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Glucose-6-phosphate dehydrogenase (G6PD) is the only rate-limiting enzyme

in the pentose phosphate pathway (PPP). Rapidly proliferating cells require

metabolites from PPP to synthesize ribonucleotides and maintain intracellular

redox homeostasis. G6PD expression can be abnormally elevated in a variety of

cancers. In addition, G6PD may act as a regulator of viral replication and

vascular smooth muscle function. Therefore, G6PD-mediated activation of

PPP may promote tumor and non-neoplastic disease progression. Recently,

studies have identified post-translational modifications (PTMs) as an important

mechanism for regulating G6PD function. Here, we provide a comprehensive

review of various PTMs (e.g., phosphorylation, acetylation, glycosylation,

ubiquitination, and glutarylation), which are identified in the regulation of

G6PD structure, expression and enzymatic activity. In addition, we review

signaling pathways that regulate G6PD and evaluate the role of oncogenic

signals that lead to the reprogramming of PPP in tumor and non-neoplastic

diseases as well as summarize the inhibitors that target G6PD.
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Introduction

Glucose-6-phosphate dehydrogenase (G6PD) is the only rate-limiting enzyme in the

pentose phosphate pathway (PPP). PPP flow is therefore mainly regulated through G6PD

expression or enzyme activity. PPP involves the formation of a bypass from glucose-6-

phosphate, an intermediate product of glycolysis, which produces fructose-6-phosphate
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and glyceraldehyde-3-phosphate through two stages of oxidation

and group transfer back to glycolysis, also referred to as the

hexose monophosphate shunt.

PPP takes place in the cytoplasm and comprises oxidative

(oxPPP) and nonoxidative (non-oxPPP) phases. In the oxidative

phase, G6PD catalyzes glucose-6-phosphate to generate

nicotinamide adenine dinucleotidephosphate (NADPH) and

6-phosphogluconolactone in an NADP+-dependent manner.

NADPH is required for the synthesis of both intracellular

fatty acids and cholesterol. It also scavenges reactive oxygen

species (ROS) and maintains the reduction state of glutathione to

combat oxidative stress. As a consequence, cells with a high

demand for NADPH, such as tumor cells, exhibit a metabolic

vulnerability that could be targeted by the inhibition of G6PD as

a therapeutic strategy (Ju et al., 2020). Another important

product of the non-oxPPP is ribose-5-phosphate (R5P), which

provides important precursors for nucleotide synthesis. Rapidly

proliferating cells require products to build cell blocks and

maintain intracellular redox homeostasis (Rao et al., 2015). In

addition, metabolites in the PPP can function as signaling

molecules for the regulation of gene expression (Lin et al.,

2015; Gao et al., 2019).

In this review, we focus on current findings in post-

translational modifications (PTM) of G6PD and their roles in

tumorigenesis and pathogenesis of non-neoplastic diseases.

Transcriptional regulation of G6PD

Transcription factors regulate G6PD
expression

G6PD consists of 13 exons and 12 introns, which encode a

product of 1,545 bp. The characterization of the promoter region

shows 1) a high level (70%) of guanine and cytosine content; 2) a

TATA box, which controls the accuracy and frequency of

transcription initiation and is located in the -202 bp region

upstream of the G6PD transcription start site (Gomez-Manzo

et al., 2016). The promoter region of G6PD contains multiple

binding sites for transcription factors. The transcription factors

FIGURE 1
Transcriptional regulation of G6PD. The cartoon diagram on display consists of three main parts. On the left, activation of NF-ĸB in response to
cellular stresses or the PIEKA-FYN complex leads to the phosphorylation and activation of STAT3, which results in the translocation of p-STAT3 to the
nucleus and binding to the G6PD promoter enhancing transcription. In the middle section, signals regulate the expression of HMGA1 to promote
G6PD transcription. On the right side, HBV protein forms a complex with intracellular protein p62 and KEAP1, resulting in translocation of
NRF2 into the nucleus to promote G6PD expression. At the bottom,methylation and acetylation of histones are involved in transcriptional regulation
of G6PD.
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NeuroD1 (Li Z. et al., 2021), HMGA1 (Zhang R. et al., 2019;

Gong et al., 2020), YY1 (Wu et al., 2018), c-MYC (Yin et al.,

2017), p65 (Zhang et al., 2020), TAp73 (Du et al., 2013), Nrf2 (Liu

et al., 2015; Zhang H.-S. et al., 2019; Lv et al., 2022), and pSTAT3

(Zhang et al., 2020; Sun M. et al., 2021) can directly and

individually regulate G6PD transcription by binding to the

G6PD promoter region (Figure 1). Additionally, dual

transcription factors from the p65/pSTAT3 complex bind to

the pSTAT3 binding site rather than the p65-binding site in the

G6PD promoter region to stimulate G6PD transcription (Zhang

et al., 2020).

