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Oxidation of BH4, a cofactor of nitric oxide synthase (NOS), produces reactive

oxygen species (ROS) through uncoupling of NOS and affects vascular

endothelial dysfunction. Ascorbic acid (AsA) inhibits the oxidation of BH4 and

reduces ROS. However, the kinetic changes of BH4 in sepsis and its effect on the

kinetic changes in AsA administration therapy, as well as the appropriate timing

of AsA administration for AsA therapy to be effective, are unclear. Mice with

sepsis, induced by cecal ligation and puncture (CLP), were examined for the

effect of AsA administration (200mg/kg) on vascular endothelial cell

dysfunction at two administration timings: early group (AsA administered

immediately after CLP) and late group (AsA administered 12 h after CLP).

Survival rates were compared between the early and late administration

groups, and vascular endothelial cell damage, indicated by the

dihydrobiopterin/tetrahydrobiopterin ratio, serum syndecan-1, and

endothelial nitric oxide synthase, as well as liver damage, were examined.

The early group showed significantly improved survival compared to the

non-treatment group (p < 0.05), while the late group showed no improved

survival compared to the non-treatment group. Compared to the non-treated

group, the early AsA group showed less oxidation of BH4 in sepsis. Syndecan1, a

marker of vascular endothelial cell damage, was less elevated and organ

damage was reduced in the early AsA-treated group. In septic mice, early

AsA administration immediately after CLPmay protect vascular endothelial cells

by inhibiting BH4 oxidation, thereby reducing organ dysfunction and improving

survival.
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1 Introduction

Sepsis is a life-threatening organ dysfunction caused by a

dysregulated host response to infection (Beale et al., 2009). The

World Health Organization reports that although sepsis

mortality rates have declined in recent decades, it still causes

11 million deaths annually (Rudd et al., 2020). Currently, there is

no definitive treatment for sepsis, and the recommended

treatment includes early detection, early antibiotic

administration, appropriate infusion therapy, and optimal

timing of vasopressor administration; however, the mortality

rate remains high (Evans et al., 2021).

Since vascular endothelial dysfunction is associated with the

pathological progression of sepsis, maintaining vascular

endothelial function is attracting attention as a new

therapeutic strategy for sepsis (Becker et al., 2010; Ince et al.,

2016; Uchimido et al., 2019; Lupu et al., 2020). The vascular

endothelium is covered with glycocalyx, a gel-like protective

layer, which plays an important role in vascular endothelial

function, including vascular permeability, anticoagulation, and

nitric oxide (NO) production from endothelial nitric oxide

synthase (eNOS). The glycocalyx is composed of syndecan-1,

heparan sulfate, hyaluronic acid, etc. In sepsis, reactive oxygen

species (ROS), tumor necrosis factor-alpha (TNF-alpha),

interleukin-1beta (IL-1beta), and other factors cause the

glycocalyx to be shed, resulting in increased vascular

permeability and coagulation and decreased NO production

(Uchimido et al., 2019).

Tetrahydrobiopterin (BH4) is produced from guanosine

triphosphate and acts as an essential cofactor for various

enzymes. BH4 is easily oxidized to dihydrobiopterin (BH2),

and the binding affinities of BH4 and BH2 to eNOS are equal.

NO is produced when BH4 binds to eNOS, whereas superoxide is

produced when BH2 binds to eNOS, namely uncoupling of eNOS

(Vásquez-Vivar et al., 2002). The relationship between BH4 and

vascular endothelial function has been reported in various

diseases such as hypertension (HT), diabetes mellitus (DM),

and atherosclerosis. In addition, there are indications that

oxidation of BH4 affects endothelial dysfunction in all these

diseases (Kolluru et al., 2012; Ismaeel et al., 2020; Kim and

Han, 2020). Although it has been considered that the lack of BH4

and/or the increase of BH2 are the causes of the uncoupling of

NOS, it has recently been reported that the BH2/BH4 ratio is

more related to ROS generation and vascular endothelial

dysfunction than the absolute value of BH4 or BH2 (Crabtree

et al., 2008; Takeda et al., 2009; Pathak et al., 2014; Ismaeel et al.,

2020). Inhibiting the oxidation of BH4 and preventing the

increase in BH2/BH4 ratio are important for maintaining

vascular endothelial function.

