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Drug discovery is a challenging process with a huge molecular space to be explored and
numerous pharmacological properties to be appropriately considered. Among various
drug design protocols, fragment-based drug design is an effective way of constraining the
search space and better utilizing biologically active compounds. Motivated by fragment-
based drug search for a given protein target and the emergence of artificial intelligence (AI)
approaches in this field, this work advances the field of in silico drug design by (1)
integrating a graph fragmentation-based deep generative model with a deep evolutionary
learning process for large-scale multi-objective molecular optimization, and (2) applying
protein-ligand binding affinity scores together with other desired physicochemical
properties as objectives. Our experiments show that the proposed method can
generate novel molecules with improved property values and binding affinities.
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1 INTRODUCTION

Drugs are essentially molecules with a pharmacological profile that compromises numerous relevant
objectives such as potency, selectivity, pharmacokinetics, and toxicity. Drug discovery is the process
of finding new therapeutically useful compounds or repurposing existing ones, with desirable
pharmacological properties. After identification of a drug target (often a protein), traditional
approaches to drug discovery include preparing a set of molecules with specific properties,
studying the relationship between their structures and properties, and improving the compound
structure. This trial-and-error-based approach is often costly and ineffective; the development of
novel drugs requires billions of dollars in investment and up to decades in the development cycle
(Oduguwa et al., 2006). In contrast to the traditional approaches that require iterative and collective
involvement of domain experts and focus on deriving properties from structures, modern AI-driven
drug discovery methods aim at efficiently searching through a vast space of molecules for promising
candidates, this can be viewed as either a molecular generation problem or a molecular optimization
problem.

A molecular generation problem is a generative machine learning task. It involves a generative
model that can capture the regularities or patterns of the given set of molecules using a probabilistic
distribution, and then generates new plausible molecules following a sampling mechanism. However,
difficulties in producing high-quality novel candidates by prior generative methods arise because of
the discrete nature of chemical space and the large number of molecules therein. The recent
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application of distributed representation methods (e.g., word or
graph embedding) and deep generative models (DGMs) in drug
design (Duvenaud et al., 2015; De Cao and Kipf, 2018; Romez-
Bombarelli et al., 2018) enables the modelling of molecular data
via a parameterized distribution pθ(x, z) where x corresponds to a
molecule, z is a latent vector, and θ is the set of neural network
parameters. While generative models generate molecules in
consistence with the training data distribution, molecular
optimization on the other hand is the process of designing
new molecules with the desired properties, rather than naively
enumerating the entire molecular space. Molecular optimization
problems can be grouped into conditional and unconditional
optimization tasks. A conditional optimization task relies on the
principle of local optimization given a molecule as a starting point
and aims at finding structurally similar molecules with better
properties, whereas an unconditional optimization task employs
global optimization/search techniques. Since drug candidate
needs to quantitatively fulfill multiple desiderata, molecular
optimization problems are essentially multi-objective
optimization problems.

While a drug-like molecule needs to fulfill physicochemical
and structural feature requirements, such as Lipinski’s rule of
five (Lipinski et al., 2001) as a rule of thumb for druggability, it
is important that the molecule specifically binds to the expected
binding site of a protein target. Using molecular mechanism
simulation, protein-ligand docking is the standard mean for
virtual screening. Among many other efficient open-source
docking tools, Rosetta (Leman et al., 2020) and AutoDock
Suite (Eberhardt et al., 2021) are widely adopted in the
research community. Recently, machine learning approaches
have been exploited to predict drug-target interaction (DTI) or
drug-target binding affinity (DTBA) through learning on
heterogeneous biological data of known interactions to
understand the mechanism of drug actions. For example,
AutoDTI++ (Sajadi et al., 2021) uses a denoising
autoencoder that reconstructs the drug-target interaction
matrix by adopting denoising empirical loss, which
emphasizes interaction prediction while discarding the loss
of missing values. The model input is composed by
multiplying the drug-target interaction matrix by the
fingerprint-drug matrix for additional information on drug
fingerprints. (Abbasi et al., 2020) introduces the DeepCDA
model containing a training encoder and a test encoder for
cross-domain binding affinity prediction of novel drug-protein
pairs. The adversarial discriminative domain adaptation
(ADDA) technique is utilized in the test feature encoder to
map the marginal distribution from both training and test
domains into one same feature space. They also proposed a
combination of convolutional neural network (CNN) and long-
short-term memory (LSTM) neural network with the aid of a
two-sided attention mechanism for encoding the interactions
between the compound substructures and protein
subsequences.

Substantially, computational methods for evaluating chemical
structures must rely upon a suitable molecular representation, as
the form in which a molecular structure is seen by the algorithm.
One of two methods is typically applied in molecular

representation: SMILES-based method and graph-based
method which are discussed below.

