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Cancer is a common and intractable disease that seriously affects quality of life of patients
and imposes heavy economic burden on families and the entire society. Current
medications and intervention strategies for cancer have respective shortcomings. In
recent years, it has been increasingly spotlighted that chemokines and their receptors
play vital roles in the pathophysiology of cancer. Chemokines are a class of structurally
similar short-chain secreted proteins that initiate intracellular signaling pathways through
the activation of corresponding G protein-coupled receptors and participate in
physiological and pathological processes such as cell migration and proliferation.
Studies have shown that chemokines and their receptors have close relationships with
cancer epigenetic regulation, growth, progression, invasion, metastasis, and
angiogenesis. Chemokines and their receptors may also serve as potential targets for
cancer treatment. We herein summarize recent research progresses on anti-tumor effects
and mechanisms of chemokines and their receptors, suggesting avenues for future
studies. Perspectives for upcoming explorations, such as development of multi-
targeted chemokine-based anti-tumor drugs, are also discussed in the present review.

Keywords: chemokine, chemokine receptor, epigenetic regulation, molecular mechanisms, combination
medication

INTRODUCTION

According to the latest statistics from American Cancer Society, the number of cancer cases and
deaths remains high throughout the years, and has been even elevated due to delayed diagnosis under
the COVID-19 pandemic (Siegel et al., 2022). The whirlwind growth of economy and technology
have driven major development of the research on cancer, especially on the pathogenic mechanisms
and relevant therapeutic strategies. Among the research topic on cancer, the study of tumor
microenvironment stands out due to its close relation to the occurrence, growth, and metastasis
of cancer. Tumor microenvironment not only affect the tumor cells themselves, but also the
surrounding cells (fibroblasts, immune and inflammatory cells, and glial cells), as well as the
interstitial cells, microvasculature, and biomolecules that penetrating into nearby tissues (Hinshaw
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and Shevde 2019; Anderson and Simon 2020; DeBerardinis
2020). Recent studies have shown that the chemokine family is
considered closely related to tumor microenvironment.
Chemokines are a subfamily of small-molecule cytokines
secreted by cells and play an essential role in transportation of
immune cells and development of lymphoid tissue, with the
function of inducing targeted chemotaxis of neighboring
responding cells (van der Vorst et al., 2015; Hughes and Nibbs
2018). To date, 48 different chemokines have been reported, and
they can be classified into four classes (C, CC, CXC and CX3C)
depending on the number and location of their amino-terminal
(N-terminal) pre-cysteines. They exert the biological function
through selective binding to their receptors, which are G protein-
coupled receptors (GPCRs) expressed on various chemotactic
immune cells in tissues, organs, and circulatory system (Miller
andMayo 2017). Recent studies have shown that chemokines and
their receptors also serve an important purpose in the induction
of immune cells against tumors (Chow and Luster 2014;
Nagarsheth et al., 2017). Based on this, the present review
focuses on the study of the anti-tumor activity and
mechanisms of anti-cancer effect of chemokines, with the aim
of providing reference for future research.

STRUCTURE AND FUNCTION OF
CHEMOKINES

Chemokines can be classified into 4 classes in accordance to the
number and location of their N-terminal pre-cysteines, namely
class C, CC, CXC and CX3C (Miller and Mayo 2017) (Figure 1).
Their biological effects are exerted through their specific
interactions with chemokine receptors (Baggiolini 2001).
Chemokine receptors are a kind of GPCRs that are selectively
located in the membranes of target cells. To date, approximately
19 different chemokine receptors have been identified, which are

also divided into four families based on the chemokine types they
bind: CXCR, which binds to CXC chemokines; CCR, which binds
to CC chemokines; CX3CR1, which binds to chemokine CX3CL1;
and XCR1, which binds to chemokines XCL1 and XCL2 (Sharma
2010; Singh et al., 2011). Detailed chemical classifications are
shown in Table 1.