Transcriptional coactivators/repressors
regulate G6PD expression

Transcriptional coactivators or corepressors are also involved

in the regulation of G6PD transcription. Coactivators and

repressors, which are cellular proteins that contain a DNA

binding domain without directly binding to the promoter,

assemble with transcription factors to form transcriptional

complexes that enhance or repress gene transcription,

respectively. In pancreatic ductal adenocarcinoma cells, the

transcriptional coactivator yes-associated protein 1 interacts

with TEA domain transcription factor 1 to regulate G6PD

expression (Nie et al., 2021). In addition, HATs are involved in

the regulation of transcription as coactivators. Acetylation of

histones regulated by HATs loosens chromosome structure and

facilitates the binding of DNA to transcription factors (Li W. et al.,

2021). Histone deacetylase inhibitors (HDACs), NaBu, increases

G6PD transcription by recruiting transcription factor Sp1

(Makarona et al., 2014). On the other hand, HDACs are

transcriptional corepressors capable of transcriptional repression

or silencing. For example, liver kinase B1 (LKB1)–AMP-activated

protein kinase (AMPK) axis-mediated phosphorylation of histone

deacetylase 10 (HDAC10) promotes its translocation to the

nucleus to regulate G6PD expression (Shan et al., 2019).

Non-coding RNA regulates the expression
of G6PD

Small non-coding RNAs are also involved in the regulation of

G6PD expression.MultiplemicroRNAbinding sites exist in the 3′UTR
region of G6PD. MIR-206, a skeletal muscle-specific microRNA, is a

key regulator in skeletal muscle development.MIR-206 functions pro-

myogenically through direct binding ofG6PD to restore differentiation

of rhabdomyosarcoma cells (Coda et al., 2015). In addition, it can

inhibit skeletal muscle cell proliferation by targetingG6PD (Jiang et al.,

2019). MicroRNA has also been reported to inhibit tumor growth by

targetingG6PD. In renal cell carcinoma, large-scale transcriptome and

metabolic analyses showed that miR-146a-5p and miR-155-5p were

involved in PPP reprogramming (Boguslawska et al., 2019).

Furthermore, LINC00242 competitively bound miR-1-3p to free

G6PD from miR-1-3p-mediated repression promoting gastric

cancer progression (Deng et al., 2021).

Post-Translational modification
regulates G6PD expression in
tumorigenesis

PTM of histones is an important epigenetic mechanism

regulating the transcriptional activity of G6PD. Both acetylation

and methylation modifications of histones have been identified as

regulators of G6PD expression. Inhibition of histone deacetylase

leads to the recruitment of transcription factor sp1 to the promoter

region of G6PD (Makarona et al., 2014), which result in the

increase in G6PD expression, suggesting that acetylation may

be involved in the transcriptional regulation of G6PD. Recently,

increased levels of H3K27Ac have been identified in the G6PD

promoter region promoting HDAC10-driven transcription (Shan

et al., 2019). Methylation modifications of histone lysine residues

were also characterized as regulators of G6PD transcription.

H3K9 methylation at G6PD promoter was significantly

enriched, leading to the inhibition of G6PD expression (Lu

et al., 2022). However, the specific lysine methyltransferases or

demethylases that mediate histone methylation in G6PD

transcription remains unclear.

In addition to regulating G6PD expression at the

transcriptional level, PTMs are also involved in the stability of

G6PD through the ubiquitin-proteasome system. Hypoxia

activates G6PD expression, which could be reversed by ROS

scavengers, suggesting that hypoxia may increase G6PD

expression by inducing ROS accumulation. On the other hand,

although G6PD expression is significantly reduced under hypoxic

conditions and reversed by the proteasome inhibitor MG132, the

specific mechanism remains unclear (Chettimada et al., 2015).

Recently, von Hippel-Lindau (VHL) E3, an ubiquitin ligase, was

found to be involved in the regulation of G6PD stability. VHL

directly binds and ubiquitinates G6PD at the K366 and K403,

which in turn degrades G6PD (Wang et al., 2019). In addition,

SUMOylation and ubiquitination synergistically regulate the

stability of G6PD. Silent information regulator 2 (Sirt2) directly

binds to G6PD to increase enzyme activity through enhanced

SUMOylation and inhibition of ubiquitination (Ni et al., 2021).

