However, the peculiar underlying mechanisms for the

relationship between the inflammation response and cancer

immunity remain unclear and need further investigation.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Author contributions

XJ, CR, and JP conceived and designed the study. YC and JP

wrote the manuscript. HZ and XL analyzed the results. QC, HH,

and DX performed the image visualization. All authors

contributed to the manuscript and approved the submitted

version.

Funding

This study was supported by grants from the National

Natural Science Foundation of China (No. 81472355), and

Natural Science Foundation of Hunan Province (No.

2022JJ30931). The Hunan Province Science and Technology

Project (No. 2014FJ6006).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphar.

2022.914667/full#supplementary-material.

References

Balkwill, F., and Mantovani, A. (2001). Inflammation and cancer: back to
virchow? Lancet 357 (9255), 539–545. doi:10.1016/s0140-6736(00)04046-0

Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A. C.,
et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the
immune landscape in human cancer. Immunity 39 (4), 782–795. doi:10.1016/j.
immuni.2013.10.003

Brat, D. J., Verhaak, R. G., Aldape, K. D., Yung,W. K., Salama, S. R., Cooper, L. A.,
et al. (2015). Comprehensive, integrative genomic analysis of diffuse lower-grade
gliomas. N. Engl. J. Med. 372 (26), 2481–2498. doi:10.1056/NEJMoa1402121

Canton, J., Neculai, D., and Grinstein, S. (2013). Scavenger receptors in
homeostasis and immunity. Nat. Rev. Immunol. 13 (9), 621–634. doi:10.1038/
nri3515

Ding, H., Zhang, X., Su, Y., Jia, C., and Dai, C. (2020). GNAS promotes
inflammation-related hepatocellular carcinoma progression by promoting
STAT3 activation. Cell. Mol. Biol. Lett. 25, 8. doi:10.1186/s11658-020-00204-1

Fang, Y., and Zhang, Z. (2020). Arsenic trioxide as a novel anti-glioma drug: a
review. Cell. Mol. Biol. Lett. 25, 44. doi:10.1186/s11658-020-00236-7

Geeviman, K., Babu, D., and Prakash Babu, P. (2018). Pantoprazole induces
mitochondrial apoptosis and attenuates NF-κB signaling in glioma cells. Cell. Mol.
Neurobiol. 38 (8), 1491–1504. doi:10.1007/s10571-018-0623-4

Greten, F. R., and Grivennikov, S. I. (2019). Inflammation and cancer: triggers,
mechanisms, and consequences. Immunity 51 (1), 27–41. doi:10.1016/j.immuni.
2019.06.025

Grivennikov, S. I., Greten, F. R., and Karin, M. (2010). Immunity, inflammation,
and cancer. Cell 140 (6), 883–899. doi:10.1016/j.cell.2010.01.025

Guo, G., Gong, K., Ali, S., Ali, N., Shallwani, S., Hatanpaa, K. J., et al. (2017). A
TNF-JNK-Axl-ERK signaling axis mediates primary resistance to EGFR inhibition
in glioblastoma. Nat. Neurosci. 20 (8), 1074–1084. doi:10.1038/nn.4584

Hanahan, D., and Coussens, L. M. (2012). Accessories to the crime: functions of
cells recruited to the tumor microenvironment. Cancer Cell 21 (3), 309–322. doi:10.
1016/j.ccr.2012.02.022

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next
generation. Cell 144 (5), 646–674. doi:10.1016/j.cell.2011.02.013

He, W., Liu, R., Yang, S. H., and Yuan, F. (2015). Chemotherapeutic effect of
Tamoxifen on temozolomide-resistant gliomas. Anticancer. Drugs 26 (3), 293–300.
doi:10.1097/cad.0000000000000197

Hernández, M., Martín, R., García-Cubillas, M. D., Maeso-Hernández, P., and
Nieto, M. L. (2010). Secreted PLA2 induces proliferation in astrocytoma through
the EGF receptor: another inflammation-cancer link. Neuro. Oncol. 12 (10),
1014–1023. doi:10.1093/neuonc/noq078