All chemokines are small proteins that are composed of
70–100 amino acids with molecular weights of 8–10 kDa, and
have four site-conserved cysteine residues to ensure their tertiary
structure (Fernandez and Lolis 2002; Zlotnik and Yoshie 2012).
Themajor function of chemokines is to induce directedmigration
of target cells, which can be attracted to specific tissues with
increased chemokine concentration. In particular, chemokines
can mediate leukocyte migration to respective locations during
inflammation and homeostasis in vivo (Baggiolini 1998; Thelen
and Stein 2008; Borroni et al., 2018). In this way, new light has
been shed on antitumor therapy. For example, the CC-like
chemokine CCL19 expressed in T cells of secondary lymphoid
tissues and organs such as spleen and lymph nodes, is
chemotactic to naive T cells and mature DC cells. Its specific
receptor is CCR7, which is expressed not only onmature DC cells,
macrophages and T cells (Förster et al., 2008; Comerford et al.,
2013), but also in many tumor cells, such as colorectal (Xu et al.,
2018), lung (Zhang et al., 2017), breast (Müller et al., 2001), and
ovarian (Cheng et al., 2014). It has been shown that the interplay
between the chemokine and its receptor could inhibit tumor
proliferation, migration and invasion (Peng et al., 2015a; Xu et al.,
2017; Zhou et al., 2020).

ANTI-TUMOR EFFECT OF CHEMOKINES

Involvement in Epigenetic Regulation
Epigenetics refers to heritable changes in the function of genes
without alterations in their DNA sequences, ultimately leading to

FIGURE 1 | Main structures of the four classes of chemokines.
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variation in the phenotype (Sapienza and Issa 2016). It is
generally recognized that cancer epigenetics include
modification of DNA and histones, regulation of non-coding
RNA, chromatin remodeling, and nucleosome positioning
(Dawson and Kouzarides 2012; Toh et al., 2017). Among the
above-mentioned forms, methylation of DNA is the most well-
studied epigenetic modification (Skvortsova et al., 2019). DNA
methylation is a key epigenetic mechanism controlling gene
expression, and in general, it inhibits gene transcription by
shifting chromatin from a loose state, permissive for the active
transcription, to a condensed state that prohibits the transcription
(Moore et al., 2013; Zhang et al., 2014). The methylation pattern
of DNA in the genome is catalyzed by DNA methyltransferases,
which mainly involve DNMT1, DNMT3a, and DNMT3b.
Among them, DNMT1 is the methyltransferase that plays a
maintenance role, while DNMT3a and DNMT3b are mainly
responsible for de novo methylation but also play a role in
maintaining methylation (Bestor and Verdine 1994; Tajima
et al., 2016).

It was shown that DNMT1-mediated DNA methylation and
EZH2-mediated H3K27me3, in the enhancer region, suppressed
CCL2 expression in SCLC cells, thereby enhancing tumor
progression (Zheng et al., 2021). In addition, CXCL12 was
down-regulated in gastric cancer tissues, accompanied by
hypermethylation, and the reduced CXCL12 expression was
closely associated with lymph node metastasis and histological
grading, presumably playing a possible part in gastric cancer cell
metastasis (Zhi et al., 2012). Similarly, upregulation of CXCR4
and downregulation of CXCL12 were observed in primary breast
cancers. The hypermethylation in the CXCL12 promoter region
in more than 50% of breast tumors was detected by methylation-
specific PCR, and the expressions of DNMT1 and DNMT3b were
distinctly higher in CXCL12-methylated breast cancers than in
CXCL12-unmethylated breast cancers (Zhou et al., 2009).
Additionally, studies by Ramos et al. and Dayer et al.
corroborated the proposed perspective that the DNA
methylation status of CXCR4 and CXCL12 genes could be
used as biomarkers for breast cancer prognosis (Ramos et al.,
2011; Dayer et al., 2018). The experiments of Peng et al. shown
that EZH2-mediated H3K27me3 and DNMT1-mediated DNA
methylation suppressed tumors and produced T helper 1 (TH1)-
type chemokines CXCL9 and CXCL10, which could partially alter
the T-cell landscape in cancer and may improve the clinical
efficacy of cancer therapy (Peng et al., 2015b). In exploring the
regulation of prostate cancer progression by hypermethylated in
cancer 1 (HIC1) through epigenetic modifications, Zheng et al.
were surprised to find that substantial methylation occurred
within the HIC1 promoter and directly targeted the