Post-Translational modification of
G6PD regulates enzyme activity in
tumorigenesis

G6PD phosphorylation

Phosphorylation modifications occur mainly on serine,

tyrosine, and threonine residues, in which the hydroxyl group
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can be dehydrated with the phosphate group to form phosphate

esters. Gu et determined, using mass spectrometry, that NF-κB-
inducing kinase phosphorylation of G6PD at S40 enhances the

enzymatic activity and promotes CD8+ effector T cells (Gu et al.,

2021). Most reports have focused on the phosphorylation of

G6PD tyrosine sites (Pan et al., 2009; Ma et al., 2021). G6PD is a

substrate of the non-receptor tyrosine kinase family member Src.

Several tyrosine sites of G6PD can be phosphorylated by Src,

FIGURE 2
G6PD post-translational modifications. Phosphorylation, glycosylation, acetylation and glutarylation modifications regulate G6PD enzyme
activity and specific sites identified are shown in the central circle. Ubiquitination and SUMOylation are synergistically involved in the regulation of
G6PD protein stability. Acetylation and methylation of histones H3K27 and H3K9 regulate G6PD transcriptional expression, respectively.

FIGURE 3
Schematic diagram of G6PD (PDB: 2BH9) dimer. A dimer consisting of two G6PD monomers, each of which includes a catalytic NADP+ and
structural NADP+, respectively. The G6PD K403, Y401 and T406 sites are located close to the structural NADP+.

Frontiers in Pharmacology frontiersin.org04

Meng et al. 10.3389/fphar.2022.932154

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.932154


including Y112, Y428, and Y507. Among them, Y112 is

considered to be the most important phosphorylation site of

Src and phosphorylation at this site increases the enzymatic

activity of G6PD and enhances PPP flow to promote

tumorigenesis (Pan et al., 2009; Ma et al., 2021). Other

members of the Src family can also directly bind

phosphorylated G6PD. Fyn, a member of the SRC family,

phosphorylates Y401 increasing the enzymatic activity of

G6PD more than three-fold in erythrocytes (Mattè et al.,

2020). In addition, salt-inducible kinase 3 (SIK3), a serine/

threonine kinase, binds and phosphorylates G6PD at

Y384 enhancing its enzymatic activity (Teesalu et al., 2017).

Protein kinase A (PKA) inhibits the expression of SIK3 (Wang

et al., 2011), which suggests that PKA and SIK3 may play

opposing roles in the regulation of G6PD activity. This is

consistent with previous reports that PKA inhibits G6PD

enzyme activity (Xu et al., 2005). In addition to tyrosine and

serine as potential phosphorylation sites for G6PD, G6PD is

phosphorylated by polo-like kinase 1 at T406 and T466 sites

increasing its enzymatic activity (Ma et al., 2017).

G6PD O-linked GlcNAc

O-linked β-N-Acetylglucosamine (O-GlcNAc) is a reversible

post-translational modification that occurs on serine or

threonine residues. This process is regulated by the addition

or removal of O-GlcNAc for O-GlcNAc transferase (OGT) and

O-GlcNAcase (OGA), respectively (Zeng et al., 2016). Recent

findings indicate that G6PD is dynamically O-GlcNAcylated at

serine 84, which dramatically increases the enzymatic activity of

G6PD.Meanwhile, G6PD glycosylation enhances PPP flow to the

building blocks of macromolecular biosynthesis promoting the

proliferation of tumor cells (Rao et al., 2015). Hypoxic or ERK-

induced G6PDO-GlcNAcylation levels are increased in an OGT-

dependent manner (Rao et al., 2015; Su et al., 2021). Thus, in

addition to directly targeting the enzymatic activity of G6PD,

targeting OGT may also be an effective strategy for inhibiting

G6PD enzyme activity.

G6PD acetylation

The level of acetylation of certain proteins in cells is

determined by the balance between histone deacetylases

(HDACs) and histone acetyltransferase (HATs), enzymes that

add or remove acetyl groups from lysine residues, respectively (Li

W. et al., 2021). KAT9/ELP3, an acetyltransferase, mediates

G6PD K403 acetylation to inhibit the enzymatic activity of

G6PD (Wang et al., 2014). Conversely, deacetylation of G6PD

mediated by deacetylase Sirt2 enhances the enzymatic activity of

G6PD and counteracts excessive oxidative stress (Wang et al.,

2014; Xu et al., 2016). Furthermore, a report by Zhang et al.

indicates that Sirt2 can bind to G6PD and regulate the

deacetylation of G6PD K171 promoting the progression of

hepatocellular carcinoma (Zhang et al., 2021). In addition to

its role as a deacetylase involved in the regulation of G6PD

enzyme activity, Sirt2 also maintains the stability of G6PD (Ni

et al., 2021). Aspirin, a common clinical analgesic and antipyretic

drug, has also been reported to be involved in the regulation of

acetylation. It has been shown that aspirin inhibits tumor cell

proliferation by inducing G6PD acetylation and correspondingly

reducing the enzymatic activity of G6PD to increases oxidative

stress (Raza et al., 2011; Ai et al., 2016).

