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Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown origin
that usually results in death from secondary respiratory failure within 2-5years of
diagnosis. Recent studies have identified key roles of cytokine and growth factor
pathways in the pathogenesis of IPF. Although there have been numerous clinical trials
of drugs investigating their efficacy in the treatment of IPF, only Pirfenidone and Nintedanib
have been approved by the FDA. However, they have some major limitations, such as
insufficient efficacy, undesired side effects and poor pharmacokinetic properties. To give
more insights into the discovery of potential targets for the treatment of IPF, this review
provides an overview of cytokines, growth factors and their signaling pathways in IPF,
which have important implications for fully exploiting the therapeutic potential of targeting
cytokine and growth factor pathways. Advances in the field of cytokine and growth factor
pathways will help slow disease progression, prolong life, and improve the quality of life for
IPF patients in the future.

Keywords: cytokine, growth factor, signaling pathway, clinical trials, idiopathic pulmonary fibrosis, emerging
pharmacotherapy

1 INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic interstitial lung disease of
unknown etiology that usually results in death from secondary respiratory failure within
2-5years of diagnosis (Meltzer and Noble, 2008). It is a rare familial and sporadic disease.
CT imaging of IPF usually shows a typical usual interstitial pneumonia (UIP) pattern,
characterized by irregular reticular opacities with obligatory honeycombing, associated with
traction bronchiectasis. IPF also exhibits histological features of UIP/IPF pattern characterized
by dense fibrosis causing architecture remodeling with frequent honeycombing, patchy lung
involvement by fibrosis, subpleural and/or paraseptal distribution, fibroblast foci at the edge of
dense scars (Spagnolo et al., 2018; Baratella et al., 2021). With extensive basic and clinical
research on the pathogenesis of IPF in recent years, some potential therapeutic targets have been
discovered (Wang et al.,, 2021). A large number of these targets are growth factors, cytokines, and
their signaling pathways, including TGF-B, CTGF, IL-13, CCL-2, leukotriene receptor, lipid
proinflammatory mediators, and their downstream signaling. In addition, targeting pentraxin 2,
galectin-3, oxidative stress, and B cell-mediated autoimmunity showed the potential to treat IPF.
Lots of investigational drugs have entered clinical trials to test their efficacies in IPF therapy.
However, there are only two currently approved IPF drugs, Pirfenidone and Nintedanib. They
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both slow the progression of IPF but are not able to reverse
lung fibrosis (Chu et al., 2020). Lung transplantation is the
only option for patients with end-stage IPF, but the donor
organ shortages are an intractable problem worldwide, which
means only a minority of patients have the opportunity to
undergo lung transplantation (Spagnolo et al., 2018). In
addition, lung transplantation is expensive, and the 10-year
survival rate after surgery is only 33%-55% (Lederer and
Martinez, 2018; Villavicencio et al., 2018). Therefore, there
is still an urgent need to develop new drugs to treat IPF.

Although the pathophysiological mechanism of IPF
remains unknown, significant progress in understanding the
pathogenesis of IPF has been made in the last decade. The
current paradigm assumes that recurrent alveolar epithelial
cell injury and the crosstalk between dysregulated epithelial
cells and mesenchymal, immune, endothelial cells can trigger
abnormal wound healing responses and pulmonary fibrosis via
multiple signaling pathways- (Mei et al., 2021; Moss et al,,
2022). The pathogenesis of IPF is believed to be mediated by
various cytokines, chemokines, and growth factors (Kelly et al.,
2003). Cytokines and growth factors regulate the phenotypic
switch of fibroblasts and alveolar epithelial cells (AECs), the
recruitment and proliferation of mesenchymal cells, and the
deposition and degradation of matrix through multiple
mechanisms. Uncoordinated expression of several cytokines
may be responsible for the severe matrix remodeling and
epithelial-mesenchymal crosstalk in the lung
microenvironment of IPF. Although the efficacy of previous
anti-inflammatory treatments (e.g.,, TNF-a neutralization,
immunosuppressants) and immunomodulatory treatments
(e.g., interferon-y) in clinical trials for the treatment of IPF
has been unsatisfactory, targeting these pathways remains
promising. Pirfenidone and Nintedanib, two small-molecule
drugs that block multiple cytokine and growth factor signaling
pathways, have been approved to slow the progression of
pulmonary fibrosis. However, they have obvious defects,
such as poor specificity caused by multiple targets and large
doses, which lead to undesired side effects. Therefore, it is still
necessary to explore the mechanism of the cytokine/growth
factor pathway in IPF to find promising targets and develop
targeted drugs.

Due to the pivotal role of the cytokine/growth factor
pathway in the pathogenesis of IPF, this review
comprehensively introduces the association of various
growth  factors,  chemokines, interleukins, lipid
proinflammatory mediators and their related signaling
pathways with IPF. Related signaling pathways are also
attractive therapeutic targets, including RTK and non-RTK
pathways, Hedgehog pathway, Wnt pathway and Notch
pathway, PI3K/Akt/mTOR pathway, MAPK pathway, and
Hippo YAP/TAZ pathway. A large number of drugs,
including many small molecules and biologics targeting
cytokine/growth factor signaling pathways, have entered
clinical trials to determine their efficacy against IPF, as
described in this review. Taken together, the aim of this
review is to provide an overview of cytokines, growth
factors, and the related signaling pathways in IPF, thus
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providing a basis for the development of novel treatment
options to alleviate or even reverse IPF.

2 THE PATHOLOGICAL PROCESS OF
IDIOPATHIC PULMONARY FIBROSIS

The complexity of the pathological process of pulmonary fibrosis
lies in how crosstalk between epithelial-mesenchymal cells and
multiple imbalanced cytokines contribute to the disease. First,
alveolar epithelial cells (AECs) are damaged, and the continuity of
the basement membrane is interrupted due to a variety of external
stimuli, such as radiation, the microbiome, allergens,
environmental particles, autoimmunity, antineoplastic drugs
(Wilson and Wynn, 2009), and SARS-CoV2 (George et al,
2020). Then, many cytokines and growth factors are released
by AECs to recruit and activate inflammatory cells and
fibroblasts. Inflammatory cells and some coagulation factors
[e.g., tissue factors (TF) and plasminogen activation inhibitors
(PAI-1)] are jointly involved in the formation of wound clots
(King et al., 2011b; Betensley et al., 2016). Activated AECs and
endothelial cells participate in (myo)fibroblast migration,
proliferation, and differentiation.

Under normal physiological conditions, the repair process of
local lesions is controlled, but in IPF, epithelial-mesenchymal
transition (EMT) and differentiation of fibroblasts into
myofibroblasts occur, promoting the expansion of myofibroblast
population which is the main source of extracellular matrix (ECM)
(Yagihashi et al., 2016; Skibba et al., 2020). Notably, EMT may be
an indirect mechanism of IPF, because it does not directly
contribute to the expansion of the myofibroblast population via
the epithelial-to-myofibroblasts transition (Rock et al., 2011; Salton
et al, 2020). In contrast, EMT is indirectly involved in the
pathological process of IPF through the paracrine of fibroblast
activating factor (Hill et al., 2019). It has also been reported that
EMT is the result of aberrant mechanical forces and signaling
pathways in IPF (Qian et al., 2020; Saito et al., 2020; Salton et al.,
20205 Su et al., 2020; Wu et al., 2020). Due to the presence of excess
fibrin in the ECM, the lung elasticity of IPF patients decreases,
which manifests as alveolar collapse and the cystic dilation of
residual bronchioles/alveoli. This alveolar collapse leads to a
decrease in the effective volume of the alveoli used for gas
exchange. Moreover, matrix stiffness forms a positive feedback
pathway through the mechanosensor transient receptor potential
vanilloid 4 (TRPV4) and a6 integrin, which continuously
aggravates pulmonary fibrosis (Rahaman et al, 2014; Chen
et al., 2016), causing the loss of pulmonary function (respiratory
ventilation) in IPF patients. In addition, excessive ECM
encapsulates pulmonary capillaries, resulting in a decrease in the
diffusion coefficients of oxygen and carbon dioxide and the loss of
gas exchange function in the alveoli, eventually leading to the death
of IPF patients from respiratory failure or related syndromes. If
injury factors persist, AECs are continuously damaged, often
manifesting as AEC death, an increase in the proportion of type
IT AECs (AT II), and impaired reepithelization (Liu et al., 2017).
Therefore, different from normal repair, the repair processes
involved in IPF are uncontrolled, continuous, and abnormal.
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FIGURE 1 | A schematic view of the role of various cells, growth factors and cytokines in IPF. (A) Bone marrow-derived mesenchymal progenitor cells and
circulating fibrocytes in the peripheral circulation are recruited to the lung by the chemokine-chemokine receptor axis. (B) Lung resident MSCs. (C) EMT/EndoMT-
derived mesenchymal cells. (D) Cells from the above three sources aggregate, proliferate, and differentiate into myofibroblasts in the lung, ultimately leading to ECM
expansion and scarring. (E) Immune cells and cytokines involved in IPF.

A large number of cytokines and their signaling pathways are
directly involved in the accumulation of fibroblasts in lung
fibrosis foci (Figure 1). Fibroblasts are the culprits directly
involved in pulmonary fibrosis, and their sources include stem
cells recruited from the bone marrow, fibrocytes recruited from
the peripheral circulation, mesenchymal stem cells (MSCs)
residing in the lung, and EMT/EndoMT-derived interstitial
cells. Plasma cells, etc. The CXCL12-CXCR4 axis (Phillips
et al., 2004), CCL2-CCR2 axis (Chong et al, 2019), CCL3-
CCR5 axis (Ishida et al, 2007; Besnard et al., 2013), and
CCL21-CCR7 axis (Ziegenhagen et al, 1998; Habiel and
Hogaboam, 2014) are directly involved in the recruitment of
fibroblasts. EMT/EndoMT of epithelial and endothelial cells is
affected by the coagulation cascade and angiogenesis-related
cytokines (TF, PAI-1, and VEGF) and secretion released by
AECs (TGF-B, growth factors, TNF-a, MMP/TIMP, and
angiotensinogen), which are implicated in multiple signaling
pathways (TGF-B, Wnt, SHH, Notch, and ER stress/UPR
pathways) (King et al, 2011b; Selman and Pardo, 2014;
Betensley et al., 2016).