chemokine receptor CXCR7. Moreover, the CXCR7 promoter
was negatively regulated by HIC1 (Zheng et al., 2013). In addition
to CXCR7 studies, CXCL14 has also been well studied. Cao et al.
reported that CXCL14 was frequently methylated in colorectal
cancer, leading to downregulation of CXCL14 expression, and
reversal of its expression inhibited the proliferation of colorectal
cancer. Further experiments showed that CXCL14 inhibited the
migration, infiltration and epithelial-to-mesenchymal transition
(EMT) of colorectal cancer through suppressing the NF-κB
signaling pathway (Cao et al., 2013). Furthermore, Tessema
et al. identified that CXCL14 could be used as a typical target
for epigenetic silencing in the development of lung cancer
(Tessema et al., 2010). In addition, experiments of Song et al.,
using 5-aza-2-deoxycytidine as the demethylating agent to restore
CXCL14mRNA and protein expression, provided direct evidence
for epigenetic regulation of chemokine expressions in tumor cells
(Song et al., 2010).

Involvement in Tumor Growth and
Progression
Numerous experimental studies have established that chemokine
signaling systems are involved in tumor growth and development via
different mechanisms. For instance, interactions of chemokines with
their receptors can directly activate signaling pathways, such as JAK/
STAT and PI3K/AKT pathways, leading to cancer progression.
More involved chemokines and their receptors acting on cancer
are listed in Table 2.

The JAK/STAT pathway is the main signal transduction
mechanism of various cytokines and growth factors, and has an
important role in the regulation of biological processes such as cell
growth, differentiation, proliferation, migration, and apoptosis.
Studies have shown that multiple chemokines exert biological
effects through JAK/STAT signaling pathway. It was found that
CXCL1 was a direct target of miR-302e on cell proliferation,
migration, invasion, and apoptosis in colorectal cancer, and the
mechanism was correlated with CXCL1 expression regulated by
miR-302e and the inactivation of the JAK-STAT signaling pathway
(Chen et al., 2020). CXCR1, a receptor for CXCL1, is thought to be
significantly related to poor prognosis in patients with NSCLC, and
its high expression is mainly involved in signaling pathways such as
JAK/STAT. Yang et al. used qRT-PCR and western blot experiments
to show that overexpression of CXCR1 enhanced STAT5A
expression, while knockdown of CXCR1 inhibited STAT5A
expression (Yang et al., 2021). In addition, the combination of
FKN and CX3CR1 could also activate the JAK/STAT signaling
pathway and promote pancreatic cancer cell proliferation and
migration (Huang et al., 2017). Meanwhile, chemokines can

TABLE 1 | Classification of chemokines.

Classification Chemokines Chemokine Receptors Reference

CC Chemokines CCL1~ CCL28 CCR Singh et al. (2011)
CXC Chemokines CXCL1~ CXCL17 CXCR Singh et al. (2011)
XC Chemokines XCL1、XCL2 XCR1 Singh et al. (2011)
CX3C Chemokines CX3CL1 CX3CR1 Sharma (2010), Singh et al. (2011)
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cause an imbalance between pro- and anti-apoptotic proteins in
tumor cells. For example, chemokines down-regulated the
expression of Bcl-2 and inhibited the activation of caspase-3 and
caspase-9, thereby maintaining cancer cell survival and suppressing
tumor cell apoptosis (Pang et al., 2015).