Newly identified post-translational
modifications of G6PD

Several novel post-translational modifications located on

histone lysine residues have been identified including

propionylation, butyrylation, 2-hydroxyisobutyrylation,

succinylation, malonylation, glutarylation, crotonylation, and β-
hydroxybutyrylation (Sabari et al., 2017). Notably, there are

acylation modifications that are not exclusively restricted to

histones. Deglutarylation of G6PD by deacylasesirtuin

5 increases its enzymatic activity (Zhou et al., 2016). Moreover,

alterations in H4K8 2-hydroxyisobutyrylation can affect

intracellular glucose metabolism (Huang et al., 2017), but

whether G6PD is capable of 2-hydroxyisobutyrylation requires

further investigation. On the other hand, the lactylation

modification of histone lysine residues has been widely studied

(Zhang D. et al., 2019). Existing studies have shown that P300 and

HDAC1/3 act as lactylation modification “writers” or “erasers” to

add or remove lactic acid groups on lysine residues of histones in

macrophages, respectively (Zhang D. et al., 2019; Moreno-Yruela

et al., 2022). Consistent with glutarylation modifications,

lactylation modifications also occur in non-histone proteins.

Glycolysis-derived lactate has been found to increase high

mobility group box protein 1 lactylation to induce its ectopic

transfer from the nucleus to the cytoplasm, enhancing its release

from macrophages via exosomes (Yang et al., 2022). In

conclusion, these newly identified post-translational

modifications are not only restricted to histones (Sabari et al.,

2017), but also other proteins (Yang et al., 2022), including G6PD

(Zhou et al., 2016). Location and/or enzymatic activity of these

targets are hence regulated through these post-translational

modifications (Figure 2).

Post-Translational modifications
modify G6PD structure

The G6PD protein is composed of approximately 515 amino

acid polypeptides and has an apparent molecular mass of

approximately 59 kD. G6PD exist as an inactive monomer
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and active dimer as well as a tetramer (Hilf et al., 1975). Various

factors, including pH value and ionic strength, affect the

formation of dimers and tetramers. High values of pH and

ion concentration promote the conversion of tetramers to

dimers. Conversely, mild oxidative treatment results in the

accumulation of tetramers with a corresponding decrease in

dimers. Thus, there is an equilibrium between the dimers and

tetramers (Hilf et al., 1975). In addition to factors regulating the

structure of G6PD, NADPH converts dimers, but not tetramers,

to monomers (Bonsignore et al., 1971). Therefore, NADPH is

considered a potent inhibitor of G6PD. Depletion of NADP+, a

G6PD coenzyme, results in the conversion of the G6PD dimers

into monomers; reincubation of NADP+ with the dissociated

protein restores dimer expression. This indicates that dimers and

monomers can be reversibly converted into each other

(Cancedda et al., 1973; Au et al., 1999).

PTM modification of G6PD is involved in the regulation of

dimerization. The G6PD molecule has two NADP+ binding sites

including a structural NADP+ binding site and a coenzyme

NADP+ binding site (Kotaka et al., 2005). Structural NADP+

sites are closer to the dimeric interface of G6PD than those of

coenzyme G6PD sites, thus structural NADP+ binding sites are

more important in regulating G6PD enzymatic activity and

structural integrity than coenzyme structural sites (Au et al.,

2000). In G6PD class I mutants, mutations located at the dimer

interface and close to the NADP+ structural site lead to a 90% loss

of function (Horikoshi et al., 2021), which further suggests that

the NADP+ structural site is involved in the regulation of enzyme

activity. A total of 57 amino acids have been identified at the

dimer interface of G6PD, three of which are involved in dimer

and monomer conversions, with the remaining sites in need of

further investigation. In addition, mutations in T406, K403, and

Y401 proteins, located at the dimer interface, promote the

conversion of G6PD dimers to monomers. Specifically, FYN

and Plk1 are directly phosphorylated to activate G6PD K401 and

K406, promoting dimer formation and increasing enzyme

activity, respectively (Ma et al., 2017; Mattè et al., 2020). In

addition, KAT9-mediated acetylation of G6PD (K403) inhibits

dimer formation of G6PD (Wang et al., 2014) (Figure 3).

