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Perioperative multimodal analgesia can reduce the side effects of a high

concentration of opioids, improving the comfort of the patient. However,

insufficient analgesia of this model has prompted researchers to explore

new adjuvant analgesics. Recently, an increasing number of studies have

found a low-grade analgesic effect in the clinical application of ultra-short-

acting β-adrenergic receptor antagonists, which are conventionally used as

pharmacologic agents in the cardiovascular system. The mechanism by which

ultra-short-acting β-antagonists exert antinociceptive effects has not been

clarified yet. In this review, we intend to address its potential reasons from

the side of neurotransmitters, inflammatory cytokines, and signaling pathways,

providing theoretical proof for the application of β-adrenergic receptor

antagonists in analgesia.
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Introduction

The International Association for the Study of Pain revised the definition of pain as

“an unpleasant sensory and emotional experience associated with, or resembling that

associated with, actual or potential tissue damage” (Raja et al., 2020). Surgery is a type of

actual tissue injury, and postoperative pain is an important factor affecting patient

recovery. Opioids can produce powerful analgesic effects, making them widely used in

clinics for the treatment of perioperative and chronic pain (Tamara King, 2005). However,

repeated administration of opioids can result in intraoperative acute, opioid-induced

hyperalgesia, nausea, dizziness, and respiratory depression, significantly limiting

extensive clinical use (Zhang et al., 2015; Ueda, 2004; Yu et al., 2016). Thus,

multimodal analgesia, which can reduce the side effects of opioids and improve

patient comfort, has developed as the main perioperative analgesia model (Gelman

et al., 2018). Typical perioperative multimodal analgesics include opioids and

nonsteroidal anti-inflammatory drugs (NSAIDs). However, NSAIDs are often
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associated with an increased risk of gastrointestinal, renal, and

cardiovascular toxicities, thus limiting their application in

patients with gastrointestinal and cardiovascular problems.

The need for a new multimodal analgesic strategy that

minimizes the side effects of opioids and improves the

prognosis of the patient has become a serious clinical issue.

Ultra-short-acting β-blockers, including esmolol, landiolol,

and flestolol, mainly act on myocardial β1 receptors but also

block β2 receptors at high doses. These drugs are often used to

treat angina pectoris, myocardial infarction, arrhythmia,

hypertension, and other cardiovascular diseases (Gorczynski,

1985). Recently, many studies found that β-blockers
administered intraoperatively may possess analgesic properties

(Supplementary Table S1). Perioperative use of these drugs

reduces the inhalation anesthetic and opioid dose requirement

(Chia et al., 2004; Tamara King, 2005). Perioperative β-blockade
in elderly surgical patients has some advantages, including

maintained hemodynamic stability, improved physical sense of

well-being, and decreased analgesic requirements (Zaugg et al.,

1999). Studies investigating the antinociceptive effect of β-
receptor antagonists have increased in number, but the role of

β-receptor antagonists in the modulation of postoperative pain

remains unclear. In this review, we summarize previous findings

and review several possible mechanisms that may explain the

clinical value of β-antagonists as analgesics.

Beta blockers affect
pharmacokinetics by reducing
cardiac output

Cardiac output (CO) can affect liver blood flow, which in turn

affects the metabolism of drugs with a high liver extraction rate

(Weiss et al., 1996). Kurita et al. (2013) studied the effect of changes in

CO on the plasma concentration of remifentanil under pseudo-

steady-state conditions. The results showed that the plasma

concentration of remifentanil was inversely proportional to

cardiac output. CO is negatively correlated with the initial

targeted concentration of intravenously administered drugs

(Fagiolino, 2002). Birkholz et al. (2018) found that CO can

influence the pharmacokinetics of sufentanil. They suggested that

the dosage of opioids should be adjusted according to the case of

changed CO to avoid inadequate drug effects or prolonged recovery.

