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Obesity is a health concern worldwide, and its onset is multifactorial. In addition

to metabolic syndrome, a high-fat diet induces many deleterious downstream

effects, such as chronic systemic inflammation, a loss of gut barrier integrity,

and gut microbial dysbiosis, with a reduction of many butyrate-producing

bacteria. These conditions can be ameliorated by increasing legumes in the

daily diet. White and kidney beans (Phaseolus vulgaris L.) and their non-nutritive

bioactive component phaseolamin were demonstrated to mitigate several

pathological features related to a metabolic syndrome-like condition. The

aim of the present study was to investigate the molecular pathways involved

in the protective effects on the intestinal and liver environment of a chronic oral

treatment with P. vulgaris extract (PHAS) on amurinemodel of the high-fat diet.

Results show that PHAS treatment has an anti-inflammatory effect on the liver,

colon, and cecum. This protective effect was mediated by peroxisome

proliferator-activated receptor (PPAR)-α and γ. Moreover, we also observed

that repeated PHAS treatment was able to restore tight junctions’ expression

and protective factors of colon and cecum integrity disrupted in HFDmice. This

improvement was correlated with a significant increase of butyrate levels in

serum and fecal samples compared to theHFD group. These data underline that

prolonged treatment with PHAS significantly reduces some pathological

features related to the metabolic syndrome-like condition, such as

inflammation and intestinal barrier disruption; therefore, PHAS could be a

valid tool to be associated with the therapeutic strategy.
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Introduction

Obesity is an abnormal or excessive fat accumulation that

may impair health. In the last years, its prevalence has tripled,

and it is the fifth leading cause of death globally (World Health

Organization, 2021). High-fat diet (HFD) causes obesity and

metabolic disorders and its prolonged consumption causes

dysbiosis (Cani et al., 2007). The Western-style diet is high in

fat and simple carbohydrates and low in fibers (Sonnenburg et al.,

2016). Recently, it has been shown that an increase of legumes in

the daily diet can improve weight control in obese patients (Ricci

et al., 2014). The α-amylase inhibitor isoform 1, also called

phaseolamin, is extracted from common white kidney beans

(Phaseolus vulgaris L.), and it is well known to interfere with the

breakdown of carbohydrates, reducing starch digestion and

absorption (Champ, 2002). As previously reported, P. vulgaris

is not the only source of phaseolamin but it is also widely

considered safe (Chokshi, 2006; Obiro et al., 2008). Phaseolus

vulgaris L. extract containing alpha-amylase inhibitor and

phytohaemagglutinin had alleviating effects on metabolic

syndrome and anti-obesity activity (Viguiliouk et al., 2017).

Furthermore, we recently demonstrated that a prolonged

treatment with a standardized extract of P. vulgaris (PHAS),

containing phaseolamin, significantly reduced several

pathological features related to a metabolic syndrome-like

condition induced in mice by HFD (Micheli et al., 2019).

During the last decade, it was reported that among all the

factors that influence the composition of the gut microbiota diet

is probably the most significant (Sandhu et al., 2017). It was

shown that a classicWestern diet significantly reduces the level of

butyrate-producing bacteria (Russell et al., 2011), and a shift to a

diet rich in fibers and prebiotics can restore these bacteria

abundances (Cani et al., 2008). Different evidence has shown

how, through gut microbiota, diet influences stress, behavior, and

cognition but above all obesity and metabolic disorders, and so

nutrition is already a complementary and alternative approach

(Johnson et al., 2016). Moreover, the intestinal microbiota also

communicates with other organ systems including the brain,

lungs, skin, and liver, influencing their function in newly

discovered ways and highlighting the possible contributions of

gastrointestinal dysbiosis to other bodily conditions (Kamada

et al., 2013).

HFD intake leads to a detrimental modification at the

intestinal level, such as a loss of gut barrier integrity, and to a

low-grade inflammation throughout the body, termed “meta-

inflammation”. It is a chronic state of inflammation mediated by

macrophages located within the colon, liver, muscle, and adipose

tissue (Li et al., 2018). Peroxisome proliferator-activated receptor

(PPAR)-α and γ are members of the nuclear receptor family that

regulate not only hepatic but also systemic inflammation

(Bensinger and Tontonoz, 2008; Agarwal et al., 2017).