The SMILES (SimplifiedMolecular Linear Input Specification)
(Weininger, 1988) strings obtained by the graph-to-text mapping
algorithm have been widely used for the representation of
molecules. Since SMILES relies on sequence-based embedding
representations, natural language processing (NLP) algorithms
can naturally be ported to the field of molecule modelling.
SMILES-based methods accommodate specification in the
form of a line notation for describing the structure of
chemical species as short ASCII strings, and often involves a
variational autoencoder (VAE) (Kingma and Welling, 2014)
framework as a character-based language model of SMILES
strings to permit efficient molecular generation and
optimization through the open-ended latent representation
space (as chemical spaces) (Dai et al., 2018; Romez-Bombarelli
et al., 2018). FragVAE (Grantham et al., 2022) modifies the
SMILES fragment-based drug design approach from (Podda
et al., 2020) that exploits the Breaking of Retro-synthetically
Interesting Chemical Substructures algorithm (BRICS) (Degen
et al., 2008) to collect sequences of fragments for molecules.
BRICS integrates more elaborate medicinal chemistry rules and
decomposes a molecule via breaking strategic bonds that can later
be used for chemical motif recombination. In analogy with NLP
tasks, these sequences of fragments are considered “sentences”,
with each fragment as a “word”, and are embedded into
continuous latent space based on a vocabulary of unique
“words” (Mikolov et al., 2010, 2013). In FragVAE, Gated
Recurrent Unit (GRU) (Chung et al., 2014; Li et al., 2016)
based encoder is adopted to map embeddings into a stochastic
latent representation space. A latent vector (either generated
using the encoder or sampled from the prior distribution) is
used as the initial hidden state of a GRU-based autoregressive
decoder which produces the probabilities of the next possible
fragments in the sequence. Using a greedy strategy for selection,
the fragment sequence with highest probability is then
reassembled into a molecule.

Similar to SMILES string generation, molecular graph
generation usually sequentially adds nodes (atoms) and edges
(bonds) to a graph. As another family of molecular generation
models, graph-based methods (De Cao and Kipf, 2018;
Simonovsky and Komodakis, 2018; Samanta et al., 2020)
represent a molecular structure as a two/three-dimensional
graph, and can operate explicitly on the molecular topology in
a generator. Using VAE as a base, researchers have proposed a
variety of methods to generate molecules that map directly from
latent vectors. However, when VAE performs reconstruction, it is
computationally expensive to solve the problem of graph
isomorphism. Thus, the effectiveness and accuracy of graph
reconstruction are extremely low without imposing
constraints. Currently, one of the most successful approaches
to transforming molecular graphs into meaningful latent vectors
and avoiding sequential generation is the junction tree variational
autoencoder (JTVAE) (Jin et al., 2018), which we view as graph
fragment-based based method (Pogány et al., 2019). JTVAE
decomposes training molecules into a set of molecular
substructures including rings, functional groups, and atoms.
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Compared to the conventional node-by-node generation of a
graph, JTVAE assembles these building blocks in a two-stage
generation process: (1) representing the effective brackets and
their arrangement as a scaffolding tree, and (2) integrating the
whole tree into a graph by adding edges between intersecting
components. The authors of JTVAE also improved JTVAE with
graph-to-graph transformation (Dai et al., 2016; Gilmer et al.,
2017) and autoregressive methods (Kusner et al., 2017; Mueller
et al., 2017) to enable molecular property optimization. The latest
development in graph-based molecular modelling include 3D-
graph and geometric deep learning methods to take advantage the
geometric properties of molecular structures (Atz et al., 2021; Luo
et al., 2021).

Developed for multi-objective molecular optimization, the
deep evolutionary learning (DEL) framework (Grantham et al.,
2022) proposes innovation in extending metaheuristic multi-
objective global optimization methods (e.g., multi-objective
evolutionary computation (Deb et al., 2002; Eiben and Smith,
2015) to their corresponding deep versions through the latent
representation space of DGMs. DEL achieves the co-evolution of
both molecular data and molecular generative models across
multiple generations guided by multiple properties concerned
with drug design. The DGM used in the original DEL is the
SMILES fragment-based model, FragVAE. Even though the
integration of FragVAE in DEL achieves interesting results in
drug design, the BRICS strategy in FragVAE usually splits a
molecule into only 2-4 fragments, which may lead to issues in
language models due to this level of coarse granularity. While we
continue looking for SMILES fragmentation methods in finer
granularity, we are interested in investigating graph
fragmentation methods for molecular representation in DGMs
and DEL.

In this paper, encouraged by past success of target-specific
fragment-based drug designmethods and the recent development
of AI techniques for drug design, we present an improvement of
DEL using the graph fragment-basedmethod, JTVAE, as the deep
generative model for multi-objective molecular optimization.
Specifically, our work has two major contributions. First, we
introduce the embedding and generation of molecular graph
fragments to DEL through incorporating the graph-
fragmentation deep generative model, JTVAE. We compared
this graph fragment-based DEL with the SMILES fragment-
based DEL developed in (Grantham et al., 2022) in our
framework, and found that the JTVAE-based DEL is able to
perform better than the FragVAE-based DEL in terms of
molecular quality.