Ascorbic acid (AsA), also known as vitamin C, is an

important antioxidant that prevents the oxidation of various

substances, including BH4 (Heller et al., 2001). AsA has

important effects on the maintenance of vascular endothelial

functions, with multiple pathways known to exert vascular

endothelial protection, including inhibition of BH4 oxidation

(May and Harrison, 2013). In addition, there have been recent

studies suggesting the efficacy of AsA administration in sepsis.

Vitamin C levels are decreased in critically ill patients, such as

those with sepsis (Carr et al., 2017). In sepsis, AsA administration

has been reported to improve survival and protect microvascular

functions (Tyml et al., 2008; Fowler et al., 2014; Zabet et al., 2016;

Lv et al., 2021). It has been reported that AsA has multiple

mechanisms of action for sepsis, one of which is by inhibiting

BH4 oxidation (Moskowitz et al., 2018).

However, while AsA inhibits the oxidation of BH4, it does not

reduce BH2 to BH4 (Vásquez-Vivar et al., 2001). After BH4 has

been oxidized to BH2, the effect of AsA administration on this

mechanism cannot be expected and may be limited by the timing

of AsA administration. We hypothesized that administration of

AsA at the optimal timing, before the BH2/BH4 ratio increases,

would protect the glycocalyx and improve sepsis survival. In our

preliminary experiments using the cecal ligation and puncture

(CLP) model mice, the BH2/BH4 ratio showed an upward trend

from 6 h after the onset of sepsis. Therefore, we examined the

unclear kinetics of when the BH2/BH4 ratio changes in sepsis and

howAsA administration before oxidation to BH2 affects the BH2/

BH4 ratio and influences survival.

2 Methods

2.1 Animals

Adult C57BL/6 mice (9–11-week-old males) weighing 25 g

were obtained from Kyudo (Fukuoka, Japan), housed under

standard environmental conditions, and maintained at 23 ±

1°C with a 12-h light/dark cycle. All animal experiments were

conducted under the rules approved by the Institutional Animal

Care and Use Committee of Kagoshima University (approval

number MD18126). As this was an animal study, consents for

participation and publication were not applicable. We carried out

the study in compliance with the ARRIVE guidelines (https://

arriveguidelines.org) and the Guidelines for the Proper Conduct

of Animal Experiments established by the Science Council of

Japan.

2.2 CLP

As previously reported, septic shock was induced with

reference to the high grade model CLP in the article by

Rittirsch et al. with slight modifications (Rittirsch et al., 2009).

Briefly, mice were anesthetized with isoflurane, and the mouse

cecum was ligated with a 3-0 silk suture and punctured in one

place with a 21-gauge needle. The cecum was retracted into the

abdominal cavity, and the incision was sutured with 3-0 nylon.
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Only open and closed abdominal procedures were performed for

sham-operated mice without CLP. During each experiment,

blood, liver, and heart tissues were collected and analyzed

under inhalation anesthesia. At 6, 12, and 24 h after CLP and

sham operation, the blood of mice was collected by inferior vena

cava puncture, after which the animals were sacrificed. At the

same time point, the myocardium and liver were collected. Blood

samples were centrifuged at 2,000 g for 10 min to collect plasma

and stored at −80°C until analysis. After the operation,

buprenorphine (0.05 mg/kg) was repeatedly administered

every 12 h by subcutaneous injection.

2.3 Experimental design

2.3.1 Survival experiment: CLP vs. CLP + AsA
(early)

Mice were randomized into the following groups: 1) sham

(n = 10); 2) sham + AsA (early) (n = 10); 3) CLP (n = 10), and 4)

CLP + AsA (early) groups (n = 9). The group that had not

received AsA was given the same amount of NS needed to

dissolve the AsA in the AsA group. These mice received

40 ml/kg of normal saline or AsA (200 mg/kg) by

subcutaneous injection immediately after the operation and

were monitored for 72 h (Figure 1A; Table 1). In the study, n

refers to the number of animals. The numbers for each group

were taken from similar experiments reported in the literature.