The aim of the present study was to investigate the molecular

pathways involved in the protective effects on the intestinal and

liver environment of a chronic treatment with a standardized

seed extract of P. vulgaris (PHAS) on a murine model of HFD.

Materials and methods

In vivo experimental procedures

Male C57 BL/6 mice (Envigo, Varese, Italy) weighing

approximately 20 g at the beginning of the experimental

procedure were used. Twelve mice were housed per cage, kept

at 23.0°C ± 1.0°C with a 12 h light–dark cycle. During

acclimatization, they were fed a standard laboratory diet and

tap water ad libitum. All animal manipulations were carried out

according to the Directive 2010/63/EU of the European

Parliament and of the European Union Council

(22 September 2010) on the protection of animals used for

scientific purposes. The ethical policy of the University of

Florence complies with the Guide for the Care and Use of

Laboratory Animals of the US National Institutes of Health

(NIH Publication no. 85–23, revised 1996; University of

Florence assurance number: A5278-01). Formal approval to

conduct the experiments described was obtained from the

Animal Subjects Review Board of the University of Florence.

Control animals were fed ad libitum for 19 weeks with a standard

chow diet (STD), with 24% protein, 58% carbohydrate, and 18%

fat as a percentage of total Kcal (Envigo, Varese, Italy). Metabolic

syndrome was induced by feeding the animals with a high-fat diet

(HFD; Research Diets, New Brunswick, NJ) for 19 weeks ad

libitum. The HFD diet contained 60% fat, 20% protein, and 20%

carbohydrate as a percentage of total Kcal (Watanabe et al.,

2012). The model is consistent with what was previously

published (Micheli et al., 2019). Briefly, mice were randomly

divided into three groups, ensuring no differences in body weight

mean (n = 12 animals for each group) as follows: (1) a control

group receiving a chow diet and vehicle per os (STD); (2) an HFD

group receiving vehicle; and (3) an HFD group receiving daily

PHAS (500 mg/kg, Indena S.p.A). For the administration, PHAS

was suspended in 1% carboxymethylcellulose sodium salt (CMC;

Sigma-Aldrich, Milan, Italy) and daily per os administered

30 min before the dark phase of the circadian light–dark cycle

in the animal facility from week 11 (the time by which obesity

was full-blown) until week 19. During the treatment, body weight

and food intake were monitored weekly. Body weight, food

intake, glucose and insulin tolerance test, HDL, LDL,
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triglycerides, total cholesterol, and glucose levels, together with

liver damage by Hematoxylin-Eosin, steatosis index, and

oxidative alteration by lipid peroxidation (TBARs), were

evaluated and published in our previous work (Micheli et al.,

2019).

The doses of PHAS were chosen on the basis of the literature

(Micheli et al., 2019). On week 19, mice were sacrificed by

cervical dislocation, and a tissue explant was performed.

Phaseolus vulgaris extract preparation

The vegetal extract used (Beanblock®; Indena S.p.A., Milan,

Italy) is a standardized dry extract containing an alpha-amylase

inhibitor and phytohemagglutinin. Briefly, P. vulgaris dry extract

was prepared by means of aqueous extraction and alcoholic

precipitation from the common kidney bean. Bean extract was

obtained by extraction with citrate buffer and precipitation with

ethanol. The extract is characterized by a standardized

composition of 8.5% (w/w) tested alpha-amylase inhibitor,

with inhibiting activity of 1400 U/mg, and

phytohemagglutinin (hemagglutinating activity of

16 hemagglutinating units/mg). The manufacturing process is

described in detail by Fantini et al. (2009) and Loi et al. (2013).