Growth factors and cytokines are an integral part of the
fibrotic microenvironment, which leads to differences in the
phenotype of immune cells in the alveoli between patients
with pulmonary fibrosis and healthy individuals. Th1/Th2
imbalance and MI1-M2 polarization are hallmarks of
pulmonary fibrosis. Th2 polarization is characterized by
increased secretion of IL-4 and IL-13 and decreased secretion
of IFN-y. M2 polarization can be induced by the
microenvironment shaped by Th2 polarization and promotes
pulmonary fibrosis through the production of TGF-B, CCL18,
chitinase 3-like 1 (CHI3L1), MMPs, and activation of the Wnt/p-
catenin pathway (Shenderov et al., 2021). Th17 cells can promote

fibroblast proliferation and ECM secretion by secreting IL-17
(Zhang et al., 2019a). In recent years, polymorphisms in immune-
related genes have also been reported to be involved in the process
of pulmonary fibrosis. For example, an increased risk or severity
of IPF is associated with polymorphisms in the TLR3, Toll-
interacting protein (TOLLIP), and interleukin-1 receptor
antagonist (IL-1RA) genes (Whyte et al., 2000; Korthagen
et al, 2012; Noth et al, 2013; O'Dwyer et al, 2013). In
addition, activation of TLR2 and TLR9 has been reported to
show profibrotic effects, whereas TLR3 has antifibrotic effects
(Karampitsakos et al., 2017).

3 THE KEY ROLE OF THE TGF-p SIGNALING
PATHWAY IN IDIOPATHIC PULMONARY
FIBROSIS

Transforming growth factor-p (TGF-f) is a potent profibrogenic
cytokine that plays a central role in the development of
pulmonary fibrosis by promoting fibroblast proliferation and
phenotype modulation, stimulating the deposition of ECM,
and participating in crosstalk with other cytokines and
signaling pathways (Ong et al., 2021).

3.1 A Brief Introduction to TGF-f Signalling

Pathway

The activation of TGF-P pathway includes five steps, including
i) synthesis of TGF-B, ii) activation of latent TGF-f, iii)
interaction between TGF-Bp and TGF-B receptor (TBR), iv)
activation of classical and non-classical pathways, and v)
regulation of nuclear transcription factors and cell
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FIGURE 2 | The critical role of the TGF- pathway and drugs targeting the TGF-B pathway in IPF. (A) Latent TGF-B (TGF- trapped in LAP) binds to ECM through
LTBP. (B) TGF-p is detached from LAP and activated only in the presence of specific stimuli. (C) Activated TGF-p activates the downstream Smad-dependent pathway
(canonical pathway) and Smad-independent pathway (non-canonical pathway) by combining with TBR. (D) The TGF-f pathway ultimately causes phenotypic
reprogramming of AECs, fibroblasts and immune cells and influences fibroblast-to-myofibroblast differentiation, ECM synthesis, angiogenesis, Th2 polarization,

and apoptosis.

phenotypes. A brief introduction to the TGF-P pathway is as protein (LTBP) and undergo intracellular proteolytic cleavage

follows and shown in Figure 2. by the endopeptidase furin. Then, TGF-B-LAP-LTBPs are

secreted into the extracellular medium and eventually bind

i) In the endoplasmic reticulum (ER), TGF-p precursors are to ECM (e.g., fibrillin and fibronectin) through LTBP. At this

assembled into dimers wrapped with latency-associated time, latent TGF-P cannot exert its biological function
peptides (LAPs). TGF-B-LAPs bind to latent TGF-$ binding (Derynck and Zhang, 2003).
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ii) Latent TGF-B is activated under special conditions [e.g.,
plasmin (Coutts et al., 2001), thrombospondin 1 (Murphy-
Ullrich and Suto, 2018), elastase, integrin, BMP-1 and MMP
2 (Tzavlaki and Moustakas, 2020)] and binds to TGF-f
receptor 2 (TBR2).

iii) TBR2 can phosphorylate TGF-p receptor 1 (TBRI) and
activate the downstream classical and non-classical pathways.

iv) In classical pathways, Smad2/Smad3 activated by TBR1 binds
to Smad4 to form Smad2/Smad3/Smad4, which enter the
nucleus and participate in regulating transcription factors
(Derynck and Zhang, 2003). Classical pathways also involve
Smad?7, ubiquitin, coactivator P100, PPAR-y, Ski/SnoN, and
other signal-regulating molecules (Tzavlaki and Moustakas,
2020). In non-classical pathways, TGF-p can activate many
signaling pathways, such as the Ras-Raf-Mek1/2-ERK1/2
pathway, TAK1-MKK3/6-P38 pathway, TAK1-MKK4-JNK
pathway, and PI3K-Akt-mTOR pathway (Derynck and
Zhang, 2003; Ong et al, 2021), and participate in
regulating nuclear transcription factors.

v) Some transcription factors of fibroblasts, alveolar epithelial
cells, endothelial cells, and Th cells are changed, causing the
phenotypic transformation of cells involved in pulmonary
fibrosis, which eventually leads to the differentiation of
myofibroblasts, the deposition of ECM, the abnormal
function of AT II, and an imbalance of immune cells in IPF.

The TGF-P pathway is interrelated with the Wnt/B-catenin
pathway, PI3K/Akt pathway, and pathways of other growth
factors (Yan et al, 2014). Furthermore, in terms of the
pathogenesis of IPF, TGF-B has been implicated in redox
imbalance, mitochondrial dysfunction, EMT, MMP/TIMP
imbalance, and fibrinolytic system imbalance (Chu et al., 2020).

3.2 Strategies to Treat IPF by Targeting

TGF-$ Pathway

Strategies for the treatment of IPF by targeting the TGF-p
pathway include blocking TGF-B synthesis, preventing
activation of latent TGF-B, neutralizing TGF-p ligands/
receptors, and blocking canonical and non-canonical pathways
(Saito et al., 2018; Hamanaka and Mutlu, 2021; Ong et al., 2021).
These strategies are summarized in Figure 2.

Integrins mediate the mechanotransduction positive feedback
to ECM stiffness in a TGF-p-dependent or TGF-B-independent
manner, which is an important therapeutic target. TGF-p-
dependent fibrosis is activated by integrins releasing TGF-{
through tensile forces generated by actin-cytoskeleton
interactions. In the TGF-B-independent pathway, after binding
specific ECM ligands to the ectodomain of integrins, integrins
bind to the cytoskeleton and various signaling proteins through
their cytoplasmic tails, translating the mechanical force of
cytoskeleton contraction and ECM stiffness into biochemical
signals. Then, F-actin activates the downstream Rho/ROCK-
YAP/TAZ signaling pathway via FAK phosphorylation,
ultimately leading to fibroblast phenotype reprogramming.

There are corresponding preclinical candidate drugs for IPF
that target different steps of the TGF-p pathways, including the

Cytokine Signaling Pathways in IPF

synthesis, receptor binding, and downstream signal transduction
(Ong et al., 2021), but no drug specifically for the TGF-f pathway
has been approved due to the side effects of anti-TGF-p treatment
(systemic autoimmune, cardiac valve problems, and
carcinogenesis) (Henderson et al., 2020). Notably, to avoid
systemic autoimmune disease induced by persistent systemic
inhibition of TGF-, it may be necessary to choose the correct
dose or duration of treatment, coadminister anti-inflammatory
drugs, selectively block TGF-f in targeted organs.

4 THE ROLE AND UNDERLYING
MECHANISM OF CYTOKINES AND
GROWTH FACTORS IN IDIOPATHIC
PULMONARY FIBROSIS

As described above, cytokines, growth factors, and related
signaling pathways are intensively involved in the pathogenesis
of IPF. Therefore, they might be promising targets to develop
novel treatment options for IPF. In this section, we describe the
roles of growth factors, chemokines, interleukins, lipid pro-
inflammatory mediators, and their signaling pathways in IPF.
Many drugs targeting these pathways are in development, and we
summarize those that have entered clinical trials to treat patients
with IPF. In recent years, therapeutics targeting these pathways
have shown many limitations in clinical trials. Therefore, we
propose possible approaches to overcome these limitations,
aiming to provide insights into the development of therapies
with fewer side effects and better efficacy.

4.1 Growth Factors

Growth factors can participate in the development and
progression of IPF in TGF-B-dependent or TGEF-f-
independent ways. These growth factors comprise platelet-
derived growth factor (PDGF), fibroblast growth factor (FGEF),
vascular endothelial growth factor (VEGF), epidermal growth
factor (EGF), connective tissue growth factor (CTGF), and
insulin-like growth factor (IGF). Due to the successful
marketing of Nintedanib (an antagonist of PDGFR/VEGFR/
FGFR), many studies have focused on growth factors and their
corresponding receptors. However, there remains considerable
controversy regarding the roles of many growth factors in
promoting fibrosis and resisting fibrosis in IPF. One of the
possible reasons for the controversy is that there are many
subtypes of these growth factors and their receptors, and the
functions of different subtypes differ. Although pharmacological
analysis of these subtypes of growth factors is difficult, it is a vital
step toward precise treatment and personalized treatment, which
is of substantial significance. Next, we introduce the crucial
growth factors PDGF, FGF, VEGF, EGF, and CTGF in detail.