G6PD-Rrgulated downstream
signalings

G6PD inhibits ferroptosis

Ferroptosis is a novel type of iron-dependent regulated cell

death (Dixon et al., 2012). Morphologically, ferroptosis is

characterized by an increase in mitochondrial membrane

density, reduction or disappearance of mitochondrial cristae,

and rupture of the external mitochondrial membrane.

Mechanistically, the accumulation of lipid peroxidation by the

Fenton reaction between iron ions and ROS in cells leads to

ferroptosis. NADPH is an important intracellular reducing

equivalent to neutralize ROS and maintain redox homeostasis.

According to the MetaCyc database (Caspi et al., 2020), there are

at least 143 reactions for the conversion of NADP to NADPH,

but only a limited number of these reactions are considered to be

contributed significantly from NADP to NADPH conversion.

The major source of NADPH in mammals is folate metabolism

(methylenetetrahydrofolate dehydrogenase), glutaminolysis

(malic enzymes), and oxPPP (G6PD, 6-Phosphogluconate

dehydrogenase; 6PGD), of which G6PD is the largest

contributor to NADPH production (Chen et al., 2019).

Activation of PPP produces NADPH, which promotes

resistance of clear cell renal cell carcinoma to ROS and

ferroptosis (Zheng et al., 2021). In addition, it has been

shown that the expression of cytochrome P450 oxidoreductase

(POR), a positive regulator of ferroptosis, is significantly

increased in G6PD knockdown hepatocellular carcinoma

(HCC) cells, which suggests that G6PD may inhibit

ferroptosis through POR (Cao et al., 2021). Thus, G6PD may

regulate ferroptosis in an NADPH-dependent manner.

G6PD-mediated metabolites regulate
amp-activated protein kinase

Most studies have shown that alterations in signaling

pathways can affect metabolites in PPP. Notably, G6PD-

mediated metabolites can also regulate signaling molecules. G-

6-phosphogluconolactone, a catalytic product of G6PD, can

directly bind to Src to enhance the recruitment of protein

phosphatase 2A and inhibit the activation of AMPK (Gao

et al., 2019). In addition, Ru-5-P, the main metabolite of

oxPPP, inactivates AMPK by inhibiting the formation of liver

kinase B1 (Lin et al., 2015).

Role of G6PD In Non-Neoplastic
diseases

G6PD and virus infection

Pathogen infections are more likely to occur in G6PD-

deficient subjects because they have a decreased ability to

activate the innate immune response (Yen et al., 2020). The

Zika virus (ZIKV) genome is made up of a single-strand,

positive-sense RNA with only 10 genes bordered by two

untranslated sections (Savidis et al., 2016). ZIKV infection

elicits a glycolytic response, as shown by increased

extracellular acidification rate and expression of key glycolytic

genes (GLUT1, HK2, TPI, and MCT4), according to

bioinformation studies (Tiwari et al., 2017; Singh et al., 2020).

Furthermore, infection with ZIKV leads to metabolic

reprogramming and diversion of glycolytic carbon to PPP
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(Yau et al., 2021). Therefore, it suggest that ZIKV may increase

the flow of PPP by upregulating enzymes including G6PD. In

addition, it has been shown that activation of AMPK, a switch in

energy metabolism, attenuates ZIKV infection of host cells

(Singh et al., 2020). Indeed, pharmacological inhibition or

knockdown of AMPK reduces G6PD expression (Shan et al.,

2019). Thus, a potential regulatory mechanism for ZIKV virus

infection of host cells may be mediated through the AMPK-

G6PD axis. Similarly, during Kaposi’s sarcoma-associated

herpesvirus (KSHV) infection of the human dermal

microvascular endothelial, the metabolic pathway shifts from

glycolysis to PPP, which is accompanied by a KSHV-induced

increase in G6PD and transketolase expression (Sriram et al.,

2008). The enhancement in PPP provides KSHV with a supply of

nucleotides for the synthesis of host genes necessary for infection

or for the synthesis of viral genes during early cellular bursts of

the virus. Conversely, it is worth noting that the influenza virus

reduces G6PD expression and enzyme activity, leading to an

increase in oxidative stress and virus replication (De Angelis

et al., 2021). Consistent with influenza virus infection, HIV,

influenza A, respiratory syncytial virus, and enterovirus

71 induce oxidative stress and are usually suppressed by

antioxidants like N-acetyl cysteine (Jain et al., 2020). In

conclusion, the above studies that G6PD plays different roles

in different types of viral infections.