Protein extraction and western blot
analysis

Colon, cecum, and liver samples were homogenized on ice-

cold lysis buffer [20 mM Tris–HCl (pH 7.5), 10 mM NaF,

150 mM NaCl, 1% Nonidet P-40, 1 mM phenylmethylsulfonyl

fluoride, 1 mM Na3VO4, and leupeptin and trypsin inhibitor

10 μg/ml]. After 1 h, tissue lysates were obtained by

centrifugation at 12,000 rpm for 20 min at 4°C. Protein

concentration was estimated by the Bio-Rad protein assay

(Bio-Rad Laboratories, Hercules, CA, United States), using

bovine serum albumin as a standard. Colon (40 μg), cecum

(40 μg), and liver (30 μg) lysate were dissolved in Laemmli

sample buffer, boiled for 5 min and separated on SDS-

polyacrylamide gel electrophoresis and transferred to

nitrocellulose membrane The filter was probed with anti-

inducible nitric oxide synthase (iNOS) antibody (dilution 1:

1000; cat. No. 610432, BD Bioscience, from Becton Dickinson,

Buccinasco, Italy) or anti-cyclooxygenase (COX)-2 (dilution 1:

1000; cat. No. 610204, BD Bioscience) or anti-nuclear factor κB
p65 (NF- κB) (dilution 1:500; cat. No. sc-8008, Santa Cruz

Biotechnology, Dallas, TX, United States) or anti-inhibitor

factor κB alpha (IκB-α) (dilution 1:500; cat. No. sc-1643,

Santa Cruz Biotechnology) or anti-peroxisome proliferator-

activated receptor (PPAR)-α (dilution 1:1000; cat. No. P0369,

Sigma-Aldrich, Milan, Italy) or anti-PPAR-γ (dilution 1:1000;

cat.no. MA5-14889, Invitrogen, Rockford, IL, United States) or

anti-occludin (dilution 1:500; cat. No. sc-133256, Santa Cruz

Biotechnology) or anti-zonulin 1 (ZO-1) (dilution 1:1000; cat.

No. 40–2300, Invitrogen, Milan, Italy) in 1 × PBS, 3% non-fat

dried milk, and 0.1% Tween 20 at 4 °C overnight. The secondary

antibody was incubated for 1 h at room temperature.

Subsequently, the blot was developed using enhanced

chemiluminescence detection reagents (Amersham Pharmacia

Biotech, Piscataway, NJ, United States), according to the

manufacturer’s instructions. The detection of the filter was

performed by the ChemiDoc Imaging System (Bio-Rad

Laboratories). To ascertain, the blots were loaded with equal

amounts of protein lysates, and they were also incubated in the

presence of the antibody against the β-actin (cat. no. A5441,

Sigma-Aldrich) or GAPDH (cat. no. G9545, Sigma-Aldrich).

Histological analysis

At week 19, mice were sacrificed and tissues were collected.

Samples of cecum and colon were fixed in 10% formalin and

embedded in paraffin, using standard procedure. Sections (5-

micron) were mounted on slides and stained with hematoxylin

and eosin and analyzed in a blinded manner by two independent

observers for the evaluation of the histopathological score. The

histological features valuated were goblet cell hyperplasia,

epithelial hyperplasia, and dysplasia. The severity of goblet cell

hyperplasia was graded, based on the ratio between goblet cells

and total epithelial cells, into the following categories according

to a score of 0–3 (0 = none; 1 = mild; 2 = moderate; 3 = severe).

The ratio was obtained by counting, in a blinded fashion, total

epithelial cells and cells with goblet morphology from ten high-

powered fields of colon and cecum cross-sections. Similarly, the

level of epithelial hyperplasia, defined as an increase in epithelial

cell numbers relative to baseline epithelial cell numbers per crypt,

was scored into the following categories: 0 = absent; 1 = mild; 2 =

moderate; and 3 = severe. Dysplasia was scored in the following

three categories: 0 = absent; 1 =mild to moderate cytologic atypia

and mild architectural disturbance; and 2 = architectural

abnormality and severe cytologic atypia. Dysplasia and

hyperplasia distribution were both separately scored into the

following categories: 0 = absent; 1 = focal; 2 = multifocal; and 3 =

diffused. The grade was obtained through the evaluation of the

total area of the cecum and colon cross-section.