In addition, the decrease in CO can reduce the dosage of

intraoperative fentanyl and remifentanil (Henthorn et al., 1992;

Kurita et al., 2013). β-Adrenergic antagonists can slow down the

heart rate and reduce the contractility of the heart muscle by

inhibiting the β1 receptor. Afify and Andijani, (2017)

demonstrated that the use of β-blockers enhanced the analgesic

effect of morphine in a mechanism that involved decreased CO.

This phenomenon has been confirmed in clinical studies: one

report suggested that perioperative esmolol administration can

reduce the intraoperative use of inhalation anesthetic and

fentanyl and morphine consumption for the first three

postoperative days (Chia et al., 2004). In addition, Morais

et al. (2020) found that intraoperative esmolol can promote

the reduction in pain intensity and the need for analgesic

supplementation. In septoplasty surgery, the amount of

remifentanil could be reduced when the heart rate was

significantly decreased by esmolol (Gökçe et al., 2009). Thus,

clinical research suggests that β-blockers can reduce the dose of

perioperative opioids and intraoperatively inhaled anesthetics

by reducing CO.

Beta blockers inhibit the release of
pro-inflammatory cytokines

Tissue damage, such as that from surgical incisions, can lead

to inflammation and exacerbate the pain state of patients with
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pain (Brennan et al., 1996). This pain state results from the

production and release of inflammatory mediators, such as

prostaglandin E2 (PGE2) and pro-inflammatory cytokines.

Pro-inflammatory cytokines are small molecular polypeptides

synthesized and secreted by both immune and non-immune

cells in the body. They regulate a variety of cellular

physiological functions and play an important role under

stressful conditions such as trauma, pain, and infection (de

Oliveira et al., 2011). Examples of pro-inflammatory cytokines

include interleukin (IL)-6, IL-8, and IL-13. These pro-

inflammatory factors are released by glial cells or neurons

and play important roles in the nervous system, participating

in the development of acute or chronic pain (Cunha et al., 2005;

Cunha et al., 2010). IL-1β and IL-6 have higher activity among

the pro-inflammatory cytokines (Shyong et al., 2003) (Figure 1).

Injecting IL-1β in the mouse abdominal region, ventricles, or

plantar surface can cause hyperalgesia (Perkins and Kelly, 1994;

Watkins et al., 1994). IL-1β can regulate pain by directly

binding to transient receptor potential vanilloid type 1

(TRPV1) (Zhou et al., 2016). Phosphorylation of

TRPV1 increases action potential firing, heightening the

sensitivity to thermal or mechanical stimulation (Pinho-

Ribeiro et al., 2017). In in vivo, the level of IL-6 is positively

correlated with pain intensity and is related to the formation

and development of neuropathic pain (Ramer et al., 1998; Yan

et al., 2012). Malsch et al. (2014) suspected that IL-6 directly

affects nociceptors in sensory neurons. The researchers

decreased the pain threshold through the knockout of IL-6

receptors in sensory neurons. Intraplantar TNF-α was also

reported to produce mechanical and thermal hyperalgesia

induced by inflammation (Perkins and Kelly, 1994). TNF-α
activates the p38MAPK pathway in dorsal root ganglion (DRG)

neurons to promote Na+ influx and reduce the excitability

threshold (Jin and Gereau, 2006).

Activated β-receptors can increase the release of pro-

inflammatory cytokines, such as IL-1β, IL-6, and TNF-α,
and inhibiting these receptors can reduce the systemic and

local inflammatory responses (Tan et al., 2021). Perioperative

serum levels of IL-4 and IL-6 in patients undergoing

laparoscopic gastrectomy were increased, and intravenous

injection of esmolol reduced the increase of these

inflammatory cytokines (Kim et al., 2015). Landiolol has

also been shown to play a protective role in systemic

inflammation by reducing serum levels of TNF (Hagiwara

et al., 2009). Horikoshi et al. (2017) demonstrated that the

application of landiolol can inhibit the increase of

perioperative plasma IL-6 levels in patients undergoing

esophageal cancer surgery. The pro-inflammatory

cytokines such as IL-1β, IL-6, and TNF-α can increase the

transmission of pain signals by reducing the action potential

threshold. The inhibitory effect of β-blockers on the

inflammatory response may alleviate their stimulating

effect on perioperative pain.