Since 2020, the coronavirus disease (COVID-19) was

declared as global pandemic, with hundreds of millions of

people infected worldwide and increasing numbers of people

becoming infected to date. However, no specific antiviral

medications are currently available. There have been clinical

trials using chloroquine and hydroxychloroquine (CQ/HCQ) to

treat COVID-19. Several studies have shown that COVID-19

patients with G6PD deficiency show severe hemolysis during

treatment with CQ/HCQ, which increase intracellular ROS in

therapeutic dosages (da Rocha et al., 2021). Therefore, it is

necessary to check the G6PD status of patients if CQ/HCQ is

used to treat COVID-19.

Virus induces global changes of PTMs in host cell during

infection to facilitate its successful infection and dissemination

(Hu et al., 2020). To generate progeny virus, influenza virus

replication requires a substantial number of nucleic acids for the

synthesis of viral RNA (vRNA), complementary RNA (cRNA),

and messenger RNA (mRNA). Vast amounts of energy are also

required in the process of generating large amounts of RNAs.

Pyruvate kinase M2 (PKM2), which catalyzes the production of

ATP in glycolysis, becomes more acidic due to increased

phosphorylation after influenza virus infection, and

phosphorylated PKM2, which is active as a protein kinase,

binds to RNA-dependent RNA polymerase involved in vRNA

replication. Therefore, inhibition of PKM2 may be an effective

strategy to attenuate viral replication. Whether G6PD

phosphorylation is activated after infection to promote viral

replication still needs further study (Miyake et al., 2017).

G6PD and vascular diseases

Vascular remodeling is an important pathological

phenotypic change in cardiovascular diseases, including

hypertension and atherosclerosis, in which vascular smooth

muscle plays an important role (Gong et al., 2021). Vascular

smooth muscle cells (SMCs) undergo several alterations during

biological processes, including phenotypic transformation,

proliferation, and apoptosis during disease progression.

Multiple studies have shown that G6PD deficiency increases

the risk of cardiovascular disease, which implies that G6PD

may act as a regulator of SMCs (Pes et al., 2019; Parsanathan

and Jain, 2020). Differentiated SMCs located in the middle layer

of the vessel wall can contract and relax to regulate blood flow

through the circulatory system. SMCs-restricted gene (Myocd,

Tagln, Myh11, and Cnn1) expression maintains SMCs in a

differentiated state; in contrast, downregulation of SMCs-

restricted gene expression leads to SMCs cell dedifferentiation

causing vascular remodeling. Pharmacological inhibition of

G6PD or knockdown of G6PD promotes SMCs-restricted

gene expression to maintain vascular function (Dhagia et al.,

2021). Therefore, G6PD maintains the dedifferentiated state of

SMCs cells to avoid impaired vascular function. In addition,

G6PD regulates the relaxation and contraction of vascular

smooth muscle by altering the opening and closure of ion

channels. G6PD can be activated by protein kinase C to elicit

intracellular free Ca2+ and thus enhance the contraction of

vascular smooth muscle (Ata et al., 2011). Conversely,

pharmacological inhibition of G6PD relaxes vascular smooth

muscle by opening potassium channels (Farrukh et al., 1998).

G6PD-mediated metabolites are also involved in the regulation

of vascular smooth muscle contraction. NADPH, the metabolite

catalyzed by G6PD, relaxes vascular smooth muscle by inhibiting

the dimer formation of PKG1α (Neo et al., 2013; Patel et al.,

2014).

Inhibitors

Small molecule inhibitors are useful tools for studying the

function of metabolic enzymes. To date, there are

265 compounds that could be potential G6PD inhibitors

according to data from BRENDA (https://www.brenda-

enzymes.org). However, no details of the specific inhibitors of

G6PD are yet available. In the following section, we review the

G6PD inhibitors that are widely used in basic research and

summarize their concentration and duration of application in

different cells and animal models (Tables 1, 2).

Dehydroepiandrosterone (DHEA) was identified as a non-

competitive G6PD inhibitor in 1960 (Marks and Banks, 1960).

DHEA sulfate (DHEAs) is an androgen produced by the adrenal

glands. Humans have the highest levels of circulating DHEAs of

all the primates with levels that are generally higher in males
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(3,200 ng/ml) than those in females (2000 ng/ml) (Nyce, 2021).

DHEAs is an ineffective inhibitor of G6PD and is only

transported into cells via organic anion transport protein

(OATP), which is subsequently desulfated by sulfate esterase

(SS) to eventually produce DHEA that inhibits G6PD activity

(Klinge et al., 2018). Compared with hydrophilic DHEAs,

lipophilic DHEA can function freely across cell membranes.