The PI3K/AKT pathway is an intracellular signaling pathway
that responds to various extracellular signals and regulates a series
of cellular function involved in metabolism, proliferation, cell
survival, growth, angiogenesis, transcription, and protein
synthesis. The above process is mediated through serine or
threonine phosphorylation of a series of downstream
substrates, and the key genes involved are PI3K and AKT
(Jafari et al., 2019; Yang et al., 2019). Some chemokines
binding to their receptors can activate the PI3K/AKT pathway,
which in turn promotes a variety of biological functions and plays
a critical part in many cancers. In melanoma and colorectal
cancer, abnormally high CXCL5 expression activates PI3K/AKT
signaling pathway and promotes PD-L1 expression, thereby
creating an immunosuppressive microenvironment (Li et al.,
2019). In addition, CXCL12 can regulate the expression of
PTEN and affect colon cancer cell proliferation and invasion
through PI3K/AKT signaling pathway (Ma et al., 2019).
Interaction of CXCL13 with CXCR5 could also promote the
growth and metastasis of colon cancer cells via PI3K/AKT
pathway (Zhu et al., 2015). Furthermore, Chen et al. revealed
that the expression of CCL26 in pancreatic cancer-associated
fibroblasts was obviously increased by treating pancreatic
adenocarcinoma with nab-paclitaxel. They further suggested
that CCL26 enhanced the invasive ability of pancreatic
adenocarcinoma cells through activation of PI3K/AKT/mTOR
axis (Chen et al., 2021). Shen et al. found that CXCL8 induced the
process of EMT through PI3K/AKT/NF-κB signaling pathway in
colon cancer cells (Shen et al., 2017). Studies of Li et al. indicated
that CCL25/CCR9 inhibited the apoptosis of NSCLS cell. The
mechanism involved the activation of PI3K/AKT and the
downstream upregulation of the anti-apoptotic proteins Bcl-2

and Bcl-xl and downregulation of the pro-apoptotic protein Bax
(Li et al., 2015). Also, Ma et al. found that CXCL12 derived from
fibroblasts significantly enhanced the secretion of CXCL6, and
the synergistic effect of both chemokines could regulate colon
cancer metastasis via PI3K/AKT/mTOR signaling pathway (Ma
et al., 2017).

Involvement in Tumor Invasion and
Metastasis
A number of studies have confirmed the critical function of the
chemokine axis in tumor metastasis. It has been reported that the
expression of chemokine receptors on cancer cells can determine
their sites of metastasis. These metastatic sites produce specific
chemokines that advance the migration of moving cancer cells to
“pre-metastatic ecological sites”, which provides favorable
circumstances for the growth of metastatic cells (Murphy
2001; Adekoya and Richardson 2020). A variety of
chemokines and chemokine receptors are correlated with
cancer cell metastasis, and CXCL12/CXCR4 axis is a key
representative system, which participates in the metastasis of
various tumor cells (Teicher and Fricker 2010; Daniel et al., 2020).
Besides, increased expression of CCR7 was remarkably associated
with disease stage, grade, lymph node metastasis and
neurovascular infiltration in breast cancer. Therefore, Vahedi
et al. suggested that this biomarker could be used as a predictor of
tumor metastasis and survival in patients (Vahedi et al., 2018).
Acharyya et al. concluded that chemoresistance and metastasis
are inextricably linked in cancer. CXCR2 blockers can break the
CXCL1/2-S100A8/9 amplification circuit that causes
chemoresistance, thus enhancing the chemotherapy effect in
breast neoplasms, especially in metastasis (Acharyya et al.,
2012). In addition, Cheng et al. devoted a large section to
detail the role of chemokines and their receptors in the
advancement and metastasis of lung cancer (Cheng et al.,
2016). CCL18/PITPNM3 was proved to be associated with the

TABLE 2 | Effects on chemokines and their receptors in cancer.

Chemokine Receptors Tumor Mechanism Reference

CXCL12 CXCR4 Primary breast cancer CXCR4 ↑, CXCL12 ↓ and the CXCL12 promoter region was
hypermethylated

Zhou et al. (2009)

CXCL12 CXCR4 Breast cancer DNA methylation Ramos et al. (2011), Dayer
et al. (2018)

CXCL13 CXCR5 Colorectal cancer Activated a CXCL13/CXCR5/NFκB/p65/miR-934 positive feedback loop Zhao et al. (2020)
CXCL13 CXCR5 Osteosarcoma Regulated the phospholipase C beta, protein kinase C α, c-Src, and nuclear

factor-κB signaling pathways
Liu et al. (2020)

CXCL11 CXCR3 Head and neck squamous cell
carcinomas

Mediates tumor lymphatic cross-talk and inflammation-induced tumor Kumaravel et al. (2020)

CXCL11 CXCR3 Liver tumor Activated ERK1/2 through an autocrine signaling pathway Zhang et al. (2019)
CXCL9 CXCR3 Tumor Reinvigoration of CD8 T cell responses in response to PD-1 blocking tumor Humblin and Kamphorst,