Beta blockers affect the excitation
transmission of the nervous system

Nociception signals can transmit from primary afferent fibers

to the central nervous system. The cell bodies of the primary

afferent fibers responsible for the signal transmission are located

in the DRG (Comitato and Bardoni, 2021). There are many

excitatory ion channels on the membranes of DRG primary

afferent fibers, such as voltage-dependent Na+, K+, and Ca2+

channels and the transient receptor potential channel.

Blocking these channels in the DRG can reduce the

transmission of pain signals and influence analgesia

(Moravcikova et al., 2018; Hermanns et al., 2019). Peripheral

nociceptors are stimulated to produce action potentials, and

afferent fibers of the DRG transmit these signals to the spinal

cord dorsal horn. The latter contains various subtypes of

excitatory or inhibitory interneurons that can interact with

each other to integrate pain-associated signals from primary

afferent fibers and transmit these signals to neurons in the brain.

Tetrodotoxin-resistant sodium (TTX-rNa+) channels mainly

exist in the DRG (Akopian et al., 1999). They can regulate the

excitability of primary afferent neurons, influencing the

transmission of nociception signals (Gold, 1999).

Inflammatory mediators such as PGE2 continuously activate

TTX-rNa+ channels through activation of the cAMP pathway

and increase neuronal excitability (Li and Schild, 2007). IL-1β
increases the excitability of pain receptors by alleviating the slow

resting inactivation of the TTX-rNa+ channel and enhancing the

persistent near-threshold TTX-rNa+ current (Binshtok et al.,

2008). When several inflammatory mediators released in

response to injury sensitize subpopulations of primary afferent

neurons, blocking TTX-rNa+ channels can inhibit inflammatory

mediator-induced modulation of current, indicating the

important role of TTX-rNa+ channels in the treatment of

inflammatory pain and hyperalgesia (Gold and Levine, 1996).

In in vitro, esmolol can block the TTX-rNa+ channel current in a

dose-dependent manner, and high concentrations of landiolol

can also inhibit TTX-rNa+ channel activity (Tanahashi et al.,

2009). These results suggested that β-adrenergic receptor

antagonists can exert antinociceptive effects by blocking TTX-

rNa+ channels. Lidocaine can bind to the S6 segment of domain

4 on the Na+ channel α-subunit in TTX-rNa+ channels

(Tanahashi et al., 2007) and inhibit signal transmission. The

electrophysiological characteristics of β-adrenergic receptor

antagonists are similar to those of lidocaine (Wagner et al.,

1999; Kim et al., 2000), which provides basic evidence for the

local application of β-receptor blockers.
A report on in vivo administration of esmolol alone explored

the effect of intrathecal administration in a postoperative pain

model (Ono et al., 2015). The postoperative pain model was

established with the use of a plantar incision. Withdrawal

latencies were assessed by applying a focused radiant heat

source to explore the antinociceptive effect of esmolol. The
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results suggested that plantar incision produced

hypersensitivity in the postoperative pain model expressed

as decreased withdrawal latency to heat stimulation. The

decreased latencies caused by plantar incision were

significantly increased by esmolol intrathecal

administration after 5 min but not after 10 or 15 min.

These results indicated that intrathecal administration of

esmolol alone produced antinociceptive effects of short

duration in a rat postoperative pain model. In addition, an

inflammatory pain model was established with intraplantar

injection of formalin. The expression of c-Fos (a marker of

neuronal activation, including that induced by pain) was

detected after formalin administration. The researchers

found that intrathecal landiolol reduced the expression of

c-Fos on the injection side, suggesting that intrathecal

landiolol alone produces analgesic effects on inflammatory

pain (Zhao et al., 2007; Mizobuchi et al., 2012). These studies

indicate that intrathecal injection of β-receptor antagonists

provides a new method to control perioperative pain.