Therefore, DHEA is widely used in cancer research to block

G6PD enzyme activity and inhibit the proliferation and

migration of cancer cells (Wang et al., 2020; Luo et al., 2022).

Moreover, DHEA decreases intracellular NADPH levels by

inhibiting G6PD, of which the effect is more pronounced

under glucose deprivation (Roshanzadeh et al., 2019).

However, Ghergurovich et al. showed that DHEA inhibited

the enzymatic activity of G6PD in HepG2 cells, but this effect

was not sustained (Ghergurovich et al., 2020). In addition to its

TABLE 1 The effective dosages and durations or the application of G6PD inhibitors in cancer cells.

Inhibitors Cell lines Cancer type Dose (μM) Duration (H) References

6-An H1944 Lung cancer 56.37 ± 2.93 48 Sun et al., (2022)

H1299 Lung cancer 202.40 ± 39.21 48 Sun et al., (2022)

H1975 Lung cancer 6.91 ± 0.77 48 Sun et al., (2022)

A549 Lung cancer 56.27 ± 2.72 48 Sun et al., (2022)

A549/H460/H358/H441 Lung cancer 62.5 72 Best et al., (2019)

A549 Lung cancer 500 18–24 Budihardjo et al., (1998)

T98G Brain glioblastoma 250 18–24 Budihardjo et al., (1998)

MCF-7 Breast cancer 125 18–24 Budihardjo et al., (1998)

OVCAR Ovarian cancer 31 18–24 Budihardjo et al., (1998)

U251 Brain glioblastoma 1,000 - Sun et al., (2021b)

786-O kidney cancer 1,000 24 Zhang et al., (2020)

PC3 Prostate cancer 100 24 Whitburn et al., (2022)

LNCaP Prostate cancer 100 24 Whitburn et al., (2022)

MOLM-14/OCI-AML2/L60/OCI-
AML3

- 100 48 Poulain et al., (2017)

VSMCs - 1,000 12 Dong et al., (2015)

HEAC - 100 12 Dong et al., (2015)

PASM - 1,000 72 Chettimada et al., (2015)

Rat/Mouse neuronglia - 10 24 Tu et al., (2019)

Primary hepatocytes cell - 5,000 0.2 Gupte et al., (2009)

DHEA 231-C3/231-M1 Breast cancer 200 12 Luo et al., (2022)

HeLa Cervical cancer 200 0.1 Roshanzadeh et al., (2019)

WSU - HN6 Oral carcinoma 50 - Wang et al., (2020)

CAL27 Tongue carcinoma 50 - Wang et al., (2020)

GM00558 - 100 0.2 Cosentino et al., (2011)

Human red blood cells - 200 24 Handala et al., (2017)

MEF - 100 7 Heiss et al., (2013)

Rat/Mouse neuronglia - 100 24 Tu et al., (2019)

Primary hepatocytes cell - 100 10 Gupte et al., (2009)

Pulmonary artery smoot muscle cell - 100 72 Chettimada et al. (2015)

Human aortic endothelial cell - 100 12 Parsanathan and Jain, (2020)

Polydatin HESCC Esophageal carcinoma 100–300 24 Su et al., (2021)

MCF-7 Breast cancer 30 24 Mele et al., (2019)

HNSCC Head and neck squamous cell carcinoma 22 24 Mele et al., (2018)

HNSCC Head and neck squamous cell carcinoma 17 48 Mele et al., (2018)

NEOU H446 Lung cancer 10 48 Wang et al., (2022)

SMCs - 1 48 Dhagia et al., (2021)

Epi A7r5 - 50 24 Dhagia et al., (2021)

DP20 Primary bone marrow cells - 0.9 24 Hashimoto et al., (2020)
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role in cancer therapy, DHEA can be potentially beneficial in the

treatment of pulmonary hypertension and protecting against

ribavirin antiviral therapy-induced hemolysis (Patel et al.,

2014; Handala et al., 2017). Some men in the United States

take oral DHEA to boost their androgen levels to prevent aging,

but no scientific proof has been obtained. DHEA can significantly

inhibit G6PD enzyme activity, resulting in increased

susceptibility to COVID-19 (Nyce, 2021).

6-Aminonicotinamide (6-An) is a competitive non-specific

G6PD inhibitor that competitively binds to NADP+, to inhibit

G6PD enzyme activity (Köhler et al., 1970). G6PD and 6PGD can

generate NADPH fromNADP+, which suggests that 6-An can also

bind competitively with 6PGD to inhibit its activity during oxPPP.