AsA was administered at the optimal dose of 200 mg/kg/day for

this experiment, as its effectiveness has been demonstrated

previously in septic mice (Wu et al., 2003; McKinnon et al.,

2007; Kim et al., 2015; Jensen et al., 2021).

2.3.2 Survival experiment: CLP vs. CLP + AsA
(late)

Mice were randomized into the following groups: 1) sham (n =

10), 2) CLP (n= 10), and 3) CLP+AsA (late) (n= 9). The group that

had not received AsA was given the same amount of NS needed to

dissolve the AsA in the AsA group. Mice received 40 ml/kg of

normal saline by subcutaneous injection immediately after the

operation, and 10 ml/kg of normal saline or AsA (200 mg/kg) by

subcutaneous injection at 12 h after the operation. The mice were

monitored for 72 h (Figure 1B; Table 1).

2.3.3 Measurement of BH4 and BH2 and
calculation of BH2/BH4

BH4 is a substance that oxidizes easily, and oxidation was

prevented by adding 0.2% dithioerythritol (a final

concentration). BH4 and BH2 were measured separately by the

FIGURE 1
(A) The surgeon was unaware of the drug treatment that the animals received from the start of the experiment until after the injection. (B) The
surgeon was unaware of the drug treatment that the animals received from the start of the experiment until after the injection.
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post-column oxidation method using high-performance liquid

chromatography with a fluorescence detector (Tani and Ohno,

1993). The plasma samples (100 μl) were deproteinized by

adding 25 µl of 1 M perchloric acid containing 0.5 mM EDTA,

followed by centrifugation. The supernatants were filtered

through a 0.2-μm filter. The BH2/BH4 ratio was calculated by

dividing BH2 by BH4. After 6, 12, and 24 h of operation in the

sham +NS group, the number of mice in each group was 7, 4, and

4, respectively. In the CLP+ NS group were 8, 6, and 7,

respectively. Finally, the CLP+ AsA group was 7, 7, and 7,

respectively. The number of mice in the control group was 5

(Figure 1A; Table 2).

2.3.4 Measurement of Syndecan-1
Plasma syndecan-1 levels were measured using a Murine

CD138 ELISA Kit (Diaclone, France). The number of mice in

each group after 6, 12, and 24 h of operation in the sham + NS

group was 7, 6, and 7, respectively. In the CLP+ NS group, the

number was 7, 12, and 11, respectively. Finally, the CLP+ AsA

group was 7, 7, and 7, respectively (Figure 1A and Table 2).

2.3.5 Western blotting analysis
The heart was homogenized in a buffer solution (T-PER Tissue

Protein Extraction Reagent; Thermo Scientific, Rockford, USA). The

extracted proteins were quantified (TaKaRa BCA Protein Assay Kit,

Takara Holdings Inc, Japan), and the amount of protein to be

applied to the gel was adjusted. The protein samples (1 μg of protein)

were electrophoresed on 10% SDS-PAGE and transferred to the

PVDF membrane. The membrane was blocked for 1 h (BLOCK

ACE®, MEGMILK SNOW BRAND, Japan) and incubated with

primary antibodies (eNOS, 1:1,000, Purified Mouse Anti-eNOS/

NOS Type III, BDbioscience, USA; GAPDH, 1:20,000, Anti-

GAPDH Loading Control ab8245, Abcam, UK) at 4°C overnight.

After washing with Phosphate Buffered Saline with Tween (PBST)

buffer, the membranes were incubated with horseradish peroxidase

(HRP)-conjugated secondary antibody (1:5,000, Goat Anti-Mouse

IgGH&LHRP ab205719, Abcam, UK) for 1 h at room temperature.

Blots were washed with PBST, and immunoreactive bands were

detected using an enhanced chemiluminescence system

(ImmunoStar®, FUJIFILM Wako Chemical Corporation, Japan)

(Figure 1A). Optical density for individual bands was examined

using the Fluor Chem FC2 (Cell Biosciences, Santa Clara, CA,

United States of America). The densitometry ratios of eNOS to

GAPDH were then computed.