Fecal and serum butyrate extraction

Samples were obtained at week 19 (end of PHAS treatment);

0.5 g of fecal samples were weighed and suspended in 1 ml of

pure water and vortexed. The supernatant was filtered (0.45 μM)

and acidified with 20 μl of H3PO4 85% (w/v) (Sigma-Aldrich),

and vortexed for 5 min. For butyrate extraction, anhydrous

diethyl ether (Sigma-Aldrich) was added to the acidified fecal
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homogenate samples (1:1, v/v), vortexed, and centrifuged for

30 min at 12,000 g at room temperature. The diethyl ether layer

(containing butyrate) was transferred to a new glass tube

containing sodium sulfate anhydrous to remove the residual

water. Finally, the organic phase was placed in a new glass

tube for gas chromatography–mass spectrometry (GC-MS)

analysis. A standard curve (1–200 ug/ml) (butyric acid, cat.

no. 19215, Sigma-Aldrich) was generated at the beginning of

the run.

Serum samples were acidified with 20 μl of H3PO4 85% (w/v)

(Sigma-Aldrich), vortexed for 5 min, and incubated on ice for

5 min. The acidified samples were extracted by adding ethyl

acetate (1:1, v/v), vortexed for 5 min, and then centrifuged for

20 min at 12,000 g at room temperature. Finally, the organic

extract (containing butyrate) was carefully removed and

transferred into a new glass tube for GC-MS analysis. A

standard curve (1–50 ug/ml) was generated at the beginning

of the run.

GC/MS analysis

The GC column was an Agilent DB-WAX Ultra Inert with a

length of 30 m, an internal diameter of 0.25 mm, and a film

thickness of 0.25 μM. The GC was programmed to achieve the

following run parameters: the initial column temperature was set

at 90°C, hold of 2 min, and then increased to 100°C at a rate of

2°C/min, hold of 10min, and finally ramp of 5°C/min up to a final

temperature of 110°C for a total run time of 21 min, gas flow of

70 ml min−1 splitless to maintain 12.67 p.s.i. column head

pressure, and septum purge of 2.0 ml min−1. Helium was the

carrier gas (1.5 ml min−1 constant). Parameters of mass

spectrometer were source at 230°C and MS Quad at 150 °C. A

blank solvent (ethyl acetate) was injected between every sample

to ensure no memory effects.

Statistical analysis

Data from Western blots were expressed in an arbitrary unit

of OD ratio of β-actin. Statistical analysis was performed by the

analysis of variance (ANOVA) test for multiple comparisons

followed by Bonferroni’s post hoc test, using GraphPad Prism

(GraphPad Software, San Diego, CA, United States). Differences

among groups were considered significant at values of p < 0.05.

For the histological assay, statistical analysis was performed

by the analysis of variance (ANOVA) test for multiple

comparisons followed by Bonferroni’s test, using SPSS Statistic

software 24.0 (IBM, New York, NY, United States). The same

statistical software was used for the correlation analysis between

PHAS anti-inflammatory activity and PPAR expression.

Results

Phaseolus vulgaris extract treatment
mitigates liver pro-inflammatory enzyme
expression and restores peroxisome
proliferator-activated receptor expression

First, we evaluated the liver expression of pro- and anti-

inflammatory enzymes. In vehicle-HFD mice, an increase in

COX-2 and iNOS expressions were found (Figures 1A, B,

black bars) with respect to vehicle-standard diet mice (white

bars) (*p < 0.05 and **p < 0.01 vs. STD). PHAS treatment was

able to reduce the expression of these inflammatory enzymes

(#p < 0.05 vs. HFD). Moreover, accordingly, with these results,

immunoreactivity for NF-κB was increased, whereas Iκb-α
expression was significantly decreased in vehicle-HFD mice

(***p < 0.001 and *p < 0.05 vs. STD, respectively), whereas

PHAS treatment significantly restored their expressions (##p <
0.01 and #p < 0.05 vs. HFD, respectively) (Figures 1C, D, light

blue vs. black bars).

In order to understand the protective effect by which PHAS

may lower the development of HFD-induced liver inflammation,

we evaluated the liver expressions of PPAR-α and PPAR-γ.
Results showed that a significant reduction of both receptors

was observed in vehicle-HFD mice (*p < 0.05 vs. STD) (Figures

2A, B, black vs. white bars), whereas PHAS treatment was able to

restore their expressions (#p < 0.05 vs. HFD) (Figures 2A, B, light

blue vs. black bars).