The concentrations of 6-An thus should be considered when it is

used to inhibit G6PD enzyme activity. 6-An does not affect G6PD,

but instead, blocks 6PGD(Aurora et al., 2022). Earlier in vivo

studies revealed that 6-An inhibits the carbon-atom transfer from

glucose to ribose and suppresses oxPPP (Köhler et al., 1970). In

addition, 6-An selectively enhances the toxicity of cisplatin,

melphalan, and nitrogen mustard to promote apoptosis of

tumor cells in vitro (Budihardjo et al., 1998).

Additional drugs have been identified to inhibit the enzymatic

activity of G6PD. Polydatin, an active ingredient extracted from

the traditional Chinese medicine Polygonum multiflorum, was

identified to inhibit the activity of G6PD enzymes and NADPH

in a dose-dependent manner thus suppress the growth and

metastasis of tumor cells (Mele et al., 2018). Additionally,

(N-ethyl-N = -[(3β,5α)-17-oxoandrostan-3-yl]urea, NEOU) has

been reported to inhibit G6PD activity (Joshi et al., 2020).

Summary and perspectives

G6PD is the rate-limiting enzyme of the PPP. Along with

serving as biosynthetic substrates, the G6PD-mediated

metabolitesRu-5-P and NADPH regulate downstream

signaling cascades and induce tumorigenesis (Lin et al., 2015).

Lactatemay be employed as a substrate for lactylation

modifications to regulate the expression of downstream genes.

Lactylation modifications of non-histone proteins may be of

great interest for future research, even if no relevant reports

are currently available (Sun L. et al., 2021).

In addition, we reviewed the role of G6PD in tumorigenesis

and related non-neoplastic diseases, of which we mainly focused

on the role of post-translational modifications of G6PD. Post-

translational modifications of histones, transcription factors, and

other upstream multiple signals are involved in regulating the

expression of G6PD. Glycosylation and phosphorylation

modifications of G6PD promote dimer formation and increase

enzyme activity (Rao et al., 2015; Zeng et al., 2016; Ma et al.,

2017). Conversely, acetylation modifications promote dimer to

monomer conversion and inhibit enzyme activity G6PD (Wang

et al., 2014; Zhang et al., 2021). G6PD not only plays a role in

tumorigenesis, but also in the process of viral infection. Briefly,

viruses may inhibit intracellular metabolism and reduce the

enzymatic activity of G6PD to promote viral infection during

the early stages. Furthermore, viruses may activate metabolic

pathways, including PPP, to promote viral replication at later

stages. Finally, inhibitors of G6PD were summarized and the

potential of G6PD as a clinical therapeutic target was evaluated.

Multiple post-translational modification sites of G6PD were

identified by mass spectrometry. Serine at position 84 of G6PD

could be glycosylated to increase the enzyme activity (Rao et al.,

2015). In contrast, the enzyme activity was abolished by

acetylation modification of lysine at 403. However, the reasons

that changes in modifications affect enzyme activity need further

investigation. In addition, serine is widely known to be

phosphorylation modified, but no phosphorylation

modification was identified at serine 84. Although a variety of

G6PD modifications have been identified, there are still many

questions that deserve further investigation. Based on this review,

two questions were subsequently raised 1) Is there a prior order

of post-translational modifications that occur in G6PD? 2) How

do the various post-translational modifications collaborate? In

TABLE 2 The effective dosages and therapeutic durations of G6PD inhibitors in animal models of cancer.

Inhibitors Organism Dose Duration Injection type References

6-An Mouse 4 mg/kg/3d - Intraperitoneal injection Sun et al., (2021b)

Mouse 23 mg/kg/d - Intraperitoneal injection Zhang et al., (2020)

Mouse 20 mg/kg/10d 40d Intraperitoneal injection Best et al., (2019)

Mouse 5 mg/kg/day 23d Intraperitoneal injection Poulain et al., (2017)

DHEA Mouse 80 mg/kg/3d 20d Intraperitoneal injection Wang et al., (2020)

NEOU Mouse 1.5 mg/kg/d 21d Intraperitoneal injection Kitagawa et al., (2021)

Mouse 1.5 mg/kg/d 28d Intraperitoneal injection Joshi et al., (2020)

Epi Rats 30 mg/kg/d 28d Intraperitoneal injection Dhagia et al., (2021)

Polydatin Mouse 5 mg/kg/d 14d Intraperitoneal injection Su et al., (2021)

Mouse 100 mg/kg - Intraperitoneal injection Mele et al., (2018)
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summary, we highlight the role of post-translational

modifications of G6PD in regulating structure, enzyme

activity, and function. Therefore, targeting post-translational

modifications of G6PDmay serve as a novel therapeutic strategy.
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