2.3.6 Histologic examination

Liver tissue specimens were fixed in 10% formalin and

embedded in paraffin. They were stained with hematoxylin

and eosin to evaluate the degree of injury (Figure 1A).

2.4 Statistical analysis

Survival rates were analyzed using the Kaplan–Meier

method. Survival times were compared using the log-rank test.

Data are expressed as mean ± standard error. The

TABLE 1 Number of mice per group. pThese groups originally
numbered 10 animals, but the feces were hard and the severity of
the disease could not be assessed; thus, we excluded 2 mice from the
study.

Injection time
after
operation

Operation Treatment N =

Early
group

immediately Sham NS 10

AsA 10

CLP NS 10

AsA 9*

Late group After 12hr Sham NS 10

CLP NS 10

AsA 9*

TABLE 2 Outcome measurement. pThe numbers of each group
deviated because some individuals died during the course of the
study. Including the dead mice, the total is 152.

Operation Collecting time
after
operation

Treatment N =

BH2,BH4 Control None 5

Sham 6 h NS 7

12 h 4

24 h 4

CLP 6 h NS 8

12 h 6

24 h 7

CLP + AsA 6 h AsA 7

12 h 7

24 h 7

Syndecan-
1

Control None 4

Sham 6 h NS 7

12 h 6

24 h 7

CLP 6 h NS 7

12 h 12

24 h 11

CLP + AsA 6 h AsA 7

12 h 7

24 h 7
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Kruskal–Wallis test was used to detect differences between the

groups. The Bonferroni method was used for the post hoc test of

this statistic. Student’s t-test was used for comparisons between

the two groups of quantified western blots. Significant differences

were considered if the p-value was <0.05.

3 Results

3.1 Early administration of AsA improved
the survival rate of septic mice

We compared the survival rates after operation between

sham, sham + AsA (early), CLP, and CLP + AsA (early)

(Figure 2). None of the CLP mice used in this study

survived to 45 h after the operation. All sham + NS and

sham + AsA (early) mice survived for 72 h. In the CLP +

AsA (early) mice group, 3 of 9 mice survived after the

operation (33%).

The CLP + AsA (early) mice group showed significantly

higher survival rates than the CLP mice group.

Second, we compared the survival rates after operation

among sham, CLP, and CLP + AsA (late) groups (Figure 2).

AsA (Late) mice group received 40 ml/kg of normal saline by

subcutaneous injection immediately after the operation, and

AsA (200 mg/kg) by subcutaneous injection at 12 h after the

operation. All sham mice survived for 72 h. In the CLP and

CLP + AsA (late) mice groups, 1 of 9 mice survived after the

operation (11%). The CLP + AsA (late) mice group showed

no difference in survival rates compared to the CLP mice

group.

3.2 BH2/BH4 ratio increased 6h after the
operation and continued to increase over
time. Early administration of AsA
prevented an increase in BH2/BH4 ratio

To elucidate the dynamics of BH4 and BH2 in CLP-induced

sepsis and how the dynamics of the BH2/BH4 ratio change with

the administration of AsA (early), we measured BH4 and BH2

and then calculated BH2/BH4. Serum BH4 and BH2 levels were

determined in CLP and sham mice at 6, 12, and 24 h after the

operation.

Both BH4 and BH2 showed a significant increase 24 h after

the operation (Figure 3). The ratio of BH2 to BH4 was

significantly elevated in the CLP group compared to the early

AsA group starting at 12 h.

Syndecan-1 levels increased after 12 h, but early

administration of AsA suppressed this increase. The

expression of eNOS in myocardial tissues was also maintained

by the early administration of AsA.

Syndecan-1 level and eNOS expression in myocardial tissues

were measured to evaluate whether early administration of AsA

protects vascular endothelial cells.