However, the clinical application and safety need to be

further studied.

Beta blockers activate the GPCR
cascade to produce analgesic effects

G-protein-coupled receptors (GPCRs) comprise seven α-
helical-structured transmembrane domains (TMs), an

extracellular N-terminus, and an intracellular C-terminus

(Gregory V Nikiforovich et al., 2007). In intracellular

regions, GPCRs consist of heterotrimeric G-protein

complexes, which contain Gα, Gβ, and Gγ subunits (Wess,

2022). According to their structure and function, Gα proteins

are classified into four subfamilies (Gs, Gi/o, Gq/11, and G12/

13) (Inoue et al., 2019). Different ligands acting on the

extracellular side of GPCRs can change the TM and

intracellular regions of the receptors (Wang et al., 2004).

The effect on the latter may have different effects on

downstream signal cascades. For example, Gs and Gi/o

have opposite effects on adenylate cyclase (AC), which

synthesizes cyclic adenosine monophosphate (cAMP) to

activate protein kinase A (PKA) (Wess, 2022). Gs activates

the process, and Gi/o inhibits the production of cAMP. The

results of a human study showed that norepinephrine

FIGURE 1
IL-6 and IL-1β produce pain sensitization. IL-1β binds to IL-1R,
and IL-6 activates IL-6R. They can regulate pain by increasing the
expression of TRPV1. The activation of TRPV1 increases action
potential firing, heightening the sensitivity to pain. IL-1R: IL-1
receptor. IL-6R: IL-6 receptor. TRPV1: transient receptor potential
vanilloid type 1.

FIGURE 2
Scheme for crosstalk between opioid and β-adrenergic
receptors. Stimulatory effects are indicated in green lines and
inhibitory effects in red lines. Agonist acting on β-AR activates AC
and stimulates PKA. Opioids combined with OPR inhibit AC
and reduce the level of cAMP, which decreases the recruitment of
PKA. β-Blockade prevents the stimulatory effect on AC enzyme
and reduces the number of cAMPs. β-AR: β-adrenergic receptors.
AC: adenylate cyclase. PKA: protein kinase A. OPRs: opioid peptide
receptors. cAMP: cyclic adenosine monophosphate. Gs:
stimulatory G protein. Gi: inhibitory G protein.
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prolonged capsaicin-induced skin sensitivity (Drummond,

1995). In addition, Khasar et al. showed that adrenaline

can cause skin mechanical hyperalgesia and sensitize DRG

neurons. These effects of adrenaline are mediated by the PKA

and PKC pathways.

Studies show that the cAMP pathway may produce

hyperalgesia and its inhibition can increase the pain threshold

(Song et al., 2006; Shao et al., 2016). This finding means that the

interaction between Gs and Gi/o directly affects the transmission

of pain signals. Opioid peptide receptors (OPRs) and β-
adrenergic receptors (β-ARs) belong to the GPCR family and

can mediate similar cellular signal transduction cascades

(Mitrovic et al., 2003; Zheng et al., 2010). β-ARs are Gs-

coupled receptors whose stimulation promotes the activation

of AC and PKA (Pepe et al., 2004). OPRs are Gi/o-coupled

receptors whose stimulation inhibits AC activity to reduce PKA

activation (Law and Loh, 1999). Research shows that β-blockade
prevents the stimulatory effect on the AC enzyme, reduces the

number of cAMP molecules, enhances the inhibitory effect of

opioids on pain transmission, and provides an antinociceptive

response (Afify and Andijani, 2017). These findings may be the

result of Gs stimulation weakening the impact on Gi/o (Figure 2).

This provides a basis for β-receptor blockers to enhance the

analgesic effect of opioids.

Beta blockers modulate inhibitory
transmitter release in the spinal
trigeminal nucleus

Facial somatosensory nerves project to multiple regions of

the brain stem trigeminal nucleus complex (Fagiolino, 2002).