Hou, J., Zhang, H., Liu, J., Zhao, Z., Wang, J., Lu, Z., et al. (2019).
YTHDF2 reduction fuels inflammation and vascular abnormalization in
hepatocellular carcinoma. Mol. Cancer 18 (1), 163. doi:10.1186/s12943-019-
1082-3

Jiang, Z., Shi, Y., Zhao, W., Zhang, Y., Xie, Y., Zhang, B., et al. (2021).
Development of an immune-related prognostic index associated with
glioblastoma. Front. Neurol. 12, 610797. doi:10.3389/fneur.2021.610797

Johnson, B. E., Mazor, T., Hong, C., Barnes, M., Aihara, K., McLean, C. Y.,
et al. (2014). Mutational analysis reveals the origin and therapy-driven
evolution of recurrent glioma. Science 343 (6167), 189–193. doi:10.1126/
science.1239947

Lee, B. M., Cho, Y., Kim, J. W., Jeung, H. C., and Lee, I. J. (2020). Prognostic
significance of sarcopenia in advanced biliary tract cancer patients. Front. Oncol. 10,
1581. doi:10.3389/fonc.2020.01581

Li, G., Wang, Z., Ye, J., Zhang, X., Wu, H., Peng, J., et al. (2014). Uncontrolled
inflammation induced by AEG-1 promotes gastric cancer and poor prognosis.
Cancer Res. 74 (19), 5541–5552. doi:10.1158/0008-5472.Can-14-0968

Frontiers in Pharmacology frontiersin.org19

Cao et al. 10.3389/fphar.2022.914667

https://www.frontiersin.org/articles/10.3389/fphar.2022.914667/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2022.914667/full#supplementary-material
https://doi.org/10.1016/s0140-6736(00)04046-0
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1056/NEJMoa1402121
https://doi.org/10.1038/nri3515
https://doi.org/10.1038/nri3515
https://doi.org/10.1186/s11658-020-00204-1
https://doi.org/10.1186/s11658-020-00236-7
https://doi.org/10.1007/s10571-018-0623-4
https://doi.org/10.1016/j.immuni.2019.06.025
https://doi.org/10.1016/j.immuni.2019.06.025
https://doi.org/10.1016/j.cell.2010.01.025
https://doi.org/10.1038/nn.4584
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1097/cad.0000000000000197
https://doi.org/10.1093/neuonc/noq078
https://doi.org/10.1186/s12943-019-1082-3
https://doi.org/10.1186/s12943-019-1082-3
https://doi.org/10.3389/fneur.2021.610797
https://doi.org/10.1126/science.1239947
https://doi.org/10.1126/science.1239947
https://doi.org/10.3389/fonc.2020.01581
https://doi.org/10.1158/0008-5472.Can-14-0968
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.914667


Li, Y., Xiao, J., Bai, J., Tian, Y., Qu, Y., Chen, X., et al. (2019). Molecular
characterization and clinical relevance of m(6)A regulators across 33 cancer
types. Mol. Cancer 18 (1), 137. doi:10.1186/s12943-019-1066-3

Lin, W. W., Ou, G. Y., and Zhao, W. J. (2021). Mutational profiling of low-grade
gliomas identifies prognosis and immunotherapy-related biomarkers and tumour
immune microenvironment characteristics. J. Cell. Mol. Med. 25 (21), 10111–10125.
doi:10.1111/jcmm.16947

Malta, T. M., Sokolov, A., Gentles, A. J., Burzykowski, T., Poisson, L., Weinstein,
J. N., et al. (2018). Machine learning identifies stemness features associated with
oncogenic dedifferentiation. Cell 173 (2), 338. doi:10.1016/j.cell.2018.03.034

Markopoulos, G. S., Roupakia, E., Marcu, K. B., and Kolettas, E. (2019).
Epigenetic regulation of inflammatory cytokine-induced epithelial-to-
mesenchymal cell transition and cancer stem cell generation. Cells 8 (10),
E1143. doi:10.3390/cells8101143

Maru, S. V., Holloway, K. A., Flynn, G., Lancashire, C. L., Loughlin, A. J., Male, D.
K., et al. (2008). Chemokine production and chemokine receptor expression by
human glioma cells: role of CXCL10 in tumour cell proliferation. J. Neuroimmunol.
199 (1-2), 35–45. doi:10.1016/j.jneuroim.2008.04.029