Syndecan-1 at 12 h was significantly higher in the CLP group

than in the early AsA group (Figure 4). The expression of eNOS

was measured to evaluate vascular endothelial cells and was

FIGURE 2
Mice subjected to CLP, as described in the Methods section, for 72 h survival study. In the CLP + AsA (early) group, AsA was injected
subcutaneously immediately after the operation (n = 9). In the CLP + AsA (late) group, AsA was injected subcutaneously 12 h after the operation (n =
9). The group that had not received AsA was given the same amount of NS needed to dissolve the AsA in the AsA group. Although the timing of saline
administration in the CLP group differed between the late and early groups, they were compared with the other groups as the same group
because the severity of the disease did not change. The CLP + AsA (early) mice group had a significantly prolonged survival rate compared to the CLP
group. *p < 0.05 versus CLP. CLP + AsA (late) mice showed no difference in the survival rate from the CLP group. *p < 0.05 versus CLP. Abbreviations:
AsA, ascorbic acid; CLP, cecal ligation and puncture.
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assessed in myocardial tissue 12 h after operation. Four samples

from the normal, CLP, and CLP + AsA (early) groups were

collected and evaluated by western blotting. eNOS expression

was lower in the CLP group than in the normal group. Compared

to the CLP group, the early AsA group maintained eNOS

expression.

3.3 Liver organ damage was reduced by
early AsA administration

Finally, liver tissue was stained with hematoxylin and eosin

and observed under a microscope to evaluate organ damage due

to sepsis. Each sample was collected 12 h after the operation.

No histological differences were observed between the

control and sham mice. In CLP mice, the arrangement of

hepatocytes was markedly disorganized (Figure 5). In

contrast, hepatocyte disarrangement was reduced in CLP +

AsA (early) mice, although not as orderly as in the control and

sham mice.

4 Discussion

This study showed that early administration of AsA might

contribute to improved survival of septic mice (Figure 2). In

particular, we found that the optimal timing of AsA

administration should be early in the disease, before the BH2/

BH4 ratio increases. Although the efficacy of AsA in sepsis is still

under discussion, our study suggests that it may be more effective

if administered at the optimal time. Here, we discuss the effect of

early AsA administration on BH4 dynamics and the optimal

timing of AsA administration.

BH4 plays an important role in maintaining vascular

endothelial function by producing NO as a cofactor for eNOS.

It also plays a role in exacerbating the pathogenesis of sepsis by

overproducing NO through inducible nitric oxide synthase

(iNOS) expression and producing free radicals through eNOS

uncoupling (Ince et al., 2016; Dolmatova et al., 2021). The

elevation of the BH2/BH4 ratio is associated with ROS

development. It has been reported to correlate with vascular

endothelial dysfunction in various diseases, such as HT, DM, and

peripheral arterial disease. (Crabtree et al., 2008; Crabtree and

Channon, 2011; Ismaeel et al., 2020). However, there are few

reports on the dynamics of BH4 in the acute phase and the

relationship between the BH2/BH4 ratio and vascular endothelial

function in sepsis. In our septic mice experiment, the BH2/BH4

ratio was shown to increase as early as 6 h after CLP, indicating

that the BH2/BH4 ratio increases in sepsis, vascular endothelial

dysfunction is associated with exacerbation, as in other diseases

(Figure 3C).

In case of an increase in BH2/BH4 ratio, eNOS undergoes

an uncoupling reaction, which produces superoxide, instead

of NO, that reacts to form peroxynitrite (ONOO-), a powerful

oxidant (Stuehr et al., 2001; Vásquez-Vivar et al., 2002;

Alkaitis and Crabtree, 2012). Peroxynitrite is one of the

most powerful ROS, making it a major cause of vascular

endothelial dysfunction. It is considered that correcting the

BH2/BH4 ratio can inhibit peroxinitrite production and

protect the vascular endothelium (Bendall et al., 2014).