This complex is divided into three regions that are,

respectively, responsible for pain, touch, and temperature

sensation. The spinal trigeminal nucleus (Sp5c), one part of

the complex, is the primary site of reception and modulation

of thermosensitive information. Its nociceptive signals arise

from the cranio-orofacial regions. Sp5c has an important

function in the modulation of nociceptive information

(Takemura et al., 2006; Davies and North, 2009). In the

resting state, neurotransmitters released by spontaneous

exocytosis of single synaptic vesicles from the presynaptic

membrane change the postsynaptic membrane current.

Postsynaptic currents can be divided into miniature

inhibitory postsynaptic currents (mIPSCs) and miniature

excitatory postsynaptic currents (mEPSCs) according to the

nature of the neurotransmitters that induced them (Chiang

et al., 2021). Changes in these micro-currents also affect

synaptic plasticity (Gonzalez-Islas et al., 2018). One report

relayed the effect of esmolol’s role in Sp5c in vitro (Yasui et al.,

2011). Brain stem slices containing Sp5c were placed in

artificial cerebrospinal fluid with different Ca2+

concentrations. The role of Ca2+ in synaptic signal

transmission was confirmed using esmolol intervention

through recording mIPSCs and mEPSCs in synapses. The

results showed that esmolol selectively increased the

frequency of mIPSCs without affecting mEPSCs. It was

suspected that esmolol produced analgesia in vitro by

promoting the transmission of inhibitory signaling and

reducing the transmission of nociceptive information to the

nervous system. Esmolol increased the frequency of mIPSCs

through a mechanism involving Ca2+ entry in a β-
adrenoceptor-independent manner. The effect of β-receptor
antagonists on pain signal transmission in Sp5c provides a

new therapeutic strategy for the treatment of trigeminal

neuralgia.

Conclusion

At present, opioids still play an important role in clinical

analgesia programs. However, there is an urgent clinical need

to seek an ideal multimodal analgesia program that reduces

the side effects of opioids and adjuvants while maintaining

the ideal analgesic effects. Some clinical studies found that

intravenous injection β-receptor blockers can reduce the

consumption of opioids during the perioperative period

and improve patient prognoses. This review discusses

some potential analgesic mechanisms of β-blockers: 1)

reduction of CO affects pharmacokinetics; 2) inhibition of

the release of pro-inflammatory cytokines; 3) effects on the

excitation transmission of the nervous system; 4) activation

of GPCR cascades to produce analgesic effects; and 5)

modulation of inhibitory transmitter release in the spinal

trigeminal nucleus. Until now, only a few studies have found

an effect of β-receptor blockers on analgesia. Landiolol and

esmolol, two of the most studied ultra-short-acting β-
receptor blocker drugs, have not been fully confirmed to

act through the aforementioned possible mechanisms. In

addition, animal experiments revealed that the analgesic

effect lasted only a few minutes because the half-life of β-
receptor blockers is short and the time for them to exert their

analgesic effect is limited. However, the patient-controlled

analgesia scheme will not limit their long-term clinical

application. Although intravenously injected β-receptor
blockers produce analgesic effects, clinical studies have

also found that oral β-receptor blockers can reduce the

dosage of opioid analgesics after the operation and reduce

the adverse reactions caused by the latter. In addition,

intrathecal injection of β-receptor blockers can also play

an analgesic role by interfering with spinal cord

neurotransmission. Perioperative multimodal analgesia is

the basis for ensuring the safety of each combination of

drugs and maximizing analgesic effects. Although

preclinical and clinical studies have confirmed that β-
receptor blockers can produce analgesia alone and assist
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other drugs in inducing analgesia, the mechanism of their

specific participation in analgesia and the effectiveness of the

route of administration still need to be further verified. In

summary, this review provides evidence for the application of

feasible alternative analgesics in perioperative multimodal

analgesia.
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