As our second contribution, we apply the protein-ligand
binding affinity score as one of the molecular optimization
objectives in DEL, while the original DEL in (Grantham
et al., 2022) entails drug-likeness and synthesizability. The
majority of drug compounds take effect by specifically
binding to active sites of the specified protein targets
responsible for diseases (such as COVID-19, AIDS, cancer,
autism, Alzheimer’s, etc.), making drug design a challenging
task for medicinal chemists. When the target protein structure
becomes accessible, molecular docking is more frequently
involved in silico drug design to assess potential protein-

ligand binding interactions (Walters et al., 1998; Pagadala
et al., 2016), where the ligand is usually a molecule that
forms a complex with its receptor to modify pathways
associated with diseases. In this work, protein-ligand binding
scores of molecules indicate their binding affinity toward a
preeminent target protein surface area, and are calculated
using molecular mechanism simulation. Aiming at
identifying active drug candidates, the binding score is
viewed as a desired property along with other choices of
objectives to be optimized in DEL.

2 METHODS

The idea of our approach is to integrate the graph fragment-based
deep generative model, JTVAE, into the DEL framework, such
that JTVAE provides a latent representation space for the multi-
objective evolutionary algorithm (MOEA) to explore, and
meanwhile elite samples from each generation of MOEA are
used to improve the continual learning of JTVAE. The protein-
ligand binding affinity score (denoted by BAS) (Lipinski et al.,
2001; Engel and Gasteiger, 2018), synthetic accessibility score
(SAS), and water-octanol partition coefficient (logP) of molecules
are used as three objectives in the optimization. In the following
subsections, the general framework of DEL and two DGMs,
FragVAE (used as a benchmark) and JTVAE, are described in
detail.

2.1 Deep Evolutionary Learning Framework
Proposed in (Grantham et al., 2022), the DEL framework
incorporates multi-objective evolutionary computation with
the deep generative models for molecular optimization by
establishing a data-model co-evolution paradigm. In contrast
to traditional evolutionary algorithms that encode genotypes in
the original problem space, DEL instead employs evolutionary
operations in the latent representation space of molecules to
feedback the evolved data with desired properties, leading to
the fine-tuning of the deep generative model as well. The DEL
framework comprises the following components. (1) For the
first evolutionary generation, the DGM (usually a VAE) is
parameterized and pretrained on the training data, and the
first population is sampled from the original training data;
whereas the population samples of the successive generations
are obtained from the DGM. (2) The samples are transformed
into latent vectors with the help of an encoder. Meanwhile, the
samples are processed to assign molecular properties and are
subject to a multi-objective sorting method (e.g., non-
dominated ranking) and crowding distance computing. (3)
Evolutionary operations are applied to the latent
representations of population samples considering their
Pareto ranks and crowding distances. This is a randomized
and stochastic technique that simulates the evolutionary
process of selecting high-fit candidates and exerts
evolutionary operators entailing “crossover” and “mutation”
to evolve better molecules (Nicolaou et al., 2009). (4) The
evolved latent representations are decoded by the DGM to
generate new molecules, which are then evaluated on the basis

Frontiers in Pharmacology | www.frontiersin.org July 2022 | Volume 13 | Article 9207473

Mukaidaisi et al. Multi-Objective Drug Design

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


of validity, novelty, and uniqueness using RDKit (Landrum,
2006). Invalid and duplicate individuals are eliminated to form
new samples for new population construction. (5) The new
population of each generation is constructed of the high-quality
valid samples from the previous population and newly
generated data in Step (4), and can also be used to fine-tune
the DGM. (6) Steps (2–5) are repeated for multiple generations
as needed to compose the final population. The specific
interaction between the DEL framework and DGM is
illustrated in Figure 1.

High-quality samples for fine-tuning the VAE model are
selected based on the non-dominated ranking result, which
underlines the molecules with the most valuable properties in
terms of SAS, logP, and BAS. Of course, our approach also
operates on other properties together with the protein-ligand
binding affinity score, that is, generated molecules with smaller
SAS, logP, and BAS are prioritized in ranks and exploited in the
evolutionary computation process. SAS and logP are calculated

using RDKit; BAS is produced by QuickVina (Alhossary et al.,
2015).

2.2 Deep Generative Model
In this work, two different forms of VAE (FragVAE and JTVAE)
are employed as the DGM in the DEL framework. In terms of
structure, VAE can be viewed as a variant of the autoencoder
(AE) architecture (Hinton and Zemel, 1993) which is a
deterministic neural network involving an encoder and a
decoder that are learned unsupervised. The learning objective
of AE is to reconstruct the input x (to the encoder) using the
decoder output ~x. The hidden layer z between the encoder and
decoder generates a code to represent the input. Thus, the
network can be seen as a harmony of two parts: an encoder
represented by the function z = f(x) and a decoder ~x � g(z) that
generates reconstructions. An AE is not particularly useful if it
simply learns to set g (f(x)) = x everywhere because, conversely, it
should not produce output identical to the input. This usually

FIGURE 1 | Diagram showing the workflow of the DEL framework and its interaction with VAE.
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imposes some constraints or regularizations on the AE so that it
generates approximately similar data. These constraints force the
model to consider which parts of the input data need to be
preferentially replicated. Thus, it tends to learn beneficial features
of the data.