To strengthen the hypothesis that the PHAS anti-

inflammatory activity is PPARs mediated, Spearman’s rank-

order correlations were run to assess the relationship between

different variables related to inflammation (namely, COX-2,

iNOS, NF-κB, and Iκb-α) and PPAR-α and PPAR-γ,
respectively, and regardless to diet (n = 9; three per group).

When PPAR-γ and PPAR-α are related to inflammation, a

negative correlation is expected with COX-2, iNOS, and NF-

κB (pro-inflammatory) and a positive correlation with Iκb-α
(anti-inflammatory).

As expected, a strong negative, statistically significant

correlation was found between the PPAR-α and NF-κB
(rs = −0.787, p = 0.012), whereas a strong positive correlation

was found with Iκb-α (rs = 0.750, p = 0.020). Although not

significant, moderate negative correlations were found with

COX-2 (rs = −0.617, p = 0.077) and iNOS (rs = −0.650, p = 0.058).

Accordingly, strong negative, statistically significant

correlations were found between COX-2 (rs = −0.717, p =

0.030), iNOS (rs = −0.700, p = 0.036), and PPAR-γ. Although
not significante, a moderate negative correlation was found

between NF-κB (rs = −0.644, p = 0.061) and PPAR-α,
whereas a moderate positive correlation was found with Iκb-α
(rs = 0.617, p = 0.077).
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GC-MS serum and fecal butyrate
quantification

Butyrate concentrations at the end of the experiment (week

19) were measured by GC-MS. Both fecal and serum butyrate

values obtained from mice fed with a standard diet were

significantly reduced in HDF mice (**p < 0.01 and ***p <
0.001 vs. STD) (Figures 3A, B, black vs. white bars).

Surprisingly, butyric acid concentrations were significantly

increased both in serum and in stool samples after PHAS

treatment (##p < 0.01 vs. HFD) (Figures 3A, B, light blue vs.

black bars).

Phaseolus vulgaris extract treatment
restored peroxisome proliferator-
activated receptor expression and barrier
integrity in the colon and cecum

Then, we measured PPAR-α and γ expressions in the colon
and cecum. As shown in Figure 4, HFD mice significantly

decreased PPAR-α and PPAR-γ expression in the colon (*p <
0.05 and ***p < 0.001 vs. STD) (Figures 4A, B, black vs. white

bars) and cecum (Figures 4C, D, black vs. white bars), and

PHAS treatment blunted these effects (#p < 0.05 vs. HFD)

(Figures 4C, D, light blue vs. black bars).

In order to understand if restored PPAR expression by

PHAS treatment could influence intestinal homeostasis,

histological evaluation of both the colon and cecum was

conducted. Colon sections from HFD mice showed severe

goblet cell hyperplasia and mild epithelial hyperplasia with

low-grade dysplasia (Figure 5B), compared to normal diet +

vehicle sections (STD, Figure 5A). PHAS treatment in

injured mice ameliorated goblet cell hyperplasia

(Figure 5C). Similarly, cecum sections were analyzed. HFD

mice showed severe goblet cell hyperplasia and mild

epithelial hyperplasia with low-grade dysplasia (Figure 5E)

compared to STD diet mice (Figure 5D), while the HFD +

PHAS group cecum showed moderate goblet cell hyperplasia

(Figure 5F). Tight junction (TJ) status is a good marker for

barrier integrity loss. Therefore, we investigated the

expression of occludin and ZO-1, which are involved in

preserving gut integrity (Odenwald and Turner, 2013).

HFD mice showed a significant reduction of these tight

junction proteins (**p < 0.01 vs. STD) (Figures 5G–L,

black vs. white bars), and their level was restored by

PHAS treatment (#p < 0.05 and ##p < 0.01 vs. HFD)

(Figures 5G–L, light blue vs. black bars).