Michelson, N., Rincon-Torroella, J., Quiñones-Hinojosa, A., and Greenfield, J. P.
(2016). Exploring the role of inflammation in the malignant transformation of low-
grade gliomas. J. Neuroimmunol. 297, 132–140. doi:10.1016/j.jneuroim.2016.05.019

Miyasato, Y., Shiota, T., Ohnishi, K., Pan, C., Yano, H., Horlad, H., et al. (2017).
High density of CD204-positive macrophages predicts worse clinical prognosis in
patients with breast cancer. Cancer Sci. 108 (8), 1693–1700. doi:10.1111/cas.13287

Ni, J., Liu, S., Qi, F., Li, X., Yu, S., Feng, J., et al. (2020). Screening TCGA database
for prognostic genes in lower grade glioma microenvironment. Ann. Transl. Med. 8
(5), 209. doi:10.21037/atm.2020.01.73

Ostrom, Q. T., Cioffi, G., Waite, K., Kruchko, C., and Barnholtz-Sloan, J. S.
(2021). CBTRUS statistical report: primary brain and other central nervous system
tumors diagnosed in the United States in 2014-2018. Neuro. Oncol. 23, iii1–iii105.
doi:10.1093/neuonc/noab200

Pan, S., Zhan, Y., Chen, X., Wu, B., and Liu, B. (2019). Identification of
biomarkers for controlling cancer stem cell characteristics in bladder cancer by
network analysis of transcriptome data stemness indices. Front. Oncol. 9, 613.
doi:10.3389/fonc.2019.00613

Pessina, S., Cantini, G., Kapetis, D., Cazzato, E., Di Ianni, N., Finocchiaro, G., et al.
(2016). The multidrug-resistance transporter Abcc3 protects NK cells from
chemotherapy in a murine model of malignant glioma. Oncoimmunology 5 (5),
e1108513. doi:10.1080/2162402x.2015.1108513

Ramaswamy, P., Goswami, K., Dalavaikodihalli Nanjaiah, N., Srinivas, D., and
Prasad, C. (2019). TNF-α mediated MEK-ERK signaling in invasion with putative
network involving NF-κB and STAT-6: a new perspective in glioma. Cell Biol. Int.
43 (11), 1257–1266. doi:10.1002/cbin.11125

Rascher, G., Fischmann, A., Kröger, S., Duffner, F., Grote, E. H., andWolburg, H.
(2002). Extracellular matrix and the blood-brain barrier in glioblastoma
multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol. 104 (1),
85–91. doi:10.1007/s00401-002-0524-x

Rong, Z. X., Li, Z., He, J. J., Liu, L. Y., Ren, X. X., Gao, J., et al. (2019).
Downregulation of fat mass and obesity associated (FTO) promotes the
progression of intrahepatic cholangiocarcinoma. Front. Oncol. 9, 369. doi:10.
3389/fonc.2019.00369

Shigeoka, M., Urakawa, N., Nishio, M., Takase, N., Utsunomiya, S., Akiyama, H.,
et al. (2015). Cyr61 promotes CD204 expression and the migration of macrophages
via MEK/ERK pathway in esophageal squamous cell carcinoma. Cancer Med. 4 (3),
437–446. doi:10.1002/cam4.401

Sørensen, M. D., and Kristensen, B. W. (2022). Tumour-associated
CD204(+) microglia/macrophages accumulate in perivascular and
perinecrotic niches and correlate with an interleukin-6-enriched
inflammatory profile in glioblastoma. Neuropathol. Appl. Neurobiol. 48
(2), e12772. doi:10.1111/nan.12772

Stallone, G., Infante, B., Prisciandaro, C., and Grandaliano, G. (2019). mTOR and
aging: an old fashioned dress. Int. J. Mol. Sci. 20 (11), E2774. doi:10.3390/
ijms20112774

Steponaitis, G., Skiriutė, D., Kazlauskas, A., Golubickaitė, I., Stakaitis, R.,
Tamašauskas, A., et al. (2016). High CHI3L1 expression is associated with
glioma patient survival. Diagn. Pathol. 11, 42. doi:10.1186/s13000-016-0492-4