4.1.1 Platelet-Derived Growth Factor

Platelet-derived growth factor (PDGF) is a key growth factor that
stimulates the proliferation and migration of fibroblasts. In a mouse
model of bleomycin-induced IPF, RT-PCR (Maeda et al., 1996),
PDGF antibody neutralization (Walsh et al., 1993), and Northern
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blotting (Zhuo et al., 2004) all demonstrated increased protein or
mRNA expression of multiple subtypes of PDGF. However, the main
subtypes of PDGF found in these experiments differed slightly, and
the specific mechanism requires further research. A clinical study also
observed that the high expression of PDGF was correlated with a low
overall survival rate (Zhu et al., 2017).

Single strands encoded by the PDGEF-A, B, C, and D genes can
be combined in pairs to form five types of dimers, AA/BB/AB/
CC/DD (Heldin and Westermark, 1999; Li and Eriksson, 2003;
Giinther et al., 2012). PDGFRs (PDGF receptors) are also homo/
heterodimerically formed by combinations of single-chain
PDGF-a/PDGF-p. After PDGF binds to the PDGF receptor,
PDGFR dimerization can be induced; subsequently, the two
PDGFRs after autophosphorylation can couple various
downstream signal transduction pathways (Heldin and
Westermark, 1999), such as Ras-mitogen-activated protein
kinase (MAPK) through Grb2 and Shc adaptor proteins and
PI3K and phospholipase C-y (PLCy) (Nishioka et al., 2013).
PDGEFR also participates in the migration and chemotaxis of
fibroblasts through the integrin-FAK pathway. PDGF, as the
main mitogen, can strongly promote the proliferation of
fibroblasts and stimulate collagen synthesis (Heldin and
Westermark, 1999). PDGF also participates in cell migration
through Ca®* influx and cytoskeleton rearrangement (Nishioka
et al.,, 2013).

4.1.2 Fibroblast Growth Factor

FGFs have been divided into seven subgroups encoded by 22
mammalian genomes. Among the 22 FGFs encoded by genomes,
4 FGFs are FGFR-independent, and the remaining 18
extracellular FGFs bind to 7 FGFR subtypes (FGFRI1b,
FGFRI1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c, and FGFRR4).
An FGF can bind to multiple FGFRs. FGFs rely on heparan
sulfate proteoglycan (HSPG) and Klotho-type coreceptors to
improve their binding to FGFRs (Ornitz and Itoh, 2022). After
FGF-FGEFR binding, through the autophosphorylation of FGFRs,
with the help of FGFR substrate 2 and PLCy, signals are
transferred to the RAS-ERK, PI3K/AKT, PKC, and JAK-STAT
signaling cascades, which mediate the survival, proliferation,
differentiation, or migration of cells (Inomata et al, 2015;
Katoh, 2018).

Subtypes of FGFs have functional differences and play
different roles in IPF (Yang et al., 2021). FGF1 (acid FGF or
aFGF) has an anti-fibrotic function. The serum FGF1 level of
patients with IPF was found to be higher than that of the control
group (Shimbori et al., 2016). In rat models induced by TGF-f1,
FGF1 could relieve IPF by inhibiting the TGF-B1 signaling
pathway and promoting the proliferation of AECs (Shimbori
et al, 2016). Further research found that “FGF1 + heparin
treatment” could reverse EMT through the MAPK/ERK kinase
pathway, leading to phosphorylation of ERK-1 and
dephosphorylation of Smad2 (Ramos et al., 2010). FGF2 (basic
FGF or bFGF) has a proliferative effect on lung fibroblasts (Hetzel
et al., 2005; Khalil et al., 2005), and soluble FGFR2c significantly
reduces TGF-pB-induced IPF in mice (Ju et al., 2012). However, it
has also been reported that FGF2 is antifibrotic in part through
decreased collagen expression and fibroblast to myofibroblast

Cytokine Signaling Pathways in IPF

differentiation (Koo et al., 2018). FGF9 and FGF18 promote the
survival and migration of HLFs and inhibit myofibroblast
differentiation in vitro (Joannes et al., 2016). More FGF9 was
expressed in lung tissue myofibroblasts in patients with IPF than
in healthy individuals, and it promoted epithelial cell growth and
expansion of pulmonary interstitial through the Wnt7B/B-
catenin signaling pathway (Yin et al, 2008). FGF10 plays an
antifibrotic role via autocrine and paracrine signaling. During
autocrine signaling, by activating peroxisome proliferator-
activated receptor y (PPAR y), FGF10 blocks the
lipofibroblast-to-myofibroblast transformation induced by
TGEF-B1 and promotes the transformation from myofibroblasts
to lipofibroblasts. In addition, the FGF10 paracrine signal was
considered crucial to the differentiation of alveolar epithelial
progenitor cells during development and the maintenance of
AT II in a steady state (Wu et al,, 2018). FGF21 attenuates the
TGF-p pathway via decreased oxidative stress in bleomycin-
induced pulmonary fibrosis in mice (Zhang et al, 2018).
Coadministration of FGF23 and its coreceptor a-Klotho led to
a significant reduction in fibrosis and inflammation (Barnes et al.,
2019).

In summary, FGF1, FGF10, FGF21, and FGF23 are anti-
fibrotic, while FGF2, FGF9, and FGF18 exhibit contradictory
functions.

4.1.3 Vascular Endothelial Growth Factor

The VEGF family has seven members: VEGF-A, VEGF-B, VEGEF-
C, VEGF-D, VEGF-E, placental growth factor, and snake venom
vascular endothelial growth factors (Inomata et al., 2015). Most
studies have focused on the correlation between VEGF-A and
IPF; thus, our description mainly focuses on VEGF-A. The most
studied and dominant VEGF-A165 can be divided into VEGEF-
Al65a and VEGF-A165b by the splice site. VEGF-Al65a can
promote angiogenesis, and VEGF-A165b can inhibit
angiogenesis.

VEGF-A can bind to VEGFRI1 (Flt-1), VEGFR2 (KDR or
Flk1), and their coreceptors neuropilin-1 and neuropilin-2.
Among them, VEGFR1 binds to circulating VEGF-a and
reduces its bioavailability to VEGFR2. The coreceptors
neuropilin-1 and neuropilin-2 assist in the signal transduction
of VEGFR1 and VEGFR2. After binding to VEGFR2, VEGEF-
A165 can activate the downstream Akt pathway, Src signaling
pathway, NCK and the p38 MAPK pathway, and integrin/FAK
pathway (Fruttiger, 2008; Barratt et al, 2018). VEGF can
stimulate the growth of alveolar epithelial type II cells and the
production of alveolar surfactant, form new blood vessels, and
help epithelial cells and endothelial cells resist apoptosis (Gerber
etal., 1998a; Gerber et al., 1998b; Brown et al., 2001; Compernolle
et al., 2002; Alavi et al., 2003; Mura et al., 2006; Roberts et al.,
2007; Kuhn et al., 2010; Varet et al., 2010; Barratt et al., 2018).

Many contradictory effects of VEGF-A on IPF have been
observed in animal models and clinical trials. The possible
reasons for these differences are as follows: different animal
models, different sampling sites, heterogeneity within and
between individuals, and different VEGF-A subtypes caused by
diverse splice sites. Different subtypes of VEGF-A may have
mutually coordinated pathophysiological relationships. In
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in vitro experiments, VEGF-A165a has been proven to promote
the proliferation of AT II and fibroblasts, increase the expansion
of ECM, and play a role in promoting fibrosis, and VEGF-A165b
could counteract this effect (Varet et al., 2010; Barratt et al., 2017).
Thus, VEGF-A165b may be a compensatory protective
mechanism.

4.1.4 Epidermal Growth Factor
The EGF receptor (EGFR, also known as ErbB1 or HER1) belongs
to the ErbB family receptor tyrosine kinases. EGFR has seven
corresponding ligands: EGF, transforming growth factor-a (TGF-
a), amphiregulin, betacellulin (BTC), epiregulin, epigen, and
heparin-binding EGF-like growth factor (HB-EGF). After
ligands bind to EGFR, the autophosphorylation of EGFR can
activate the downstream MAPK, Akt, and JNK pathways
and promote cell proliferation (Iwamoto and Mekada, 2012).
The relationship between the ErbB family (HER) and IPF
remains unclear and thus requires further research. After
blocking HER in vivo, studies have found that collagen
deposition decreases and lung morphology improves, which
indirectly indicates that the ErbB family plays a role in fibrosis
(Rice et al., 1999; Faress et al., 2007). In addition, in patients with
IPF, the mRNA level of EGFR was upregulated in proliferative
alveolar epithelial cells around fibrosis, and the mRNA level of
EGFR was positively correlated with the mRNA level of type I
collagen and negatively correlated with the clinical prognosis
(Tzouvelekis et al., 2013).

4.1.5 Connective Tissue Growth Factor

CTGF, also known as CNN2, HCS24, or IGFBPS, belongs to the
CNN family. CTGF can interact with a wide range of ECM
components, but this also means that the biological action of
CTGF is highly dependent on the local microenvironment. CTGF
directly binds to other growth factors (e.g., TGF-p, BMPs, and
VEGF), which influence signal emission/transduction (Choi,
2012). CTGF can be secreted by interstitial cells, such as
proliferating AT II and activated fibroblasts (Pan et al., 2001).
The peak of CTGF content mainly appears at the early stage of
IPF, and the peak of CTGF appears earlier than the deposition of
collagen in the lungs (Wang et al., 2011), which indicates that
CTGF may be involved in the early-stage repair of lung tissue
injury.