FIGURE 1
Anti-inflammatory effect of P. vulgaris extract (500 mg/kg, PHAS 500) measured in the liver of HFD mice: (A) iNOS; (B) COX-2; (C) NF-κB; and
(D) IκB-α expressions are reported as the ratio of optical densities of their bands to GAPDH. Immunoblots representative were shown. Densitometric
evaluations of protein levels were reported. Data are expressed as means ± SEM (n = 6). *p < 0.05 and **p < 0.01, and ***p < 0.001 vs. STD; #p <
0.05 and ##p < 0.01 vs. HFD.
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Anti-inflammatory effect of Phaseolus
vulgaris extract treatment in high-fat diet
mice colon

Then, the expressions of pro- and anti-inflammatory enzymes

in the colon were assessed. We considered iNOS and COX-2

expressions: both enzymes’ expressions were significantly

increased in HFD mice (*p < 0.05 and **p < 0.01 vs. STD)

(Figures 6A, B, black vs. white bars), while PHAS treatment was

able to normalize their expression (#p < 0.05 vs. HFD) (Figures 6A,

B, light blue vs. black bars). Furthermore, as these enzymes are

induced by NF-κB complex activation, we also evaluated their

expression, together with the cytosolic expression of the

inhibitory protein of NF-κB and IκBα. HFD induced the nuclear

FIGURE 2
Effect of P. vulgaris extract (500 mg/kg, PHAS 500) on PPAR alpha (A) and gamma (B) and expressions in the liver of HFD mice. Levels are
expressed as the density ratio of target to GAPDH. Data are expressed as means ± SEM (n = 6). *p < 0.05 vs. STD; #p < 0.05 vs. HFD.

FIGURE 3
P. vulgaris extract effect on butyric acids levels in serum (A) and stools (B) both after 19 weeks from initiation of HFD diet, evaluated by GC-MS.
Data are means ± SEM (n = 6). **p < 0.01 and ***p < 0.001 vs. STD; ##p < 0.01 vs. HFD.
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translocation of the p65 subunit ofNF-κB (Figure 6C, black vs. white

bars) and decreased IκBα expression (*p < 0.05 vs. STD) (Figure 6D,

black vs. white bars). These effects were completely prevented by

PHAS treatment (#p < 0.05 vs. HFD) as there were no significant

differences between HFD + PHAS-treated mice and controls (STD)

(Figures 6C, D, light blue vs. black bars).

Phaseolus vulgaris extract treatment
prevents caecal inflammation induced by
high-fat diet

Finally, the same evaluation was carried out also in the

cecum. As pointed out in colon tissue, Western blot analysis

FIGURE 4
Effect of P. vulgaris extract (500 mg/kg, PHAS 500) on PPAR alpha (A,C) and gamma (B,D) and expressions in colon and cecum HFD mice,
respectively, reported as the ratio of optical densities of their bands to β-actin. Immunoblot representatives were shown. Densitometric evaluations
of protein levels were reported. Data are expressed as means ± SEM (n = 6). *p < 0.05 and ***p < 0.001 vs. STD; #p < 0.05 vs. HFD.
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showed that HFD significantly induced the expression of

iNOS, COX-2, and the nuclear translocation of the

p65 subunit of NF-κB and decreased the cytosolic

expression of IκBα (*p < 0.05, **p < 0.01, and ***p <
0.001 vs. STD) (Figures 7A–D, black vs. white bars). All

these effects were completely prevented by PHAS treatment

(Figures 7A–D, light blue vs. black bars) in a significant

manner (#p < 0.05 and ##p < 0.01 vs. HFD).

Discussion

In this study, we demonstrate that a chronic oral PHAS

treatment ameliorates some of the features related to obesity in

HFD-induced obese mice. We investigate the mechanisms

underpinning liver and intestinal inflammation, focusing on

the role of PPARs and butyrate levels in serum and feces in

this scenario.