VAE uses deep neural networks to parameterize the generative
component p (x|z) and inference component q (z|x) in a
generative model, thus forming a family of deep generative
models. Even though the latent vector (i.e., the bottleneck of
the architecture) is stochastic, the application of the
reparameterization trick enables the use of gradient descent
for model learning. In VAE, the encoder (inference) network
can be defined as qϕ(z|x) parameterized by ϕ and decoder
(generative) network pθ(x|z) with learnable parameters θ. In
the training process, the encoder maps input x to the
stochastic latent vector z which is then passed to the decoder
to generate the reconstruction ~x. Based on this, the following
negated variational loss is formulated for minimization:

L ϕ, θ( ) � −Ez~qϕ z|x( ) logpθ x|z( )[ ] + KL qϕ z|x( )‖p z( )( ). (1)
The first term above is the reconstruction loss, which is a process
through x ~ z ~ ~x, and can also be described as the expected
negated log-likelihood. The second term is a regularization term
using Kullback-Leibler (KL) divergence to measure the proximity
between posterior qϕ(z|x) and prior p(z). In practice, the prior
p(z) is usually assumed to be a standard multivariate Gaussian
distribution N (0, I). After model training, the latent variable z at
the bottleneck is expected to be approximate to the standard
Gaussian distribution. Thus, disparate data can be generated by
sampling from this distribution and passing through the decoder
network.

2.2.1 FragVAE Integration
FragVAE was implemented as a DGM in DEL for drug design
based on SMILES fragmentation. Fragment-based drug design

(FBDD) (Shuker et al., 1996; Erlanson, 2011) is established as an
alternative approach to atom-and-bond methods, and
demonstrates constructive outcomes. FBDD appropriates
fragmentation of molecular structures as the screening method
that breaks molecules into small-weighted components. The
advantages of molecular fragmentation are threefold. (1) Small
organic molecules, corresponding to the fragments, are efficiently
synthesizable, hence easier to manipulate chemically. (2) Since
drug-like molecules may share analogous fragments,
fragmentation can help identify components that are possibly
responsible for biological activities. And, (3) it can drastically
reduce the search space for exploration and characterization.
Moreover, by incorporating FragVAE with DEL and using the
protein-ligand binding affinity score as one of the objectives, it
may lead to the discovery of highly potential drug candidates.
Therefore, FragVAE is investigated in this paper and compared
with the graph fragment-based method, JTVAE.

In terms of the fragmentation procedure, given a SMILES
string, the atoms are scanned from left to right, such that a
fragment is extracted whenever encountering a breakable bond
following the BRICS rules. This process is repeated until the
remaining part cannot be split further. As an example, the
fragmentation of a SMILES string is shown in Figure 2. To
reconstruct a molecule, fragments can be reassembled starting
from the leaves to the root, right to left.

There are two features that impact FragVAE’s integration with
DEL. First, in contrast with the variational loss of the vanilla VAE
in Eq. 1, a trade-off weight β (Higgins et al., 2017; Yan et al., 2020)
is added between the KL-divergence and the reconstruction error
to balance their discrepancy in minimization. Second, a multi-
layer perceptron neural network (MLP) is added to the VAE
structure as a property predictor (Yang et al., 2019). It intends to
regularize the latent representation space by predicting the
property values of encoded samples. The variational loss of the
VAE model is thus altered by adding a third term for property
regression error (see Eq. 2).

L ϕ, θ( ) � −Ez~qϕ z|x( ) logpθ x|z( )[ ] + βKL qϕ z|x( )‖p z( )( )
+ αEz~qϕ z|x( ) SE fψ z( ), y( )[ ], (2)

where fψ(z) denotes the predicted property value, ψ is the
parameter set of the MLP subnetwork, y is the actual property
value, and SE stands for squared error.