As an auxiliary regulator of TGF-p in IPF in the local
microenvironment, CTGF can participate in abnormal tissue
repair processes, such as ECM generation and the mobilization
of fibroblasts, by assisting TGF-p (Wang et al., 2011). There was
an interaction between TGF-p and CTGF in IPF animal models
induced by TGF-p/bleomycin, and IPF could be alleviated by the
CTGF antibody (FG-3019, pamrevlumab) (Wang et al., 2011).
CTGF-deficient transgenic mice had the ability to resist IPF
induced by bleomycin (Liu et al., 2011). Therefore, a general
belief is that CTGF, as a fibrosis-promoting medium, is a possible
target for the research and development of anti-IPF drugs.
Pamrevlumab, a human recombinant mAb of CTGF, is the
only antibody drug that has shown activity in a phase II
clinical trial against IPF. In a recent randomized, placebo-

Cytokine Signaling Pathways in IPF

controlled phase II trial for patients with IPF, pamrevlumab
showed good safety and certain therapeutic effects, such as
slowing the decline of pulmonary function and delaying the
progression of fibrosis by HR-CT, which is a milestone of
single-target therapy (Lipson et al, 2012; Raghu et al., 2016).
The phase III clinical trial of pamrevlumab for IPF is at the
recruitment stage (NCT04419558/NCT03955146).

4.2 Chemokines and Chemokine Receptors
Chemokines are small molecule proteins with chemotactic effects
on specific cells, and there are four conserved cysteine residues.
According to the differences in cysteine residues, chemokines
have been divided into four main subfamilies: CXC, CC, CX3C,
and XC. Although the role of some chemokines in IPF remains
unknown, many studies have demonstrated that chemokines can
promote fibrosis or resist fibrosis. It has been reported that
pulmonary fibrosis in animal models can be attenuated by
knocking out genes encoding chemokines or neutralizing
chemokines with antibodies [CCL2-CCR2 (Moore et al., 2001;
Murray et al., 2008; Phan et al, 2021), CCL11-CCR3 (Huaux
et al., 2005), CCL17 (Agostini and Gurrieri, 2006), CCL21-CCR7
(Habiel and Hogaboam, 2014), CCL22 (Strieter, 2005), CXCL6
(Besnard et al., 2013), CXCL12 (Phillips et al., 2004), CXCL14 (Li
etal., 2019), CX3CL1-CX3CRI1 (Rivas-Fuentes et al., 2020), CCR5
(Ishida et al., 2007)]. The CXCLI11-CXCR3 axis has anti-
pulmonary fibrosis effects in a mouse model of bleomycin-
induced pulmonary fibrosis (Strieter, 2005).

Chemokines play a crucial role in the pathological process of
IPF (Figure 3). CXCL12-CXCR4 (Phillips et al., 2004), CCL2-
CCR2 (Chong et al, 2019) CCL3-CCR5 (Ishida et al., 2007;
Besnard et al., 2013), CCL11-CCR3 (Puxeddu et al., 2006),
CCL21-CCR7 (Ziegenhagen et al, 1998; Habiel and
Hogaboam, 2014), CCL26 (Kohan et al,, 2010) promote the
migration of fibrocytes to the lung, whereas CXCL10 (Agostini
and Gurrieri, 2006) inhibits the migration of fibrocytes to the
lung. CCL2-CCR2 (Hambly et al., 2015), CCL11 (Puxeddu et al.,
2006), CCL21-CCR7 (Ziegenhagen et al., 1998; Habiel and
Hogaboam, 2014), CCL24 (Kohan et al, 2010) promote
fibroblast proliferation. CCL18 (Hambly et al, 2015) and
CCL21-CCR7 (Ziegenhagen et al, 1998; Habiel and
Hogaboam, 2014) participate in the differentiation of
fibroblasts to myofibroblasts and stimulate collagen synthesis.
CCL21-CCR7 is involved in the survival of fibroblasts
(Ziegenhagen et al, 1998; Habiel and Hogaboam, 2014).
CCL2-CCR2 (Agostini and Gurrieri, 2006; Besnard et al,
2013; Hambly et al,, 2015), CCL3-CCR5 (Ishida et al., 2007),
CCL17-CCR4 (Karman et al., 2021), CCL22-CCR4 (Yogo et al,,
2009), CX3CL1-CX3CR1 (Rivas-Fuentes et al.,, 2020) promote
migration of monocytes and macrophages. CCL2 (Rose et al.,
2003), CCL17 (Besnard et al., 2013), CCL22 (Besnard et al., 2013),
CCR3 (Fulkerson et al., 2006), CCR4 (Yoshinouchi et al., 2007)
are involved in type 2 immunity, whereas CCR5 (Loetscher et al.,
1998) is involved in type 1 immunity. CXCR3 counteracts the
profibrotic effect of IL-13 by assisting IL-13 receptor a2 gene
expression (Pignatti et al., 2006; Yoshinouchi et al., 2007; Barnes
et al,, 2015). A phase II clinical trial of CNTO 888 (CCL2 mAb)
failed to provide benefit to FVC in IPF patients (NCT00786201).
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bone marrow

Nonetheless, the role of chemokines in IPF remains to be further
investigated.

4.3 Interleukins

Interleukins are a class of cytokines generated by
lymphocytes, monocytes, and other non-monocytes. In
addition to affecting fibrosis by modulating the Th1/Th2
balance, many studies have shown that interleukins can
also directly affect fibroblasts and epithelial cells (Table 1).
Thus, interleukins are expected to be developed as drugs and
biomarkers for treating IPF.

However, clinical trials of IPF treatments targeting IL-4
and IL-13 have not gone well. Several drugs targeting IL-13
have entered clinical trials for IPF, but none of them have
shown protective effects on lung function. Although clinical
trials of IPF antibody drugs have mostly failed in phase II,
there is still hope for interleukin therapy. Inhibition of IL-11
blocks TGF-f1, PDGF, FGF2, IL-13, OSM (Oncostatin M),
and endothelin 1-mediated fibroblast activation (Ng et al,,
2019).

Notably, interleukin supplementation alone may not
reverse the profibrotic phenotype of cells, and the
regulation of cell-cell interactions or phenotypic
transformation may be more promising. In addition, anti-
inflammatory interleukins should be used with caution in
clinical trials, and attention should be given to their side
effects on patient immune function. In addition, rational
design of interleukin dosage forms is very important
because the concentration of the drug in the lungs can
explain some of the differences in the study results.

4.4 Lipid Proinflammatory Mediators

Various lipids and their metabolic derivatives play vital roles in
IPF. Although glucocorticoids (PLA2 inhibitor) have not shown
positive effects in the treatment of IPF in clinical trials, these
findings do not indicate that all lipid metabolism pathways have
no significance as therapeutic targets of IPF. In contrast,
metabolomic studies on fibroblasts have received increasing
attention in recent years.

LT and PG are implicated in the pathogenesis of IPF. In
arachidonic acid metabolic pathways, phospholipids produce
arachidonic acid under the catalysis of phospholipase A2
(PLA2). Then, arachidonic acid produced leukotriene (LT) and
prostaglandin (PG) under the catalysis of 5-lipoxygenase (5-LO)
and cyclooxygenase (COX), respectively. Among them, PGF2a
and LTs promote fibrosis, and PGE2 resists fibrosis (Suryadevara
et al,, 2020). A phase II trial (NCT02503657) on the safety and
tolerability of Tipelukast/MN-001 (LT receptor inhibitor, 5-LO
inhibitor and PDE inhibitor) in patients with IPF is ongoing.

The SPHK1/S1P/S1PR axis is involved in pulmonary fibrosis.
In sphingolipid metabolism, sphingosine kinase 1 (SPHKI)
phosphorylates  sphingosine to produce sphingosine-1-
phosphate (S1P). Then, the binding of S1P to the S1P receptor
can lead to mitochondrial reactive oxygen species (mtROS) and
promote YAPI entry into cell nuclei, affecting the differentiation
of myofibroblasts and matrix remodeling (Huang et al., 2020).
Targeting the SPHK1/S1P/S1PR axis, PF543 (SPHK1 inhibitor),
Mito TEMPO (mitochondria-targeted superoxide dismutase,
which can reduce mtROS) and verteporfin (YAP inhibitor)
have been reported, but these drugs have not entered clinical
trials on IPF treatment.

Frontiers in Pharmacology | www.frontiersin.org

June 2022 | Volume 13 | Article 918771


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Ma et al.

TABLE 1 | The role and underlying mechanism of interleukins in IPF.