The liver plays a key role in metabolic homeostasis,

predisposing the whole body to inflammation when

metabolism is compromised. Inflammation is largely

considered the driving force for the progression or

exacerbation of metabolic diseases, such as dyslipidemia,

insulin resistance, and hepatic steatosis. The onset of

metabolic syndrome was induced by HFD, containing 60% fat

out of total calories, composed of animal fat and sucrose, as

previously reported (Micheli et al., 2019). Previous pieces of

evidence have pointed out that HFD induced a low-grade chronic

inflammation (Kim et al., 2012) and an impairment of gut barrier

function (De La Serre et al., 2010) when compared to a standard

diet. In addition, HFD led to hepatic inflammation and oxidative

stress (Pirozzi et al., 2016).

Herein, we showed that PHAS extract treatment

significantly ameliorates liver inflammation induced by

HFD. Since PPAR-α and γ can modulate metabolic

disorders associated with inflammation (Pirozzi et al.,

FIGURE 5
Histological changes of hematoxylin-eosin staining assay in colonic and cecum tissue in HFD mice induced by P. vulgaris extract (500 mg/kg,
PHAS 500) treatment. Micrographs are representative pictures with an original magnification of ×20 (n = 4). (A) Colon tissue from the control
group. (B)Colon tissue of HFDmice, showing severe goblet cell hyperplasia andmild epithelial hyperplasia with low-grade dysplasia. (C)Colon tissue
of HFD + PHAS group, showing moderate goblet cell hyperplasia. (D) Cecum tissue from control mice. (E) Cecum tissue of HFDmice, showing
severe goblet cell hyperplasia and mild epithelial hyperplasia with low-grade dysplasia. (F) Cecum tissue of HFD + PHAS group, showing moderate
goblet cell hyperplasia. Protective effect of P. vulgaris extract (500 mg/kg, PHAS 500) treatment on colonic and cecum barrier integrity in HFDmice:
in particular, immunoblot representatives of occludin expression in the colon (G) and cecum (I) and ZO-1 in the colon (H) and cecum (L) were
showed. The levels are expressed as the density ratio of target to β-actin. Data are expressed asmeans ± SEM (n= 6). **p <0.01 vs. STD; #p <0.05 and
##p < 0.01 vs. HFD.
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2016) and the inflammatory process itself (D’Agostino et al.,

2007; Bensinger and Tontonoz, 2008; Russo et al., 2016), we

evaluated if PHAS treatment is able to influence PPAR

expression. For the first time, we show that the anti-

inflammatory activity of PHAS is strictly correlated to

PPAR-α and γ expression restoration in the liver.

Recently, it has been reported that obesity is linked to many

other deleterious downstream effects, such as chronic intestinal

inflammation and gut microbial dysbiosis, with a reduction of

many butyrate-producing bacteria (Noureldein et al., 2020).

Indirectly, this situation can lead to a reduction in circulating

and fecal butyrate levels (Cani et al., 2008). About that, we

FIGURE 6
Anti-inflammatory effect of P. vulgaris extract (500 mg/kg, PHAS 500) measured using pro-inflammatory markers in the colon in HFDmice: (A)
iNOS; (B) COX-2; (C) NF-κB; and (D) IκB-α expression levels are reported as the ratio of optical densities of their bands to β-actin. Immunoblot
representatives were shown. Densitometric evaluations of protein levels were reported. Data are expressed as means ± SEM (n = 6). *p < 0.05 and
**p < 0.01 vs. STD; #p < 0.05 vs. HFD.
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demonstrate that PHAS treatment was able to restore butyrate

levels in a significant manner, both in serum and in feces. This

effect could be due to the inhibition of the absorption of starch in

the gastrointestinal tract, which induces an increased colonic

fermentation by the gut microbiota, as previously reported (Shi

et al., 2020). Butyrate has a vast beneficial effect in energy

metabolism, intestinal homeostasis, and immune response

regulation. In particular, butyrate might have the potential in

alleviating obesity and related comorbidities (Coppola et al.,

2021). It has also been reported that butyrate is able to

upregulate hepatic expression of PPAR-α, an essential

regulator for mitochondrial fatty acid oxidation, alleviating

FIGURE 7
Effect of P. vulgaris extract (500 mg/kg, PHAS 500) treatment on (A) iNOS, (B) COX-2, (C) NF-κB, and (D) IκB-α in the cecum in HFD mice.
Densitometric analysis of protein bands is reported: the levels are expressed as the density ratio of target to β-actin. Data are expressed as means ±
SEM (n = 6). *p < 0.05 and **p < 0.01, and ***p < 0.001 vs. STD; #p < 0.05 and ##p < 0.01 vs. HFD.
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HFD-induced NAFLD in rats (Sun et al., 2018). Therefore, we

hypothesized that PHAS treatment increases butyrate circulating

and fecal levels, probably influencing butyrate-bacteria species

production, and in turn, butyrate upregulates PPAR expressions

in the liver.