Sudo, G., Aoki, H., Yamamoto, E., Takasawa, A., Niinuma, T., Yoshido, A., et al.
(2021). Activated macrophages promote invasion by early colorectal cancer via an
interleukin 1β-serum amyloid A1 axis. Cancer Sci. 112 (10), 4151–4165. doi:10.
1111/cas.15080

Tang, W., Su, G., Li, J., Liao, J., Chen, S., Huang, C., et al. (2014). Enhanced anti-
colorectal cancer effects of carfilzomib combined with CPT-11 via downregulation
of nuclear factor-κB in vitro and in vivo. Int. J. Oncol. 45 (3), 995–1010. doi:10.3892/
ijo.2014.2513

Wainwright, D. A., Chang, A. L., Dey, M., Balyasnikova, I. V., Kim, C. K., Tobias,
A., et al. (2014). Durable therapeutic efficacy utilizing combinatorial blockade
against Ido, CTLA-4, and PD-L1 in mice with brain tumors. Clin. Cancer Res. 20
(20), 5290–5301. doi:10.1158/1078-0432.Ccr-14-0514

Wang, H., Wang, X., Xu, L., Zhang, J., and Cao, H. (2021). RUNX1 and
REXO2 are associated with the heterogeneity and prognosis of IDH wild type
lower grade glioma. Sci. Rep. 11 (1), 11836. doi:10.1038/s41598-021-91382-1

Wang, J., Wang, S., Song, X., Zeng, W., Wang, S., Chen, F., et al. (2016). The
prognostic value of systemic and local inflammation in patients with laryngeal
squamous cell carcinoma. Onco. Targets. Ther. 9, 7177–7185. doi:10.2147/ott.
S113307

Wu, F., Li, G. Z., Liu, H. J., Zhao, Z., Chai, R. C., Liu, Y. Q., et al. (2020). Molecular
subtyping reveals immune alterations in IDH wild-type lower-grade diffuse glioma.
J. Pathol. 251 (3), 272–283. doi:10.1002/path.5468

Xu, S., Tang, L., Dai, G., Luo, C., and Liu, Z. (2020). Expression of m6A
regulators correlated with immune microenvironment predicts therapeutic
efficacy and prognosis in gliomas. Front. Cell Dev. Biol. 8, 594112. doi:10.3389/
fcell.2020.594112

Yan, D., Zhao, Q., Du, Z., Li, H., Geng, R., Yang, W., et al. (2022). Development and
validation of an immune-related gene signature for predicting the radiosensitivity of
lower-grade gliomas. Sci. Rep. 12 (1), 6698. doi:10.1038/s41598-022-10601-5

Yang, Y., Tian, Y., Li, Q., Jiang, R., and Zhang, J. (2022). Uncovering the immune
cell infiltration landscape in low-grade glioma for aiding immunotherapy. J. Oncol.
2022, 3370727. doi:10.1155/2022/3370727

Yeung, Y. T., McDonald, K. L., Grewal, T., and Munoz, L. (2013). Interleukins in
glioblastoma pathophysiology: implications for therapy. Br. J. Pharmacol. 168 (3),
591–606. doi:10.1111/bph.12008

Yi, H., Guo, C., Yu, X., Gao, P., Qian, J., Zuo, D., et al. (2011). Targeting the
immunoregulator SRA/CD204 potentiates specific dendritic cell vaccine-induced
T-cell response and antitumor immunity. Cancer Res. 71 (21), 6611–6620. doi:10.
1158/0008-5472.Can-11-1801

Yue, W. Y., Sai, K., Wu, Q. L., Xia, Y. F., Yu, S. H., and Chen, Z. P. (2012). Long-
term molecular changes in WHO grade II astrocytomas following radiotherapy.
Chin. J. Cancer 31 (3), 159–165. doi:10.5732/cjc.011.10149

Zhang, B., Wu, Q., Li, B., Wang, D., Wang, L., and Zhou, Y. L. (2020). m(6)A
regulator-mediated methylation modification patterns and tumor
microenvironment infiltration characterization in gastric cancer. Mol. Cancer 19
(1), 53. doi:10.1186/s12943-020-01170-0