(2019)
CCL2 CCR2 Hepatocellular carcinoma Inhibits the recruitment of inflammatory monocytes, infiltration, and M2-

polarisation of tumor-associated macrophages
Li et al. (2017)

CXCL1/8 CXCR2 Colorectal cancer Recruited neutrophils to colorectal cancer tumor Ogawa et al. (2019)
CXCL12 CXCR4 Epithelial ovarian cancer Promote the proliferation, migration and invasion Guo et al. (2013)
CXCL12 CXCR4 Gastrointestinal malignancies Activation of G protein signaling kinases such as P13K/mTOR and

MEK/ERK
Daniel et al. (2020)

CXCL12 CXCR7 Gastrointestinal malignancies Activation of β-arrestin mediated signaling Daniel et al. (2020)
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migration, invasion and EMT processes in hepatocellular
carcinoma by mediating the NF-κB signaling pathway (Lin
et al., 2016). CCL28, a ligand for CCR3/CCR10, was also
related to breast cancer growth and metastatic spread (Yang
et al., 2017).

Involvement in Angiogenesis
Chemokines and their respective receptors are considered to be
key regulators of the tumor vascular system with a dual role in
tumor angiogenesis. CXC chemokines are divided into two
categories in accordance to the presence of ELR (Glu-Leu-Arg)
motifs at the N-terminal end: ELR + chemokines and
ELR–chemokines. ELR + CXC chemokines, such as CXCL1,
CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8, exert
angiogenic effects by activating CXCR1 and CXCR2. In contrast,
ELR–CXC chemokines, such as CXCL4, CXCL9, CXCL10,
CXCL11, and CXCL14, are considered as angiogenesis
inhibitors (Bosisio et al., 2014).

Tumor angiogenesis plays a prominent role in the process of
tumor advancement. Chemokines can interact directly with specific
chemokine receptors on vascular endothelial cells and act as
regulators of tumor angiogenesis through endothelial cell signaling
pathways, ultimately promotingmigration and proliferation as well as
endothelial cell survival (Keeley et al., 2011). The in vivo and in vitro
experiments of Chen et al. showed that CXCL5 enhanced the
angiogenic ability of colorectal cancer tumors in a CXCR2-
dependent manner by a specific mechanism of activating the
AKT/NF-κB/FOXD1/VEGF-A pathway. In addition, they found
that CXCL5 also increased microvessel density in a subcutaneous
xenograft tumor model in nude mice by overexpression treatment of
CXCL5 (Chen et al., 2019). CCR6 has also been implicated in CCR6-
mediated angiogenesis in colorectal cancer. Zhu et al. proposed that
CCR6 promoted the secretion of vascular endothelial growth factor A
(VEGF-A) through activation of theAKT/NF-κB pathway (Zhu et al.,
2018). In studies of tumor angiogenesis in colorectal cancer, CXCL11
and CXCL12 have been shown to have a reciprocal regulatory role
(Rupertus et al., 2014). In addition to acting directly on vascular
endothelial cells, chemokines can also induce the proliferation of
vascular endothelial cells through interacting with VEGF, which in
turn promotes angiogenesis (Grunewald et al., 2006). Ping et al. found
that CXCL12 could promote upregulation of VEGF expression
through PI3K/AKT pathway in gliomas (Skvortsova et al., 2019).
Moreover, their experimental results of using the CXCR4 antagonist
AMD3100 or knocking out the CXCR4 gene showed that VEGF
expression was reduced and tumorigenesis and angiogenesis was
inhibited in a nude mouse lotus tumor model (Ping et al., 2011). In
addition, CXCL8 and CXCL12-induced upregulation of VEGF
expression resulted in the stimulation of angiogenic chemokine
production (Kryczek et al., 2005; Martin et al., 2009).