Therefore, attempts to correct the relative lack of BH4 by

supplementing BH4 to prevent uncoupling of eNOS and

FIGURE 3
(A) BH2 concentration in the plasma was measured by HPLC. At 6 and 24 h after the operation, CLP group had significantly elevated BH2

concentration compared to CLP+ AsA (early) and Sham groups. At 12 h after the operation, CLP group had significantly elevated BH2 concentration
compared to CLP+ AsA (early) group. Error bars represent SE. *p < 0.05. (B) BH4 concentration in the plasmawasmeasured byHPLC. At 24 h after the
operation, CLP group had significantly elevated BH4 concentration compared to CLP+ AsA (early) and Sham groups. At 6 and 12 h after the
operation, there was no significant differences between the groups. Error bars represent SE. *p < 0.05. (C) BH2/BH4 ratio was calculated by dividing
BH2 by BH4. At 6 and 24 h after the operation, CLP group had significantly elevated BH2/BH4 ratio compared to CLP+ AsA (early) and Shamgroups. At
12 h after the operation, CLP group had significantly elevated BH2/BH4 ratio compared to CLP+ AsA (early) group. Error bars represent SE. *p < 0.05.
Abbreviations: AsA, ascorbic acid; CLP, cecal ligation and puncture; BH4, tetrahydrobiopterin; BH2, dihydrobiopterin; SE, standard error; HPLC, high-
performance liquid chromatography.
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maintain endothelial function have been reported in several

diseases such as patients of coronary risk factors, HT, DM, and

ischemia reperfusion (Heitzer et al., 2000; Mayahi et al., 2007;

Porkert et al., 2008). In sepsis, BH4 administration reportedly

improved microcirculation, circulatory indices, and survival

rate in a sheep sepsis model (He et al., 2012; Dumbarton et al.,

2017). However, conflicting studies have shown that

inhibition of BH4 production improves sepsis mortality

(Chuaiphichai et al., 2016). Thus, there are conflicting

reports on the administration of BH4 for sepsis. One reason

why BH4 administration is not effective in the acute phase of

sepsis is that BH4 is overproduced in the acute phase of sepsis,

and the overproduction of BH4 may be related to its

autoxidation to BH2 (Kirsch et al., 2003). Another possible

cause is that exogenous BH4 is converted to BH2 after

administration (Cunnington et al., 2012). Since treatment

that inhibits BH4 oxidation may be more effective than

administration of BH4 to improve the BH2/BH4 ratio in the

acute phase of sepsis, when BH4 production is overproduced,

we focused on the antioxidant AsA.

AsA has long been used as an antioxidant in BH4

measurement methods (Tani and Ohno, 1993). In sepsis,

the administration of AsA alone and the simultaneous

administration of vitamin B1 and hydrocortisone have been

widely studied. The simultaneous administration of vitamin

B1 and hydrocortisone, in particular, has attracted attention

as a type of metabolic therapy such as Hydrocortisone,

ascorbic acid, and thiamine therapy (Marik et al., 2017;

Marik, 2018; Fowler et al., 2019; Kim et al., 2020). In

clinical practice, administration of AsA, a reducing agent,

has been reported to inhibit the oxidation of BH4 (Mortensen

and Lykkesfeldt, 2014). In our study, the BH2/BH4 ratio

increased at 6 h after operation, and AsA administration

immediately after operation significantly suppressed the

increase in BH2/BH4 ratio (Figure 3C). In the AsA non-

administered group, an increase in serum syndecan-1 level,

an indicator of endothelial cell damage, and decreased eNOS

expression, an indicator of endothelial cell protection, were

observed at 12 h after operation (Figures 4A,B).

On the other hand, in the early AsA group immediately

after the operation, both serum syndecan-1 level and eNOS

expression level showed protective effects on vascular

endothelium (Figures 4A,B). In addition, in the non-AsA-

treated group, where syndecan-1 was elevated and eNOS

expression was decreased, organ damage occurred after

12 h. In contrast, early AsA administration suppressed

syndecan-1 elevation and reduced organ damage in the

group where eNOS expression was maintained (Figure 5).

Serum syndecan-1 is a known indicator of vascular

endothelial damage that correlates with coagulation

disorders associated with sepsis prognoses, such as

persistent thrombocytopenia and disseminated intravascular

coagulation (DIC) (Ostrowski et al., 2015; Hatanaka et al.,

2021). The suppression of syndecan-1 elevation in the early

AsA group suggests that vascular endothelial cell damage

suppression resulted in less sepsis-induced organ damage.