2.2.2 JTVAE Integration
Despite the proliferation of SMILES-based models in recent years
for molecular modelling, it still faces two critical limitations. (1)
The SMILES syntax is not robust to small changes or mistakes,
which can result in the generation of invalid or drastically
divergent structures. (2) The unstructured nature of SMILES
implies that two structurally similar molecules can have
completely different SMILES representations. These
shortcomings result in a lack of diversity and effectiveness in
the resulting molecules. The graph-based deep generative models
are therefore brought to the spotlight as an alternative strategy,
permitting the search for the topology of molecules and their
fragments. It involves a more intuitive way to represent a

FIGURE 2 | Cleavage example of an FDA-approved small-molecule
durg Nafcillin (a penicillin derivative antibiotic, DrugBank Access Number
DB00607), demonstrating the procedure of BRICS-based fragmentation by
producing fragments on breakable bonds. In this example, the SMILES
representation is CCOc1ccc2ccccc2c1C(=O)NC1C(=O)N2C1SC(C)(C)
C2C(=O)O, and is broken into fragments *0CC, *NC(=O)c1c(*)ccc2ccccc12,
and *C1C(=O)N2C1SC(C)(C)C2C(=O)O.
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molecule as a graph based on its Lewis structure. Given a graph
representation G � (V, E), a node vi ∈ V represents an atom and
edge (vi, vj) ∈ E for a chemical bond. The nodes and edges are
respectively labelled and characterized according to atom types
and chemical bond types. Numerous molecular graph models,
such as graph neural network (GNN) (Scarselli et al., 2009), graph
convolutional network (GCN) (Duvenaud et al., 2015; Kipf and
Welling, 2017), message passing neural network (MPNN)
(Gilmer et al., 2017), and many other methods have been
explored and shown outstanding performance in molecular
property prediction tasks, and consequently laid the
foundation for graph-based molecular generation.

As one of the most representative VAE-based graph generative
models, JTVAE (Jin et al., 2018) employs a subgraph-by-
subgraph manufacturing mode instead of an atom-by-atom
mode. This is to avoid revising chemically invalid
intermediaries while constructing a molecular graph
sequentially atom-by-atom, allowing the model to consistently
generate valid molecules since validity is checked at each step
following a non-sequential method. In JTVAE, a cluster
vocabulary is first constructed containing simple rings, bonds,
and atoms. The molecular graph G is first scanned to label out the
substructures that appear in the vocabulary and the edges not
belonging to any cycles. Two simple rings are merged as bridged
compounds if they have three or more overlapping atoms. This
step eradicates the cycles in molecular structures by considering
them as clusters. A graph of clusters is constructed by adding
edges between all intersecting clusters and composited into a
junction tree by mapping its maximum spanning tree. Tree nodes
in the junction tree associate the vertices in the cluster graph, and
the connectivity between nodes corresponds to the chemical
bonds between clusters. Figure 3 illustrates the graph
fragmentation using an FDA-approved drug.

As in FragVAE for DEL, the same modification pattern is
applied to JTVAE when integrated with the DEL framework. An
MLP property predictor is added to the generative model and
thus an SE loss term is appended to the model’s total loss. We use
the two-part latent representation z = [zT, zG] introduced in (Jin
et al., 2018) with zT as the map of the junction tree structure of a
molecule on the cluster level and zG as the encoding of the
association within each cluster. Considering the tree
decomposition of a molecule, the architecture of the modified

JTVAE consists of the following five components: (a) a graph
encoder q (zG|G) to encode molecular graph G to its latent
representation zG, (b) a tree encoder q (zT|T) to encode the
junction tree T decomposed from molecular graph to acquire
the latent vector zT, (c) a property predictor for the latent space
regularization, (d) a tree decoder p (T|zT) to decode the junction
tree from zT, and (e) a graph decoder p (G|zG) to eventually
manifest the molecular graph. The tree message passing neural
network (TMPNN) (Gilmer et al., 2017) and the graph message
passing neural network (GMPNN) (Dai et al., 2016) with GRU
units are used in the transformation of representations. The
reconstruction error in JTVAE becomes

R � Lc T( ) + Lg G( ) + Ls, (3)
where Lc(T), given junction tree T, is the entropy loss of the tree
decoder, that is the summed error of topological prediction
(binary prediction of the existence probability of child node)
and label prediction (label of generated child node); Lg(G) and Ls
are, respectively, the negative expectations of log-likelihood of
subgraph prediction based on tree nodes, and stereoisomer
prediction by comparing the cosine similarity of its graph
representation. Therefore, the overall loss function of the
modified JTVAE is defined as:

L ϕ, θ( ) � −Ez~qϕ z|x( ) R + βKL qϕ z|x( )‖p z( )( )[ ] + αEz~qϕ z|x( ) SE fψ z, y( )( )[ ],
z � zT, zG[ ],

qϕ z|x( ) � qϕ zT|T( ), qϕ zG|G( )[ ].
(4)