On the other hand, chemokines also have the function of
inhibiting tumor angiogenesis and endothelial cell proliferation.
For instances, CCL19 could suppress tumor angiogenesis by
promoting miR-206 expression dependently on CCR7, and
thereby inhibiting the Met/ERK/Elk-1/HIF-1α/VEGF-A
pathway. These results were also confirmed in a mouse
angiogenesis model, where enhanced CCL19 expression
inhibited angiogenesis in colorectal cancer in vivo (Xu et al.,

2018). CXCL4L1 is a natural non-allelic variant of CXCL4. Struyf
et al. proposed that CXCL4L1 was an effective anti-tumor
chemokine, which can prevent the progression and metastasis
of various tumors by inhibiting angiogenesis (Struyf et al., 2007).
Furthermore, it has been postulated that CXCL4L1 exhibited
vasopressor and chemotactic activity mediated by CXCR3 (Struyf
et al., 2011). The CXCL12/CXCR4 biological axis is also closely
related to tumor angiogenesis, and blocking this axis can inhibit
tumor angiogenesis either by inhibiting VEGF or directly.
Therefore, small molecule antagonists of CXCR4, such as
ALX40-4C, AMD3100, and BKT140, have been used in
tumor-related treatments (Sun et al., 2013). CXCL9, CXCL10,
and CXCL11/CXCR3 are anti-tumor angiogenic factors, and the
inhibition of tumor angiogenesis can be achieved via upregulating
the expression of CXCL9, CXCL10, and CXCL11 (Billottet et al.,
2013). In a retrospective analysis of 294 NSCLC patients taking
Anlotinib, Lu et al. found a downregulation of serum CCL2 levels
in patients. The results suggested that changes in serum CCL2
levels could be used as a marker to monitor clinical outcomes of
patients with refractory advanced NSCLC (Lu et al., 2019). Other
tumor angiogenesis-related chemokines and their receptors, such
as CCL21/CCR7 and CXCL4, can be used as targets for anti-
tumor angiogenesis therapy (Strieter et al., 1995; Somovilla-
Crespo et al., 2013). Interestingly, the CC chemokines not
only inhibit pathological angiogenesis but also maintain
physiological angiogenesis (Ridiandries et al., 2017).

Involvement in Tumor Microenvironment
Tumor microenvironment refers to not only the structure,
function, and metabolism of tumor tissues, but also the
internal environment of tumor cells themselves (Hinshaw
and Shevde 2019; Vitale et al., 2019). The internal and
external environment in which the tumor cells are located
has a significant impact on the occurrence, growth, and
metastasis of the tumor. Tumor microenvironment contains
a diversity of cells and components, including lymphocytes,
tumor-associated macrophages, cancer-associated fibroblasts,
growth factors, cytokines, chemokines (Emon et al., 2018),
which are of vital clinical significance for tumor prevention
and treatment. Among them, chemokines and their receptors
have attracted the attention of many researchers.

The interactions of chemokines and chemokine receptors can
recruit immune cell subsets into the tumor microenvironment,
and these interactions can regulate tumor progression and
metastasis (Lee and Cho 2020). Marjorie et al. concluded that
plasma CCL4 was positively correlated with inflammatory
mediators and was associated with poor patient prognosis.
They further suggested that high expression of CCL4 in colon
cancer induces infiltration of tumor-associated macrophages (De
la Fuente López et al., 2018). Zhang et al. observed that an
increase in CCL3/6/8 led to the recruitment of myeloid cells,
which restored immunosuppressive and pro-cancer effects.
Further studies showed that depletion of regulatory T cells in
pancreatic cancer led to differentiation of inflammatory fibroblast
subpopulations, which in turn drove infiltration of bone marrow
cells via CCR1, thus revealing a potential new therapeutic
approach to alleviate immunosuppression in pancreatic cancer
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(Zhang et al., 2020). In addition, CCL2 plays a role in the
recruitment of tumor-associated macrophages, which promote
tumor phenotype generation as well as tumor cell invasion and
angiogenesis (O’Connor and Heikenwalder 2021). The same is
true for CCL24/27 (Lim 2021; Martínez-Rodríguez and
Monteagudo 2021). CXCL13 and the receptor CXCR5
represent an emerging example of a chemokine signaling axis
that demonstrates the ability to regulate tumor growth and
progression. In addition, the CXCL13-CXCR5 axis may also

indirectly regulate tumor growth by modulating non-
cancerous cells in the tumor microenvironment, particularly
immune cells (Hussain et al., 2021). The same applies to
describe the critical role of the CXCL12-CXCR4 axis and the
CCL2-CCR2 axis in the tumor microenvironment (Meng et al.,
2018; Kadomoto et al., 2021). Han et al. proposed that blocking
the CXCL8-CXCR1/2 axis alone or in combination with other
immunotherapies would be a novel immunotherapeutic strategy
(Han et al., 2021).