Moreover, it was reported that HFD could cause

steatohepatitis but also a gut microbiota alteration together

with a disruption of the intestinal barrier (Cani et al., 2007;

Kim et al., 2012). In this scenario, gut microbiota plays a key role

in various physiological and pathological processes through

regulating short-chain fatty acid production, bile acids, and

amino acids, and it is responsible for the development of

metabolic syndromes like obesity and diabetes; however, the

pathogenesis is not fully clear (Cani et al., 2008). In addition,

it is clear that gut microbiota affects nuclear receptors, such as

PPARs (Mirza et al., 2019). PPARs play an important role in the

host-gut microbiome crosstalk, and they have been identified as

enteric epithelial homeostasis mediators (Gao et al., 2018). Our

results showed that these nuclear receptors are significantly

downregulated in HFD mice, both in the colon and in the

cecum, if compared to mice fed with a standard diet. Even in

this case, PHAS treatment is able to restore their expression.

Another interesting question that was recently pointed out is that

bacteria and gut-derived products can communicate not only

with neighboring but also with distant organs and tissues in the

body, such as the brain (by gut–brain axis), liver (by gut–liver

axis), and immune system (Schroeder and Bäckhed, 2016). TJ

proteins and mucus secreted by intestinal epithelial cells play an

important role in preventing intestinal flora translocation (Bu

et al., 2020). In fact, intestinal mucosal barrier dysfunction,

including increased mucosal permeability, damage to intestinal

TJ proteins, sparse shedding of intestinal villi, increased

pathogenic bacteria, and imbalance of intestinal flora, might

be an important mechanism of hyperlipidemia (Wigg et al.,

2001). Micheli and co-workers have already demonstrated that

PHAS has an anti-hyperlipidemic activity, so we have analyzed

intestinal barrier integrity, both at colon and cecum levels. In

particular, PHAS treatment is able to restore occludin and ZO-1

expression in a significant manner in mice colonic tissue and to

ameliorate histological features, such as epithelial and goblet cell

hyperplasia, together with dysplasia. Brahe and co-workers

suggested that an increased level of butyrate-producing

bacteria in the intestinal microbiota might alleviate obesity

and related metabolic complications based on the potential

anti-inflammatory and intestinal barrier function benefits of

butyrate (Brahe et al., 2013). In fact, finally, we evaluated pro-

and anti-inflammatory proteins both in the colon and in the

cecum. Our results showed that PHAS treatment was able to

restore the intestinal inflammatory balance that was disturbed in

HFDmice. As well known, perturbated homeostasis can promote

inflammation not only in the gastrointestinal tract but also in the

liver by gut–liver axis, which can activate a cascade of severe

events, leading to insulin resistance, liver inflammation, and

fibrosis (Wang et al., 2017).

In summary, our data clearly demonstrate that a

standardized P. vulgaris extract (PHAS) treatment protects the

liver from damage induced by HFD. This effect was mediated by

a reduction in hepatic inflammation by PPAR-α and γ expression
restoration. Moreover, PHAS counteracts HFD-induced

alteration of gut integrity, underpinned by the intestinal

barrier integrity loss, and reduces systemic and fecal levels of

butyrate, probably due to a decrease in butyrate-producing

microbiota.

Conclusion

PHAS treatment ameliorates liver and intestinal (colonic and

caecal) dysfunction in adult obese mice, magnifying the cross talk

between the liver and gut. Therefore, our data point out that

PHAS can represent an additional tool for reducing some

pathological features related to metabolic syndrome-like

conditions induced by obesity, such as inflammation and

intestinal barrier disruption.
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