Zhao, W. J., Ou, G. Y., and Lin, W. W. (2021). Integrative analysis of
neuregulin family members-related tumor microenvironment for predicting
the prognosis in gliomas. Front. Immunol. 12, 682415. doi:10.3389/fimmu.
2021.682415

Zhou, Q., Yan, X., Liu, W., Yin, W., Xu, H., Cheng, D., et al. (2020). Three
immune-associated subtypes of diffuse glioma differ in immune infiltration,
immune checkpoint molecules, and prognosis. Front. Oncol. 10, 586019. doi:10.
3389/fonc.2020.586019

Frontiers in Pharmacology frontiersin.org20

Cao et al. 10.3389/fphar.2022.914667

https://doi.org/10.1186/s12943-019-1066-3
https://doi.org/10.1111/jcmm.16947
https://doi.org/10.1016/j.cell.2018.03.034
https://doi.org/10.3390/cells8101143
https://doi.org/10.1016/j.jneuroim.2008.04.029
https://doi.org/10.1016/j.jneuroim.2016.05.019
https://doi.org/10.1111/cas.13287
https://doi.org/10.21037/atm.2020.01.73
https://doi.org/10.1093/neuonc/noab200
https://doi.org/10.3389/fonc.2019.00613
https://doi.org/10.1080/2162402x.2015.1108513
https://doi.org/10.1002/cbin.11125
https://doi.org/10.1007/s00401-002-0524-x
https://doi.org/10.3389/fonc.2019.00369
https://doi.org/10.3389/fonc.2019.00369
https://doi.org/10.1002/cam4.401
https://doi.org/10.1111/nan.12772
https://doi.org/10.3390/ijms20112774
https://doi.org/10.3390/ijms20112774
https://doi.org/10.1186/s13000-016-0492-4
https://doi.org/10.1111/cas.15080
https://doi.org/10.1111/cas.15080
https://doi.org/10.3892/ijo.2014.2513
https://doi.org/10.3892/ijo.2014.2513
https://doi.org/10.1158/1078-0432.Ccr-14-0514
https://doi.org/10.1038/s41598-021-91382-1
https://doi.org/10.2147/ott.S113307
https://doi.org/10.2147/ott.S113307
https://doi.org/10.1002/path.5468
https://doi.org/10.3389/fcell.2020.594112
https://doi.org/10.3389/fcell.2020.594112
https://doi.org/10.1038/s41598-022-10601-5
https://doi.org/10.1155/2022/3370727
https://doi.org/10.1111/bph.12008
https://doi.org/10.1158/0008-5472.Can-11-1801
https://doi.org/10.1158/0008-5472.Can-11-1801
https://doi.org/10.5732/cjc.011.10149
https://doi.org/10.1186/s12943-020-01170-0
https://doi.org/10.3389/fimmu.2021.682415
https://doi.org/10.3389/fimmu.2021.682415
https://doi.org/10.3389/fonc.2020.586019
https://doi.org/10.3389/fonc.2020.586019
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.914667

	Integrated analysis of inflammatory response subtype-related signature to predict clinical outcomes, immune status and drug ...
	Background
	Materials and methods
	Data collection
	Identification of differentially expressed inflammatory response genes between normal and cancer samples
	Clustering analysis based on differentially expressed inflammatory response genes
	Construction and validation of an inflammatory response-subtype-related gene prognostic signature
	Immune-related analysis in The Cancer Genome Atlas and the Chinese glioma genome atlas cohort
	Functional enrichment analysis and chemotherapy sensitivity analysis
	Stemness index analysis and m6A-related gene analysis
	Cell culture and real-time quantitative polymerase chain reaction
	Transwell migration and invasion assays
	Western blot
	Cell proliferation assay
	Arsenic trioxide sensitivity assay
	Statistical analysis

	Results
	Identification of differentially expressed inflammatory response genes and classification of LGG patients in the Cancer Gen ...
	Development and validation of a prognostic signature in The Cancer Genome Atlas and Chinese glioma genome atlas cohorts
	Independent prognostic value of the signature
	Immune status and tumor microenvironment analysis
	Biological function and cancer cell sensitivity to chemotherapy
	Correlation of the prognostic signature with the stemness index and m6A
	Interference of MSR1 expression-debilitated glioma cell migration, invasion, epithelial–mesenchymal transition, and prolife ...

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