TABLE 3 | Clinical trials involving chemokine therapy for cancer.

Molecule Cancer Status Identifier Reference

CCL2/Carlumab/CNTO 888 Ovarian and prostate cancer Phase I NCT00537368 Sandhu et al. (2013)
CCL2/Carlumab/CNTO 888 Metastatic prostate cancer Phase II NCT00992186 Pienta et al. (2013)
CCL2/Carlumab + docetaxel/gemcitabine/paclitaxel/carboplatin Solid tumors Phase Ib NCT01204996 Brana et al. (2015)
CCL19 + chimeric antigen receptor (CAR)-engineered T cells +
IL-7

Hepatocellular carcinoma Phase I NCT03198546 Pang et al. (2021)

CCR2 + FOLFIRINOX Advanced pancreatic ductal
adenocarcinoma

Phase II NCT01413022 Nywening et al. (2016)

CCR2 + Abraxane + Gemcitabine Metastatic pancreatic ductal
adenocarcinoma

Phase Ib/II NCT02732938 Noel et al. (2020)

CCR4/Mogamulizumab + nivolumab Advanced/Metastatic solid tumors Phase I NCT02476123 Doi et al. (2019)
CCR4/Mogamulizumab Peripheral T-cell lymphomas phase II NCT01192984 Ogura et al. (2014)
CCR4/Mogamulizumab + Durvalumab/Tremelimumab Advanced solid tumors Phase I NCT02301130 Zamarin et al. (2020)
CCR5/Maraviroc Refractory colorectal cancer Phase I NCT01736813 Halama et al. (2016)
CXCR4/Plerixafor Refractory acute myeloid leukemia Phase I/II NCT00512252 Uy et al. (2012)
CXCR4/BL-8040 + Pembrolizumab Pancreatic ductal adenocarcinoma Phase IIa NCT02826486 Bockorny et al. (2020)
CXCR4/Motixafortide + Pembrolizumab Metastatic pancreatic cancer phase II NCT02826486 Bockorny et al. (2021)
CXCR4/Balixafortide + Eribulin Metastatic breast cancer Phase I NCT01837095 Pernas et al. (2018)

FIGURE 2 | Mechanisms of anti-tumor effects of chemokines and its receptors.
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CHEMOKINES IN CLINICAL RESEARCH
AND APPLICATIONS

To date, the main means of treatment for tumors are still surgical
treatment, radiation therapy, chemotherapy, and targeted therapy.
Surgical treatment is mainly used for diagnosis and radical treatment,
which can effectively relieve symptoms and improve survival. In recent
years, with the improvement of radiotherapy equipment and the
development of computer science, radiotherapy has been more and
more widely used in clinical practice and has become an important
means of treatment for comprehensive tumors. In addition, with the
occurrence of new chemotherapeutic drugs, chemotherapy has
acquired therapeutic importance. Although chemotherapy has
greatly improved the survival rate of patients with advanced
malignancies, it still needs to be combined with other treatments to
improve the efficacy. Meanwhile, targeted therapy has gradually
become vital for tumor treatment due to the development of
genetic testing technology and small molecule targeted drugs.
Targeted therapy enables selective, targeted, patient-friendly, and
safer treatment to control tumor, thereby reducing the damage to
normal tissues around the tumor. Therefore, it becomes more and
more prominent in tumor treatment by virtue of its specificity and less
toxicity.