2.3 Protein-Ligand Binding Affinity Score
Calculation
Implementing a reliable and suitable docking score calculation
and exporting module is essential to integrate protein-ligand BAS
within DEL for molecular optimization. In this respect, we
adopted the efficient docking tool Quick Vina (QVina)
(Alhossary et al., 2015) which is an amended version of the
well-known AutoDock Vina tool (Trott and Olson, 2010;
Eberhardt et al., 2021). AutoDock Vina is an open-source
molecular docking engine in the AutoDock suite, and shows
dominant performance in virtual screening by adopting the
benchmark data Directory of Useful Decoys (DUD). While
AutoDock Vina is accurate, it is proven to be time-consuming
due to the exhaustiveness of the search on the 3D target surface.
Hence, with an improved search algorithm that performs faster
and yet still accurate BAS calculation, QVina turns out to be a
better choice for our research. The docking in this work is
conducted on carbonic anhydrase IX (CA9/CAIX) protein
(Span et al., 2003), which has been used as a prominent
marker of tumour hypoxia with the potential to serve as a
diagnostic biomarker, prognostic indicator, and tumour
therapeutic target. The binding site coordinate and constrained
search box size in the docking score calculation module are user-
specified. For our experiments, generated molecules from both
methods are docked to a cubic box of size 60 centred at coordinate
[9.879, -13.774, 7.012] in the binding pocket. When sufficient

FIGURE 3 | Illustration of the graph fragmentation in JTVAE following the
subgraph-by-subgraph strategy, representing the process of tree
decomposition on an FDA-approved small molecule drug Chlorprothixene (a
thioxanthene antipsychotic, DrugBank Access Number DB01239).
Clusters in the molecule (A) are identified as substructures and denoted as
nodes in the junction tree (B).
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experimental data for CA9 become available in the future,
machine learning-based approaches will be investigated for
protein-ligand binding affinity prediction.

2.4 1-Wasserstein Distance
In the space R, there are many ways to describe the distance
between two probability distributions q(x) and p(x). One of the
more popular ones is KL divergence:

KL p ‖ q( ) � ∫
R

p x( )logp x( )
q x( ) dx. (5)

As defined above, KL does not measure the geometric properties
of R, because the comparison between q(x) and p(x) is made at
the same points. This motivates us to utilize Wasserstein distance
(WD) as a distance metric for a pair of distributions. For the
probability distributions μ and υ defined on R, the p-th
Wasserstein distance is given as:

Wp μ, υ( ) ≔ inf γ∈Γ μ,υ( ) ∫
R×R

d x, y( )pdγ x, y( )( )
1
p

, (6)

where Γ(μ, υ) is the collection of joint probability measures γ on
R × R with marginal distributions μ and υ. A measure with
marginals μ and υ is also called the coupling of μ and υ. d can be
any distance on R, such as Euclidean distance, l1 distance, etc. In
the case of p = 1 and d(x, y) = |x − y|, the one-dimensional
Wasserstein distance (1-Wasserstein distance) is explicitly
formulates as:

W1 μ, υ( ) � ∫
R

|Fμ x( ) − Fυ x( )|dx, (7)

where F is a cumulative distribution function.

FIGURE 4 | 2D graph visualization of randomly chosen molecules from ZINC (A) and DrugBank (B) datasets. RDKit was used for visualization.

TABLE 1 | Hyperparameter settings of the DEL process and DGMs respectively.

Hyperparameter DEL Hyperparameter DGM

FragVAE JTVAE

Number of generations 10 Embedding size 128 128
Polulation size 20000 Number of recurrent layers 2 1
Initial number of epochs 20 Hidden state dimension 128 450
Subsequence number of epochs 10 Latent space dimension 64 64
Scheduler annealing rate 0.8 Learning rate 0.0001 0.0001
Tournament selection probability 0.95 Batch size 128 32
Mutation rate 0.01 KL divergence weight β 0.1 0.1

TABLE 2 | Performance metrics of the final (10th) population from DEL using
FragVAE and JTVAE, respectively, on two datasets.

Model Dataset Validity Novelty Uniqueness

FragVAE+DEL ZINC 0.981 0.999 0.912
JTVAE+DEL ZINC 1 0.985 0.939
FragVAE+DEL ZINC+DrugBank 0.962 0.999 0.959
JTVAE+DEL ZINC+DrugBank 1 0.988 0.939
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2.5 Hypervolume Measure
In multi-objective evolutionary algorithms, a necessary condition
for algorithm convergence is an extremely important aspect. DEL
retains the elite solution set of the previous generation and adds it
to the evolutionary process of the new generation. The solution
set of the evolutionary population continues to converge to the
real Pareto Frontier, and finally, acquires a satisfactory
optimization solution. Usually, when analyzing the
performance of a multi-objective optimization algorithm, we
hope that the algorithm can advance in three aspects. (1) The
distance between the real Pareto front surface and the one
obtained by the algorithm should be as small as possible. (2)
Although the obtained individual solution points are only partial
solutions, they should distribute on the Pareto front as uniformly
as possible. And, (3) a sufficient number of solution points should
be able to cover the entire front, that is each region on the front
should be represented by solution points unless this region is
missing on the actual optimal Pareto front. The hypervolume
(HV) index measures the volume of the dimensional region in the
target space bounded by the non-dominated solution set obtained
by a multi-objective optimization algorithm and a pre-specified
reference point. The mathematical representation of the HV
calculation is given in Eq. 8:

HV � δ ∪|S|
i�1vi( ), (8)

where δ represents the Lebesgue measure, which is used to
compute volume, |S| represents the number of non-dominated
solutions, and vi represents the hypercube formed by the
reference point and the i-th solution in the solution set. HV is
an effective quantitative scalar metric, which is strictly monotonic
in terms of Pareto dominance. The larger the value of HV, the
better the performance of the corresponding algorithm.
Especially, the calculation of the HV index does not require
the ideal Pareto front of the test problem, which greatly facilitates
the use of HV in practical applications.