Since AsA inhibits the oxidation of BH4, the increase in

BH2/BH4 ratio was suppressed when AsA was administered

immediately after operation. The fact that the survival rate did

not improve when AsA was administered after 12 h (late

group) in the survival experiment may be due to the late

timing of administration since AsA does not have the effect of

reducing BH2 to BH4 (Figure 2) (Vásquez-Vivar et al., 2001).

Several recent studies have shown no positive effect of AsA

administration in septic shock patients, so it remains

controversial whether AsA should be administered to these

FIGURE 4
(A) Plasma syndecan-1 was measured by ELISA kit. At 12 h
after the operation, CLP group had significantly elevated
syndecan-1 level compared to the CLP+ AsA (early) and Sham
groups. Error bars represent SE. *p < 0.05. (B) All samples
were taken 12 h postoperatively. The expression of eNOS
(130 kDa) in the heart was measured by western blotting; it was
decreased in the CLP group but maintained in the early AsA
group. eNOS was quantified and compared between the CLP and
CLP + AsA (early) groups (n = 4, 4). For the quantitative
experiments, measurements were repeated multiple times. eNOS
expression was significantly maintained in the AsA (early)
group. *p < 0.05. Abbreviations: AsA, ascorbic acid; CLP, cecal
ligation and puncture; eNOS, endothelial NO synthase; SE,
standard error.
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patients (Fujii et al., 2020; Moskowitz et al., 2020; Scholz et al.,

2021). Some studies have cited delayed administration as a

limiting factor to obtaining a good effect of AsA in septic

shock (Moskowitz et al., 2020). Since the reduction of BH2 to

BH4 is not expected to be effective, making a difference in the

survival results depending on the timing of AsA administration,

as shown in our present experiment with septic mice, the studies

reporting no effect of AsA therapy may be related to the fact that

AsA was administered after the BH2/BH4 ratio was already

elevated. The optimal timing of AsA administration for sepsis

will become more important, as an experiment is currently

planned to test the efficacy of early AsA administration in the

emergency room for septic patients (Vandervelden et al., 2021).

This study has several limitations. First, it is unclear whether the

results from this septic mouse experiment would be similar to those

of human sepsis. Changes in BH4 and BH2 over time may differ

between humans and mice. Second, because mice can synthesize

AsA in their bodies, their bodies’ dynamics of AsA concentration

may be different from those of humans. The optimal dosage needs to

be discussed in both human and animal studies. Third, we have not

measured intracellular BH4; some experiments have measured BH4

and BH2 in cells rather than in plasma as in our study. Although we

consider that the kinetics of the two move generally in parallel, it

may have been necessary to measure the BH2/BH4 ratio in vascular

endothelial cells in order to correlate ROS production (eNOS

function) in vascular endothelial cells with the BH2/BH4 ratio in

plasma.

Moreover, in this study, we only mentioned the protective

effect of AsA on vascular endothelial cells by suppressing the

increase in BH2/BH4 ratio. Still, AsA has additional effects,

such as catecholamine production, adrenocorticotropic

hormone production, and direct scavenging of free radicals,

which may improve the prognosis of sepsis through various

pathways (Patak et al., 2004; Padayatty et al., 2007; Moskowitz

et al., 2018; Obi et al., 2020). However, our present findings

indicate that the timing of AsA administration affects

prognosis and that the BH2/BH4 ratio is related to the

mechanism of septic shock.

5 Conclusion

In the septic mice, an increase in the BH2/BH4 ratio, which

causes vascular endothelial cell damage, occurred 6 h after the

disease onset. In the present study, we suggest that

administration of AsA at an earlier time before the increase in

the BH2/BH4 ratio, suppressed the increase in the BH2/BH4 ratio

and contributed to the improved prognosis of the septic mice. In the

future, the time course of the BH2/BH4 ratio in septic patients should

be evaluated to determine the optimal timing of AsA administration.

FIGURE 5
Histopathological examination of the liver of CLP-treated and untreated mice. (A,B) Normal histology of liver tissues obtained from sham and
control mice. (C) Representative CLP-induced liver damage. (D) Representative liver of CLP mice treated with early AsA administration. Sham and
CLP mice were killed 12 h after the operation. Original magnification, ×40. Abbreviations: AsA, ascorbic acid; CLP, cecal ligation and puncture
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