Currently, chemokines and their receptors exhibit positive
impacts in cancer biology, such as involvement in angiogenesis,
metastasis, proliferation and invasion of cancer cells. Chemokines
are also considered to be key influencers on disease progression and
have a great effect on patients’ treatment and prognosis. In recent
years, chemokines have been used as important therapeutic targets
for cancer. Mogamulizumab (an anti-CCR4 antibody) and
Plerixafor/AMD3100 (a CXCR4 antagonist) have been approved
for the treatment of hematologic malignancies and being in clinical
trials (Bule et al., 2021). In addition,Wsetermann et al. used CCL19-
conjugated DNA vaccine for tumor control and showed that the
combination of the two significantly inhibited tumor growth and
prolonged the antitumor effect of the vaccine (Westermann et al.,
2007). Subsequent studies have also confirmed that CCL19 can be
used as an adjuvant for immunization with intradermal gene guns in
a Her2/neu mouse tumor model, with enhanced vaccine efficacy
(Nguyen-Hoai et al., 2012). Not coincidentally, the combination of
CCL19/21 with CCL4 can also be used as an adjuvant for DNA
vaccination in Her2/neu mouse tumor models (Nguyen-Hoai et al.,
2016). In a recent clinical trial, Peng et al. found that the
incorporation of CCL19 into chimeric antigen receptor
(CAR)-engineered T cells dramatically improved the antitumor
activity against human solid tumors, which has been in phase Ⅰ
clinical trial (NCT03198546) (Pang et al., 2021). CCR2 in
combination with FOLFIRINOX for advanced pancreatic
ductal adenocarcinoma is in clinical phase II (NCT01413022)
(Nywening et al., 2016). Additionally, CCR2 combined with
Abraxane and Gemcitabine for metastatic pancreatic ductal
adenocarcinoma is in phase Ib/II (NCT02732938) clinical trial
(Noel et al., 2020). Other chemokines and receptors, such as
CCL2 (Sandhu et al., 2013), CCR5 (Doi et al., 2019), and CXCR4
(Ghobrial et al., 2020), have also been used in combination with
other drugs in a variety of cancers. More clinical trials involving
chemokine therapy is listed in Table 3.

CONCLUSION AND PROSPECT

Cancer is a life-threatening disease that imposes an economic
burden on society. Due to its complexity and treatment
resistance, diagnosing and curing cancer is a huge
challenge. Despite recent advances in therapeutic strategies
such as immunotherapy and targeted therapy, survival rates of
cancer patients have not been reduced evidently. Chemokines
are a large class of cytokines that coordinate the tropism of
immune cell transport. They also participate in numerous
cancer processes and serve as a critical part in the
migration patterns of immune cells into tumors. The
mechanisms of anti-tumor effects of chemokines and its
receptors were briefly summarized in Figure 2.

The relationship between chemokines and/or chemokine
receptors and tumors is complex and multifaceted, and has
become a hot and difficult area in current tumor biology
research. With the development of molecular biology,
molecular immunology and related technologies, the role of
chemokines/chemokine receptors system in tumor
development and the related mechanisms have been
gradually discovered. As a result, targeting these molecules
may provide new strategies and means to targeted therapy of
tumor. Through more in-depth research on tumor
pathogenesis, more effective indicators for early diagnosis
and determination of recurrence can be found, which will
effectively reduce the morbidity and recurrence rate of cancer
patients. A number of studies have suggested that chemokines
can be involved in tumor development through a network of a
variety of mechanisms. Also, chemokines are expected to
become important indicators for tumor screening, diagnosis
and monitoring in the future, because of the advantages of easy
detection, low cost, and no surgery-related risks. Study of
tumor-related chemokines has gradually turned into a
research hotspot, although the specific biological properties
and mechanism of action are still not fully elucidated. At
present, some chemokines have been used as tumor
diagnostic markers in clinical practice, and some
chemokine-targeting drugs have entered various phases of
clinical trial. Unfortunately, single-targeted chemokine
therapeutic drugs have mostly ended up in failure. The new
pathway of multicomplexer-based therapies will better help
researchers discover new drugs with high effectiveness without
negative impacts.

In summary, chemokines and their receptors are expected to
become targets for new anti-tumor drugs and may provide a new
approach to cancer therapy. As the mechanisms of interaction
between chemokines and/or their receptors and cancer continue
to be studied, chemokines and their receptors may also become
predictors of cancer, which may then provide new strategies for
targeted therapy and prevention of cancer.
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