3 EXPERIMENTS

3.1 Data
The experiments were conducted on the ZINC dataset (Irwin
and Shoichet, 2005) and a variant of ZINC by appending

FIGURE 5 | Property distributions on SAS (A), logP (B), and BAS (C)
with 1-Wasserstein distances between the final population (10th) of DEL and
the original ZINC data.

TABLE 3 |Hypervolumes of DEL’s Pareto fronts (β = 0.1). The results are collected
from the populations of Generations 1, 5, and 10, respectively.

Model Dataset Hypervolume

Generation 1 Generation 5 Generation 10

FragVAE ZINC 458.87 466.91 472.88
JTVAE ZINC 477.14 477.08 482.99
FragVAE ZINC+DrugBank 452.01 452.52 463.76
JTVAE ZINC+DrugBank 455.57 472.16 473.06
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authentic drug molecules from the DrugBank database
(Wishart et al., 2018) (named as ZINC+DrugBank
hereafter). The ZINC dataset is a popular benchmark set for
generative tasks that comprise approximately 250K molecules
in SMILES string format. DrugBank is a web-based database
hosting detailed information on medicines including
identification, pharmacology, interactions, properties, and
clinical trials. We formed a subset by extracting 1932 small-
molecule drugs from DrugBank and fused them into the

original ZINC dataset. Molecular samples drawn from the
original ZINC and DrugBank data are visualized in Figure 4.

The ZINC and DrugBank datasets were both subjected to a
three-fold preprocessing step. (1) For FragVAE, molecules are
cleaved into SMILES fragments following the BRICS algorithm,
whereas in JTVAE, subgraph enumeration and tree
decomposition are performed. (2) Calculation of the
molecular properties (including objectives SAS, logP, and
BAS) using RDKit and the protein-ligand binding score

FIGURE 6 | 2D graph visualization of 10 unique CA9 ligands from PDB.

FIGURE 7 | 2D graph visualization of high-quality novel samples of the final (10th) population of DEL in combination with FragVAE (A) and JTVAE (B), respectively,
on the ZINC data. Due to space limit, only 16 molecules are shown for each method.
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calculation module. And, (3) removal of duplicated molecules as
well as molecules with fewer than 2 fragments.

3.2 Hyperparameter Settings
During the experiments, we used the same evolutionary learning
hyperparameters for evaluating the DEL framework, but different
hyperparameter tuning for FragVAE and JTVAE to maximize their
performance. Table 1 lists our key hyperparameter settings.

3.3 FragVAE Versus JTVAE in DEL
The two base DGMs in DEL and two datasets lead to a set of four
experiments: (1) FragVAE in DEL framework trained on the
original ZINC data, (2) FragVAE in DEL on ZINC+DrugBank
data, (3) JTVAE in DEL on ZINC data, and (4) JTVAE in DEL on
ZINC+DrugBank data. Whenever DEL was trained on the
ZINC+DrugBank data, the actual drug molecules from
DrugBank were added to the initial population composing the
training data of the subsequent generation.

Firstly, the performances of FragVAE- and JTVAE-based DEL
were measured using three metrics: validity (the ratio of chemically
valid generated molecules in the population), novelty (the ratio of
validly unique generated samples that are not originated from the
training dataset) and uniqueness (the ratio of generated molecules
that are not duplicated in the population). Chemical validity
checking was achieved by RDKit. All these metrics were scored
based on the SMILES strings. Performance of DEL based on these
two DGMs are reported in Table 2, which conveys that the JTVAE
generated all valid molecules, and almost all samples in the last
populations generated based on FragVAE and JTVAE, respectively,
are novel. Moreover, both methods could maintain a highly diverse
population in DEL.

Secondly, the methods were evaluated according to the property-
wise distributions of samples in their last populations (See Figure 5).
Given the goal of expressing a more intuitive and quantitative
comparison, the 1-Wasserstein distances (WD) from the final
population of FragVAE- and JTVAE-based DEL, respectively, to
the original ZINC data were calculated and indicated in the legends.
It shows that both methods succeed in improving the properties
through generations. While there is a slight difference between the
two methods on binding affinity score, JTVAE exhibits superior
performance on logP whereas FragVAE improves SAS the most.

FIGURE 8 | 2D graph examples of high-quality novel samples of the final (10th) population of DEL in combination with FragVAE (A) and JTVAE (B) respectively on
the ZINC+DrugBank data. Due to space limit, only 16 molecules are shown for each method.