Interleukins Pro/anti- Mechanism of action
fibrotic

IL-1B Pro-fibrotic 1) IL-1p-driven pulmonary fibrosis is dependent on IL-17A. 2) Gene
polymorphism of IL-1p is associated with risk of IPF

IL-4 Pro-fibrotic 1) IL-4 can promote the synthesis of collagen I/lll, fibronectin, and other
ECM in fibroblasts. 2) IL-4 is a chemokine for fibroblasts. 3) IL-4-induced
macrophage-derived IGF-I protects myofibroblasts from apoptosis

IL-6 Pro-fibrotic 1) The IL-6/STAT3/Smad3 axis has profibrotic effects. 2) IL-6 inhibits
apoptosis of IPF-derived fibroblasts and promotes apoptosis of normal
fibroblasts. 3) High levels of IL-6 and IL-8 are early features of AE-IPFs
and are associated with worse outcome

IL-8 Pro-fibrotic 1) IL-8 promotes self-renewal, proliferation, and migration of
mesenchymal progenitor cells in an autocrine manner. 2) IL-8 stimulates
the recruitment and activation of macrophages in a paracrine manner

IL-10 Anti-fibrotic 1) IL-10 has powerful anti-inflammatory effects. 2) IL-10 inhibits collagen |
synthesis, although the antifibrotic effect of IL-10 is controversial

IL-11 Pro-fibrotic  IL-11 promotes fibrosis via JAK/STAT pathway, Ras/Raf/MEK/ERK1/2
pathway, and PIBK/Akt/mTOR pathway

IL-13 Pro-fibrotic IL-13 stimulates fibroblast proliferation, and induces TGF-p, PDGF,
CTGF, collagen I, and fibronectin production

IL-17 Pro-fibrotic 1) IL-17A promotes cell proliferation, ECM deposition, and myofibroblast
differentiation through NF-kb and JAK2 signaling. 2) IL-17B is also
involved in dysbiosis of lung microbiota. IL-17 cooperates with TGF-$1-
mediated Smad2/3 and ERK1/2 to induce EMT in human pulmonary
alveolar epithelial cells

IL-18 Pro-fibrotic IL-18 promotes senescence and SASP in pulmonary fibroblasts by
blocking the Klotho pathway

IL-22 Anti-fibrotic  IL-22 inhibits TGF-B-induced signaling pathways and reduces EMT and
myofibroblast differentiation

IL-24 Pro-fibrotic IL-24 cooperates with IL-4 to promote macrophage M2 polarization

IL-25 Pro-fibrotic 1) IL-25/IL-33/TSLP* AECs-IL-25R/IL-33R/TSLPR* (myofibroblasts
axis is involved in epithelial-mesenchymal crosstalk. 2) Autocrine IL-25/
IL-83/TSLP (thymic stromal lymphopoietin) from alveolar epithelial cells
can cause damage and phenotypic changes in alveolar epithelial cells

IL-31 Pro-fibrotic 1) IL-31 regulates the transcription of ECM and AECs-related genes. 2)
IL-31 can cause collagen deposition and decreased lung function

IL-37 Anti-fibrotic 1) IL-37 resulted in enhanced autophagy and attenuated TGF-p1 of IPF

fibroblasts. 2) IL-37 inhibits oxidative stress-induced death of AECs

Cytokine Signaling Pathways in IPF
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The ATX/LPA/LPAR axis plays a potent role in pulmonary
fibrosis. Lysophosphatidic acid (LPA) has been proven to activate
G protein-mediated signal transduction pathways by binding to
its receptors (LPAR1 and LPAR2), which leads to different
reactions from lung cells, including the promotion of the
apoptosis of epithelial cells, regulation of endothelial
permeability, activation of avB6 integrin-mediated TGEF-p
signaling, secretion of IL-8, and recruitment and survival of
fibroblasts (Tager et al, 2008; Ninou et al, 2018). LPA can
promote the apoptosis of epithelial cells (Suryadevara et al,
2020). LPA is produced by many metabolic pathways in vivo,
among which ATX/LPA/LPAR is the main pathway.
Phosphatidylcholine (PC) generates LPC
(lysophosphatidylcholine) under the action of phospholipase
Al/phospholipase A2 (PLA1/PLA2), and LPC is hydrolyzed
under the action of autotaxin (ATX)/lysoPLD to generate
LPA. LPA exerts biological effects by binding to LPAR
(Suryadevara et al, 2020). Drugs targeting different positions
of the ATX/LPA/LPAR axis have entered clinical trials. The ATX
inhibitors BBT-877 and GLPG1690 entered phase I clinical trials
(completed) and phase III clinical trials (terminated) on their

anti-IPF treatment, respectively. The LPA1 receptor antagonists
BMS-986278 (recruiting) and BMS-986020 (completed) have also
entered phase II clinical trials.

5 GROWTH FACTOR AND CYTOKINE
SIGNALING CASCADES IN IDIOPATHIC
PULMONARY FIBROSIS

5.1 Receptor-Type Tyrosine Kinases and
Non-Receptor-Type Tyrosine Kinases

Signaling Cascades

Due to the central role of growth factors in IPF, the signaling
cascade of growth factor receptors is an indispensable topic.
Growth factor receptors (GFRs) are receptor-type tyrosine
kinases (RTKs), and their counterparts are non-receptor-type
tyrosine kinases (non-RTKs) free in the cytoplasm. Src family
kinases (SFKs) are a non-RTK family with eleven members,
among which Src, Yes and Fyn are ubiquitously reported (Li
et al, 2020). RTK and non-RTK signaling crosstalk with

Frontiers in Pharmacology | www.frontiersin.org

June 2022 | Volume 13 | Article 918771


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Ma et al.

Cytokine Signaling Pathways in IPF

NF-kB

®
@D

m

MT

nucleus

.
\.
E ) F orR VEGF A1 65a
CTGE blndlng toTGF-B -t Different FGF |soforms VEGF-. A165b
exert anti-/pro-fibrotic
function
/f e
mad7
g s Gred) | qEmD )/
| @@ J
1 < Src Fyn
ERK 7 Anti-/pro-fibroti
s pro-fibrotic
‘F’gg POORSK l l
@ v
l D @

e ;
.

FIGURE 4 | Crosstalk between RTK/non-RTK and other signaling pathways. PDGFR activates NF-«kB signaling through the PI3K/Akt pathway. Integrins participate
in EMT of epithelial cells through SFK/B-catenin-mediated signaling. TGF-p/Smad signaling interacts with the CTGF, Src, Fyn, and Notch pathways to participate in EMT
in epithelial cells. Different subtypes of FGF and VEGF have different pro- or antifibrotic effects.

YHOXO/CL10XD

A 4
v j Proliferation of AT
fibroblasts : .

Il and fibroblast, migration

differentiation ECM synthesis

numerous other pathways and contribute to fibrosis via
phenotype modulation of fibroblasts and AECs (Figure 4).
The combination of TGF- and TBR can not only initiate the
TGF-B/Smad signaling pathway but also indirectly participate in
the differentiation of fibroblasts by activating Src/p38
(Pechkovsky et al, 2008) and Fyn/STAT (Xu et al, 2019).
Integrins can activate SFKs to activate [-catenin and
participate in EMT of epithelial cells (Ulsamer et al., 2012).
CTGF participates in abnormal tissue repair by assisting TGF-
B. The Notch pathway can also promote TGF-p-mediated
fibroblast differentiation through activation of Smads (Aoyagi-
Ikeda et al., 2011). MAP3K19 regulates nucleocytoplasmic
shuttling of the activated R-Smads, which promotes TGF-p-
mediated fibrosis (Boehme et al, 2016). MKP-5, a tyrosine
phosphatase negatively regulating the p38 and JNK pathways,
inhibits Smad7 activity but promotes Smad3 phosphorylation
and the expression of fibrogenic genes (Xylourgidis et al., 2019).
PDGFR activates NF-kB via the Src/PI3K/Akt pathway
(Cheng et al., 2014). PKCS attenuates pulmonary fibrosis
by enhancing the stability and activity of A20, an
inhibitory protein of NF-xB signaling. The PDGFR/mTOR
signaling  pathway is  associated  with = PINKI1/
PARP2  dysregulation-induced mitophagy deficiency,
leading to myofibroblast differentiation and proliferation
(Tsubouchi 2018). Different isoforms of FGF
participate in the process of fibrosis through FGFR; for
example, FGF1 (Ramos et al., 2010) and FGF10 (Cheng
et al., 2014) are anti-fibrotic, while FGF2 is pro-fibrotic (Ju
et al., 2012). VEGF-A165a has been proven to promote the

et al.,

proliferation of AT II cells and fibroblasts and ECM
expansion, and VEGF-A165b could counteract this effect
(Varet et al.,, 2010; Barratt et al., 2017). VEGFRI1 induces
pulmonary fibrosis by promoting the migration of VEGFR1+
cells, which is dependent on the SDF-1/CXCR4 axis (Amano
et al., 2021). In addition to the above GFR, Gas6/TAM
receptor-type tyrosine kinases have also been reported to
promote pulmonary fibrosis (Espindola et al., 2018).

5.2 Developmental Pathways: Hedgehog,
Wnt, and Notch

Developmental pathways play an important role in the
developmental stages of the lung. In adults, some
developmental pathways enter a dormant state but are
activated again when abnormal lung damage occurs. These
signaling pathways include the TGF-f, FGF, Hedgehog, Wnt,
and Notch signaling pathways (Chanda et al, 2019)
(Figure 5). Among them, TGF-p and FGF have been
mentioned in the previous section and will not be
repeated here.

The Hedgehog pathway starts with the Hedgehog ligand (Hh)
and its receptor ptchl and then activates downstream pathways
in a Gli transcription factor-dependent (classical) or independent
(non-classical) manner. In the canonical pathway, the binding of
Hh to ptchl relieves the inhibitory effect of ptchl on Smo. Then,
Smo is transferred to the plasma membrane and participates in
the regulation of genes in the nucleus by activating full-length Gli
to become Glil/2/3 (active form), thereby inducing AEC
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plasma membrane, releasing and activating full-length Gli, which leads to AEC apoptosis, fibroblast differentiation, EMT, and M2 polarization. In non-canonical hedgehog
pathways (type I), binding of Hh to ptch1 blocks the recruitment of the pro-apoptotic complex by cyclin B1, resulting in anti-apoptosis and promotion of cell proliferation.
In non-canonical hedgehog pathways (type 1), Smo is coupled to Gi protein, activating downstream PI3K, Rho, and Rac1, resulting in an increase in intracellular

calcium concentration and a rearrangement of the cytoskeleton. (B) Wnt promotes the accumulation of p-catenin by binding to FZD, thereby stimulating AECs to release
proinflammatory factors and promote collagen synthesis in fibroblasts. Wnt also directly induces AEC reprogramming and proliferation via WISP-1. TGF-p can induce
MSCs to secrete Wnt and promote MSC differentiation. (C) The Notch ligand binds to the Notch receptor, causing the Notch intracellular domain (NICD) of the Notch
receptor to break and enter the nucleus, leading to gene transcription. Lfng positively regulates this process, while Numb negatively regulates this process. Wnt is also

involved in the regulation of Akt and Smad pathways.

apoptosis, fibroblast differentiation, EMT, and M2 polarization
(Effendi and Nagano, 2021). In the non-canonical pathway (Type
I), the binding of Hh to ptch1 prevents cyclin B1 from recruiting
proapoptotic complexes, thereby failing to activate caspase-
mediated apoptosis. After entering the nucleus, cyclin Bl can
also regulate cell cycle progression by promoting cell proliferation
(Robbins et al., 2012; Effendi and Nagano, 2021). In the non-
canonical pathway (Type II), the coupling of Smo to Gi protein
activates downstream PI3K, Rho, and Racl, leading to an increase
in intracellular calcium concentration and cytoskeleton
rearrangement (Robbins et al., 2012; Effendi and Nagano, 2021).

The Wnt signaling pathway is an important signaling
pathway in response to postnatal injury and regeneration.
Binding of Wnt3a to Frizzled (FZD), followed by B-catenin
accumulation, induces AECs to release proinflammatory
factors (IL-6, IL-1P) and promotes fibroblast collagen
synthesis. In addition, Wnt-inducible signaling protein-1
(WISP-1) is also involved in AEC reprogramming and
proliferation (Konigshoff et al., 2009). TGF-p promotes the
differentiation of mesenchymal stem cells (MSCs) into
fibroblasts by activating Gli to secrete Wnt5a, Wnt10a, and
Wnt7b, thereby initiating the Wnt pathway (Chen et al., 2018;
Martin-Medina et al., 2018). Since Wnt signaling is associated

with a large number of normal physiological functions, there
are currently no anti-IPF drugs targeting this pathway.

The Notch pathway is a highly conserved signaling pathway
that mediates short-range signaling in neighboring cells. The
Notch ligand-expressing cell binds to the Notch receptor, causing
the Notch intracellular domain (NICD) of the Notch receptor to
break and enter the nucleus to lead to gene transcription. Lfng
positively regulates this process, while Numb negatively regulates
this process (Kiyokawa and Morimoto, 2020). Notch is also
involved in the TGF-Bf/Smad3-mediated transformation of
fibroblasts to myofibroblasts (Aoyagi-Ikeda et al., 2011). Notch
also induces phosphorylation of Akt by stimulating the
expression of insulin-like growth factor-1R (IGF1R), which in
turn promotes pulmonary fibrosis by hypoxia-inducible factor-1
(HIF-1) (Eliasz et al., 2010).

5.3 Other Critical Signaling Cascades in
Idiopathic Pulmonary Fibrosis: JAK/STAT,
PIBK/Akt/mTOR, MAPK, and
Hippo-YAP/TAZ

In recent years, research on the molecular mechanism of fibrosis
has become increasingly in depth, and the JAK/STAT, PI3K/Akt/
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FIGURE 6 | The roles of the JAK/STAT pathway, PI3K/Akt/mTOR pathway, MAPK pathway, and Hippo-YAP/TAZ pathway in IPF. (A) After interleukins and growth
factors bind to the corresponding receptors, they can activate the JAKs coupled to the receptors, and then JAKs can phosphorylate STAT. Homodimerized STAT enters
the nucleus and affects gene transcription. (B) Growth factors and cytokines can activate PI3K by binding to receptor-type tyrosine kinases, and then PI3K catalyzes the
phosphorylation of PIP2 to PIP3. PIP3 can activate Akt and its downstream mTOR complex (MTORC). PTEN is a negative regulator of the PISK/Akt/mTOR
pathway. TGF-p and Notch are positive regulators of Akt. (C) The MAPK pathway consists of three downstream cascades, the JNK, p38, and ERK pathways. JNK and
p38 signaling are activated through a pattern of MAP3K-MAP2K-MAPK signaling cascades, while ERK is activated through the MAP3K-Ras-Raf-MEK-ERK cascade.
MK2 is a downstream signaling molecule of p38. Growth factors can activate ERK5, and ERK5 and p90RSK can acetylate Smad, thereby promoting the TGF-p/Smad
pathway. (D) The Hippo-YAP/TAZ pathway is involved in pulmonary fibrosis through the integrin pathway, G protein-coupled receptor pathway, and
mechanotransduction pathway. ECM force initiates the Hippo-YAP/TAZ pathway with activation of FAK and Rho/ROCK. FAK and Rho/ROCK relieve the inhibition of the
transcription factor YAP/TAZ by large tumor suppressor kinase 1 and 2 (LAST1/2) by promoting the growth, stability, and contractibility of F-actin. Different GPCR
signaling pathways regulate LAST1/2 activity through the Rho/ROCK/F-actin pathway.
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mTOR, MAPK, and Hippo-YAP/TAZ signaling cascades have
received extensive attention (Figure 6). Drugs targeting these
signaling pathways are already in clinical trials.

Cells respond to inflammatory factors rapidly through JAK/
STAT signaling. After interleukins (IL-4, IL-6, IL-11, IL-13,
and IL-31) and growth factors (TGF-B, PDGF, VEGF, EGF,
and FGF) bind to the corresponding receptors, they can
activate and interact with the receptors. Receptor-coupled
JAKs (JAK1, JAK2, JAK3, and TYK2) phosphorylate STATSs
(STAT1, STAT2, STAT3, STATS5, and STAT6) (Montero et al.,
2021). Homodimerized STAT enters the nucleus to affect gene
transcription, leading to fibroblast differentiation, EMT,
senescence, autophagy, and ERS (Montero et al., 2021).
Despite numerous isoforms of JAK and STAT, JAK2/STAT3
plays a dominant role in pulmonary fibrosis (Milara et al.,
2018). Jaktinib dihydrochloride monohydrate and CC-90001,
as JAK1/2 inhibitors, have entered phase II clinical trials
(NCT04312594 and NCT03142191, respectively). Since
different subtypes of STAT share downstream pathways,
blocking only one subtype of STAT may lead to ineffective
treatment due to the compensatory effect of other subtypes of

STAT. Therefore, no therapeutic drugs targeting STAT have
entered clinical trials.

PI3K/Akt/mTOR signaling is involved in autophagy and has
caused a huge hit in the field of tumor therapy. A genome-wide
association study revealed an association of mTOR with
susceptibility to fibrosis (Allen et al., 2020). Growth factors
and cytokines activate PI3K by binding to receptor-type
tyrosine kinases, which in turn catalyze the phosphorylation of
PIP2 to PIP3. PIP3 activates Akt and its downstream mTOR
complex (mTORC), which promotes collagen synthesis,
proliferation in fibroblasts, and EMT in epithelial cells
(Lawrence and Nho, 2018; Fang et al., 2020). PTEN can
inhibit the phosphorylation of PIP2, thereby inhibiting the
signaling pathway downstream of PI3K and reducing the
senescence of AECs (Qiu et al, 2019). Akt relieves the
inhibition of mTORC1 by TSCI/TSC2 by phosphorylating
TSC2 (Huang and Manning, 2009). mTOR also intersects with
NF-«B signaling (Guo et al., 2013). TGF-p signaling can activate
Akt in a SEMA 7A-dependent manner, which in turn activates
downstream mTOR signaling and promotes lung fibrosis
(Reilkoff et al., 2013). mTOR can activate collagen synthesis
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via 4E-BP1 (Woodcock et al., 2019). RPS6KB2 (ribosomal protein
S6 kinase B 2) is reported to be involved in the process of aging
and IPF due to its activation by growth factors and regulation of
the protein kinase mTOR signaling pathway (Hao et al., 2017).

Mitogen-activated protein kinase (MAPK) mainly consists
of three downstream cascades, the JNK, p38 and ERK
pathways. JNK/p38 is activated via a MAP3K-MAP2K-
MAPK signaling cascade, whereas ERK is activated via a
MAP3K-Ras-Raf-MEK-ERK cascade (Woodcock et al.,
2019). JNK and p38 signaling participates in apoptosis,
necroptosis, and EMT of AEC; fibroblast-to-myofibroblast
differentiation; and maintenance of the myofibroblast
phenotype (Kasuya et al,, 2021). MK2, downstream of the
p38 pathway, has a role in fibroblast invasion and fibrosis
(Liang et al., 2019). Growth factors can activate ERK5, and
then ERK5 and p90RSK can acetylate Smad, thereby
promoting the TGF-/Smad pathway (Kim et al., 2020). The
ERK1/2-calpain pathway has been reported to be associated
with pulmonary fibrosis in vivo and in vitro (Zou et al., 2020).

The Hippo-YAP/TAZ pathway is involved in pulmonary
fibrosis through the integrin pathway, G protein-coupled
receptor pathway, and mechanotransduction pathway.
Integrins promote the growth, stability, and contractibility
of F-actin by activating FAK, thereby relieving the inhibitory
effect of large tumor suppressor kinase 1 and 2 (LAST1/2) on
YAP/TAZ. After entering the nucleus, YAP/TAZ regulates AT
I apoptosis and AT II exhaustion, fibroblast proliferation and
ECM expansion (Sun et al., 2021). The mechanical force of
ECM can also activate F-actin via Rho/ROCK signaling and
promote pulmonary fibrosis (Zhou et al., 2013). Different
GPCR signaling pathways (Gas, Gal2/13, Gaq, and Gai/o)
regulate LAST1/2 activity through the Rho/ROCK/F-actin
pathway (Haak et al., 2020). Tank binding kinase 1 (TBK1)
activates YAP/TAZ in a proteasomal machinery-
dependent but LAST-independent manner (Aravamudhan
et al., 2020).