FIGURE 9 |Docking visualization of two novel molecules binding on CA9
protein surface. Both molecules ranked top on BAS in the high-quality
samples of their final population. (A) shows the molecule COc1ccc
(C2CCN(C(=O)C3COc4ccc(F)cc4C3)C2)cc1 binding to the binding site
of CA9 protein. It was generated by FragVAE+DEL and has a binding affinity
score of −9.3 (SAS: 2.892, logP: 3.402). (B) shows the molecule
O=C1Nc2cc(C(=O)NCCc3nnc(-c4ccccc4)o3)ccc2C1=O binding to the
binding site of CA9. It was discovered by JTVAE+DEL and has a binding
affinity score of −8.1 (SAS: 2.562, logP: 1.844).
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Thirdly, while the property-wise distributions presented above
can only offer a partial comparison, the Pareto-fronts obtained by
DEL using different base DGMs are compared in terms of HV to
reflect the overall quality of solutions. In our experiments, the
number of generations was set to 10 and the trade-off
hyperparameter β was set to 0.1. The obtained HVs in the
initial generation, the middle generation, and the final
generation are listed in Table 3 which demonstrates the
following key features. (1) HV increases along with
evolutionary generations, showing that DEL can gradually
improve the quality of Pareto fronts. And, (2) the JTVAE in
the DEL framework results in a higher HV value compared to
FragVAE, revealing a better comprehensive performance of the
graph fragmentation algorithm in DEL.

3.4 Virtual Screening
Generated samples on the first Pareto front of the final population
are viewed as high-rank molecules. As we set the population size
to 20,000 in our experiments, DEL usually results in 20–30 Pareto
ranks. Only the first fronts are investigated in this section. We
applied the following threefold criteria to identify high-quality
novel samples of the first front:

• SAS ≤ 3
• − 0.4 ≤ logP ≤ 5.6
• BAS ≤ −6.6

Regarding the qualitative characterization of logP, the
Ghose filter rules (Ghose et al., 1999) were considered to
benefit the prediction of drug-likeness. We then identified
the BAS threshold by assessing 10 unique real ligands of the
target protein CA9. These ligands were collected from Protein
Data Bank (PDB) (Berman et al., 2000) and processed using
the scoring module as our framework to isolate the impact of
docking configurations. In Figure 6, we observe a maximum
BAS of −6.6 and a minimum of −8.6, thus setting the upper
bound for filtering the high-quality novel molecules from the
first fronts (one of our objectives is to minimize BAS).
Respectively, 89 and 99 molecules were retrieved from
FragVAE+DEL trained on the ZINC and ZINC+DrugBank
data; 94 and 107 molecules from JTVAE+DEL were trained on
the ZINC and ZINC+DrugBank data as shown in Figures 7, 8.

Different from the traditional procedure in virtual screening
which investigates the binding affinity scores of given molecules
in a fixed library, our approach integrates virtual screening in the
generation and optimization process through the use of binding
affinity score along with other concerned objectives. The benefit
of our approach is that it can find novel molecules which
potentially satisfy all applied criteria. As a case study to
demonstrate, we ranked the high-quality molecules
descendingly by BAS and selected two novel molecules with
the finest score, one was obtained using FragVAE+DEL and
one from JTVAE+DEL. Figure 9 displays, thanks to PyMOL
(Schrödinger, 2015), the corresponding protein-ligand
complexes. As compared to the existing ligands in Figure 6,
both molecules have no violation of the criteria and excel in all
three objectives. For further validations, all novel molecules from

the DEL results in preferred ranges of properties and binding
scores can be promoted.

4 CONCLUSION

Drug discovery can be modelled as a multi-objective optimization
problem over a vast search space. The advantages of target-aimed
fragment-based drug design and the powerful representation and
modelling capacity of deep learning methods motivated our
research. We propose to apply graph fragment-based deep
generative models in the deep evolutionary learning process
and use the protein-ligand binding affinity score as one of the
objectives. Our experiments show that our approach is able to
generate novel molecules possessing better quality in terms of
Pareto front hypervolume and number of novel samples
satisfying the screening criteria when compared to a SMILES
fragment-based deep generative model previously used in the
deep evolutionary learning framework. Since both approaches use
VAE and DEL, it is likely that the junction-tree based graph
fragmentation contributes to the performance improvement.
Furthermore, the incorporation of binding affinity score as
one of the objectives enables us to identify and list promising
novel molecules specific to a protein target. The source code of
our implementation can be found at The DEL+JTVAE Package.

In future work, we will seek opportunities to validate our
discoveries in wet-lab. To improve our framework, we will
investigate more efficient and effective molecular
fragmentation methods and incorporate these methods in our
current and new AI for drug design approaches. We plan to test
our approaches on more and larger datasets in drug design.
Furthermore, we are interested in applying our approaches to
other multi-objective design tasks.
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