6 ADVANCES IN THE DEVELOPMENT OF
ANTI-IPF DRUGS TARGETING CYTOKINE
AND GROWTH FACTOR PATHWAYS

6.1 Pirfenidone and Nintedanib, Two
FDA-Approved Drugs for Patients With

Idiopathic Pulmonary Fibrosis

Antifibrotic therapy provides survival benefit and protection
against all-cause and respiratory-related hospitalization for IPF
patients (Mooney et al., 2021). FDA approved antifibrotic drugs
for treating IPF include Pirfenidone and Nintedanib, and their
clinical efficacy is similar though there are no high-quality clinical
trials directly comparing the efficacy of the them (Marijic et al.,
2021). Regarding their mechanism of action, both of them target
multiple growth factor and cytokine-related signaling pathways.
Now that the pathogenesis of IPF remains unclear, targeting
multiple pathways may be an effective treatment strategy for IPF.
In addition, since the mechanisms of Pirfenidone and Nintedanib

Cytokine Signaling Pathways in IPF

are not the same, a combination treatment may have synergistic
effects. The combination of Pirfenidone and Nintedanib has been
shown to be well tolerated and safe, which encourages further
research into combination therapy (Flaherty et al., 2018; Vancheri
et al,, 2018). How to relieve the side effects caused by the off-
target effects of Pirfenidone and Nintedanib is also an
important topic.

6.1.1 Pirfenidone
Pirfenidone is a pyridine compound approved for marketing in
Japan in 2008. It was originally developed as an anti-
inflammatory drug. Interestingly, studies in animal models
demonstrated that it had the effect of resisting fibrosis of
various organs, and it was later approved for IPF treatment.
The anti-fibrotic mechanism of Pirfenidone has not been fully
elucidated. Published studies indicated that it could inhibit
fibrosis mainly by blocking TNF-a and TGF-B/Smad pathways
(Oku et al., 2002; Schaefer et al., 2011; Conte et al., 2014).
Three large-scaled RCTs demonstrated that Pirfenidone could
delay FVC decline, improve progression-free survival, increase
exercise tolerance, and reduce all-cause or IPF related mortality
(Taniguchi et al., 2010; Noble et al., 2011; Noble et al.,, 2012; King
etal., 2014). Recently, a systematic review and meta-analysis of RCT's
also indicated that Pirfenidone treatment was associated with a
longer progression-free-survival and a lower incidence of acute
exacerbation (Wu et al, 2021). In the real-world practice,
Pirfenidone also provided beneficial effects on survival and
pulmonary function decline (Lee et al., 2021). Moreover, A post
hoc analysis of ASCEND and CAPACITY program suggested a
clinically relevant benefit of Pirfenidone in IPF patients with more
advanced lung function impairment (Nathan et al., 2019).
However, the use of Pirfenidone has some limitations, such as
a short half-life (2.5h) and a high daily dose (2,403 mg/day).
Although generally well tolerated, a minority of patients
discontinued treatment due to gastrointestinal and skin-related
adverse events. These side effects can be mitigated or prevented
by taking it with/after meals, avoiding Sun exposure, wearing
protective clothing, and using broad-spectrum sunscreens
(Costabel et al., 2014). In addition, caution is recommended
prior to Pirfenidone use in IPF patients with severe hepatic
and renal insufficiency.

6.1.2 Nintedanib

Nintedanib is a small molecule tyrosinase inhibitor approved
for marketing in 2014. Initially, researchers intended to screen
drugs that selectively inhibit VEGFR-2 for anticancer
treatment. However, in subsequent research, Nintedanib
had good antifibrotic and anti-inflammatory effects and
was approved for IPF treatment. Nintedanib mainly
inhibits tyrosine kinase receptors, such as PDGFR, FGEFR,
and VEGFR, and non-receptor tyrosine kinases, such as Src
and Flt-3 (Hilberg et al., 2008).

The INPULSIS-1 and INPULSIS-2 programs demonstrated
that Nintedanib could delay FVC decline and reduce the risk of
disease progression (Richeldi et al., 2014; Keating, 2015).
However, the parameter of time to first AE and HRQL
(Health-related Quality of Life) was inconsistent between
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TABLE 2 | Emerging drugs targeting cytokine and growth factor pathways for IPF treatment in clinical trials.

Targets Drugs

TGF-p GC1008/fresolimumab (TGF-B antibody)

TGF-B PLN-74809 (integrin avpf6/avf1 inhibitor)

TGF-p TRK-250 (anti-TGF-B mRNA nucleic acid)

TGF-p TD139 (suppress TGF-p receptor by targeting galectin-3)

Clinical trial information

Phase 1 (completed, NCT00125385)

Phase 2 (recruiting, NCT04072315)

Phase 2 (recruiting, NCT04396756)

Phase 1 (Active, not recruiting, NCT03727802)
Phase 1/2 (completed, NCT02257177)

Phase 2 (recruiting, NCT03832946)

TGF-p1, CTGF, IL-p23p19, IL-6  PBI-4050 (inhibitor of TGF-p1, CTGF, IL-23p19, IL-6) Phase 2 (completed, NCT02538536)
CTGF Pamreviumab (CTGF mAb) Phase 3 (recruiting, NCT03955146); Phase 3 (recruiting, NCT04419558)
IL-13 QAX576 (IL-13 mAb) Phase 2 (terminated, NCT01266135)
Tralokinumab (IL-13 mAb) Phase 2 (terminated, NCT01629667)
Lebrikizumab (IL-13 mAb) Phase 2 (completed, NCT01872689)
IL-4, IL-13 SAR156597 (IL-4 and IL-13 Antibody) Phase 2 (completed, NCT02345070)
CCL-2 CNTO 888 (CCL2 mAb) Phase 2 (terminated, NCT00786201)
JNK Jaktinib Dihydrochloride Monohydrate (JNK1/2 inhibitor) Phase 2 (recruiting, NCT04312594)
CC-90001 (JNK1/2 inhibitor) Phase 2 (active, not recruiting, NCT03142191)
Src Saracatinib (Src kinase inhibitor) Phase 1/2 (recruiting, NCT04598919)
Hedgehog pathways taladegib/ENV-101 (Smo receptor inhibitor) Phase 2 (not yet recruiting, NCT04968574)
ROCK KD025 (ROCK?2 inhibitor) Phase 2 (completed, NCT02688647)
Leukotrienes MN-001/Tipelukast (leukotriene receptor antagonist) Phase 2 (active, not recruiting, NCT02503657)
LPC-ATX-LPA BMS-986278 (LPA1R antagonist) Phase 2 (recruiting, NCT04308681)

INPULSIS-1 and INPULSIS-2 (Keating, 2015). Interestingly,
despite similar efficacy of Pirfenidone and Nintedanib, there
was a higher rate of discontinuation of Nintedanib due to
adverse effects (Takehara et al., 2022). Gastrointestinal adverse
events (diarrhea, nausea, and vomiting) were reported most
commonly (Keating, 2015). Patients treated with Nintedanib
who experience diarrhea should maintain hydration and take
antidiarrheal therapy as soon as symptoms occur. Dose reduction
can also be taken into consideration (Corte et al., 2015).

The timing of antifibrotic therapy may influence the
outcome of IPF treatment. A retrospective study indicated
that patients who initiated Nintedanib immediately after IPF
diagnosis might have reduced hospitalization risk and medical
costs compared with those who start treatment later (Singer
et al., 2022). A post hoc analysis of INPULSIS program
suggested that probable UIP with traction bronchiectasis in
high-resolution CT might be sufficient for patients to benefit
from Nintedanib, implying the importance of early
antifibrotic therapy (Lobo, 2016).

Although high-quality clinical trial data are currently lacking
to directly demonstrate that Nintedanib is effective in end-stage
IPF, the latest post hoc analyses of the INPULSIS and INSTAGE
programs suggest that it has some effect in IPF patients with more
severely impaired gas exchange (Richeldi et al., 2020).

6.1.3 Implications of Pirfenidone and Nintedanib for

Anti-ldiopathic Pulmonary Fibrosis Drug Discovery

With the launch of Pirfenidone and Nintedanib in multiple
countries, the number of IPF patients not receiving anti-
fibrotic therapy will decrease in the future, and it will
become increasingly difficult to observe the natural
progression of IPF. For ethical reasons and feasibility of
patient recruitment, more and more clinical trials of new
drugs will use Pirfenidone and Nintedanib as controls. This
sets a higher standard for the efficacy of new drugs. In

addition, there will be a trend to combine new drugs with
existing anti-fibrotic therapies in clinical trials, and whether
they can bring additional benefits will be the determining
factor. Furthermore, whether a single drug is sufficient to
effectively delay the progression of IPF is an important
pharmacoeconomic proposition. Since IPF is a rapidly
progressive and irreversible disease, whether anti-fibrotic
therapy is effective in different stages of IPF, especially in
end-stage IPF and suspected IPF, also deserves further study.
There are currently no high-quality clinical trials that directly
demonstrate the efficacy of antifibrotic therapy in end-stage
IPF. In addition, whether patients with suspected IPF on
unbiopsied CT images without biopsy require prophylactic
antifibrotic therapy remains to be further investigated.

6.2 Anti-ldiopathic Pulmonary Fibrosis
Drugs Targeting Cytokine and Growth
Factor Pathways in Clinical Trials

With the continuous exploration of the pathophysiological process of
IPF and the continuous clarification of the cytokine and growth factor
pathways, the targets of IPF treatment have also become diversified.
Many targets and drugs developed based on them have entered
clinical trials (Table 2). Although most of them fail to enter phase III
clinical trials, a few drugs show promise in the treatment of IPF.
Currently, pamrevlumab (CTGF mAb) and PRM-151 (recombinant
pentraxin 2) have successfully entered Phase III clinical trials.

6.3 Information About Clinical Trials That
Target Complications and Comorbidities of

Idiopathic Pulmonary Fibrosis

Complications and comorbidities are of substantial
significance to the disease progression and quality of life in
IPF patients.

Frontiers in Pharmacology | www.frontiersin.org

June 2022 | Volume 13 | Article 918771


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Ma et al.

Cough affects up to 80% of patients with IPF, is frequently
disabling, and lacks effective therapy. A 24-week, double-blind,
two-treatment, 24 patients enrolled, two-period crossover trial
showed that thalidomide improved cough and respiratory quality
of life in patients with IPF (Horton et al., 2012).

Patients with IPF are also at risk of developing pulmonary
hypertension as the underlying condition worsens (Tanaka et al.,
2017). The BUILD-3 program showed no benefit of Bosentan in
the life quality of IPF patients (King et al., 2011a). However, a
prospective study showed that Bosentan was associated with a
trend toward decreased adverse events and improved respiratory
status (Tanaka et al., 2017). Sildenafil is an FDA-approved drug
for pulmonary arterial hypertension. A double-blind randomized
clinical trial showed that the combination of Sildenafil and
Nintedanib significantly reduced BNP (B-type natriuretic
peptide, an indicator of heart failure) in IPF patients with
right ventricular dysfunction compared with Nintedanib alone,
but did not improve HRQL (Behr et al., 2019; Suarez-Cuartin and
Molina-Molina, 2019). More recently, a systematic review and
meta-analysis of RCT's reported that Sildenafil probably reduced
all-cause mortality in IPF patients (Pitre et al., 2022), although
more studies are needed to confirm this. The 2015 ATS/ERS/JRS/
ALAT clinical practice guideline conditionally recommends
against the use of Bosentan and Sildenafil, while the 2011
version strongly recommends against the use of them.

Increased bacterial load and loss of microbial diversity
have been reported in IPF (Han et al., 2014; Molyneaux
et al., 2014), which are associated with disease progression
and immune response (Huang et al., 2017; Molyneaux et al,,
2017). However, the role of several antibiotics in IPF appears
to be controversial. A retrospective study of 85 AE-IPF
patients showed that azithromycin may improve survival in
patients with AE-IPF compared with a fluoroquinolone-based
regimen (Kawamura et al, 2017). On the contrary, a
randomized controlled crossover study of 25 IPF patients
does not support the use of low-dose azithromycin for
chronic cough in IPF (Guler et al., 2021). In addition, a
pragmatic randomized unblinded clinical study of 513 IPF
patients didn’t support the additional use of co-trimoxazole or
doxycycline (Martinez et al., 2021). Thus, the selection of
antibiotics and the effect of them on immune cells need to be
further explored.

Gastroesophageal reflux occurs in a high proportion of IPF
patients (Raghu et al., 2015), and chronic microaspiration
secondary to gastroesophageal reflux is thought to play a
role in disease pathogenesis and progression (Savarino
et al., 2013). The 2015 ATS/ERS/JRS/ALAT clinical practice
guideline conditionally recommends anti-acid therapy.
However, whether anti-acid therapy is effective in IPF
patients remains highly controversial (Lee et al., 2011; Lee
et al,, 2013; Kreuter et al., 2016; Raghu et al., 2018; Tran et al.,
2021). In addition, whether anti-acid treatment should choose
anti-acid drugs or radical therapy (such as Nissen
fundoplication) requires further study (Johannson et al,
2017). Therefore, to investigate the efficacy of anti-acid
therapy in slowing the progression of IPF, a phase III,
randomized, placebo-controlled, double-blind, multicenter
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clinical trial using lansoprazole is currently enrolling
patients with IPF (NCT04965298).

7 CHALLENGE AND OUTLOOK

Research on the pathogenesis of IPF has made considerable
progress. After years of preclinical research and clinical
studies, the pathogenesis of IPF has changed from simple
inflammation to abnormal epithelial-mesenchymal crosstalk
and other pathogenic mechanisms. Based on the emerging
pathological mechanism, many studies have systematically
studied the key roles of cytokine and growth factor pathways
in the pathogenesis of IPF. The approval of Pirfenidone and
Nintedanib shows that therapy targeting these pathways is very
promising. Although investigational drugs targeting some
cytokines such as IFN-y, TNF-qa, and IL-13 have not shown
satisfactory efficacy, the development of anti-IPF drugs targeting
cytokine and growth factor pathways is still promising. Currently,
there are numerous clinical trials investigating the efficacy of
these drugs in the treatment of IPF and more drugs may be
approved based on the results of these trials.

Advances in the field of cytokine and growth factor pathways
would help slow disease progression, prolong lives, and improve
the quality of life of IPF patients in the future. Therefore, this
review tried to provide an overview of cytokines, growth factors,
and their signaling pathways in IPF. Furthermore, key
information about emerging drugs targeting these pathways
for IPF treatment in clinical trials is provided.

Based on the findings of this review, the following points need to
be considered in future studies to make strategies targeting these
signaling pathways more promising for the treatment of IPF
patients. Although upregulating or antagonizing certain cytokine
or growth factor signaling pathways alone may not reverse
differentiated cells, promoting fibrotic phenotype transition is
more promising. Since cytokine and growth factor signaling
pathways also play vital roles in other physiological and
pathological processes, including damage repair, defense against
infection, autoimmune disease, and antitumor immunity, long-
term non-selective targeting of these pathways may lead to
undesired side effects. Therefore, the identification of more
specific targets and the development of drugs having high
selectivity on them, the optimization of drug delivery to increase
drug concentrations at the target site, and the identification of
biomarkers to help select patients who might benefit more from
drugs are all worth exploring. In addition, combination therapy with
Pirfenidone and Nintedanib might bring better clinical benefits for
IPF patients than single drug administration.

One of the novelties of this review is giving an extensive
description of the multiple roles of cytokine and growth factor
pathways in pulmonary fibrosis, which provide new insights
into therapeutic strategies for IPF. These pathways form a
complex network in the pathological process of pulmonary
fibrosis, and exploring the crosstalk between different
signaling cascades may help discover more potential
targets. Clinical trials are a critical stage that all approved
drugs must go through. Some of the drugs in clinical trials for
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the treatment of IPF target cytokines and growth factors.
Therefore, we summarize key information from these
clinical trials and hope to give insights for the development
of more effective drug.

Although IPF is idiopathic by definition, it may become less
mysterious with progress in the understanding of the pathogenesis
of IPF. This review showed that the number of therapeutic targets
from cytokine or growth factor signaling pathways and new
targeted drugs entering clinical trials is increasing. These
advances show that slowing disease progression, prolonging
prognosis, and improving quality of life might be possible in
the future for patients with IPF.

In conclusion, cytokine and growth factor signaling pathways are
indispensable in the pathogenesis of IPF, and this review hopes to
provide theoretical support for the development of novel anti-
pulmonary fibrosis drugs targeting cytokine and growth factor
pathways.
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GLOSSARY

JAK/STAT Janus kinase/signal transducer and activator of transcription

AEC:s alveolar epithelial cells

AE-IPF acute exacerbation of idiopathic pulmonary fibrosis
AT I/AEC I type I AECs

AT II/AEC II type II AECs

ATX autotaxin

BALF bronchoalveolar lavage fluid

BLM bleomycin

COVID-19 corona virus disease 2019
COX cyclooxygenase

CTGF connective tissue growth factor factors
DC dendritic cell

Th helper T cell

DLco/VA diffusion capacity for carbon monoxide per liter of alveolar

volume

ECM extracellular matrix

EGF epidermal growth factor

EMT epithelial-mesenchymal transition
EndoMT endothelial-to-mesenchymal transition
ER endoplasmic reticulum

ERK extracellular signal-regulated kinase
ERS endoplasmic reticulum stress

FAK focal adhesion kinase

FEV1 forced expiratory volume in one second
FGF fibroblast growth factor

FVC forced vital capacity

GF growth factor

Hh Hedgehog

HLF-1 human lung fibroblast-1

HRQL health-related quality of life

IGF insulin-like growth factor

IL interleukin

IPF idiopathic pulmonary fibrosis

JNK c-Jun N-terminal kinase

LAP Latency-associated peptide

LPA Lysophosphatidic acid

LT Leukotriene

LTBP Latent TGF-p binding protein

miR micro-RNA

MAPK mitogen-activated protein kinase
MKK Mitogen-activated protein kinase kinase

MMP/TIMP matrix metalloproteinase/tissue inhibitor of
metalloproteinase

mAb monoclonal antibody

MSC Mesenchymal stem cell

mtROS mitochondrial reactive oxygen species

PALI plasminogen activation inhibitors

PDGEF platelet-derived growth factor

PI3K/Akt/mTOR phosphatidylinositol 3-kinase/protein kinase

B/mammalian target of rapamycin

PLA2 phospholipase A2

PPAR-y peroxisome proliferators-activated receptors y
Rho/ROCK Rho/Rho-associated coiled-coil kinase
RCT randomized controlled trial

ROS reactive oxygen species

SFK Src family kinases

SPHK1/S1P/S1PR sphingosine kinase/sphingosine 1 phosphate/
sphingosine 1 phosphate receptor

TBR TGF-p receptor

TF tissue factor

TGEF-f transforming growth factor-f
TIMPs tissue inhibitors of metalloproteinases
UPR unfolded protein response

VEGEF vascular endothelial growth factor

Wnt Wingless/Integrated

a-SMA a-smooth muscle actin
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