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The purpose of this study was to investigate the effects of Huangqi Liuyi decoction
extract (HQD) on diabetic nephropathy (DN), and the tissue distribution difference of
six main active ingredients of HQD between normal and DN mouse models. DN mice
were administered HQD for 12 weeks to investigate its efficacy in the treatment of DN.
Liquid chromatography-tandem mass-spectrometry (HPLC-MS/MS) was used to
analyze the tissue distribution of the six active ingredients of HQD in normal and
DN mice, including astragaloside IV, calycosin-7-O-β-D-glucoside, calycosin
glucuronide, ononin, formononetin, and glycyrrhizic acid. DN mice treated with
HQD showed significantly decreased fasting blood glucose (FBG), 24-h urinary
protein (24 h U-Alb), blood urea nitrogen (BUN), serum creatinine (Scr), and
triglyceride levels (TG) (p < 0.05). Moreover, there were no significant differences in
pharmacodynamics between HQD and Huangqi Liuyi decoction. Treated mice also
had decreased expression of collagen I, ɑ–smooth muscle actin (ɑ-SMA), and
vimentin; and upregulated expression of E-cadherin in their kidneys. Compared to
normal mice, distributions of the six ingredients in the liver, heart, spleen, lungs,
kidneys, stomach, small intestine, brain, and muscle of DN mice were different. The
results indicated that the HQD could be used for the treatment of DN and to improve
renal function. The pathological state of diabetic nephropathy may affect tissue
distribution of HQD active ingredients in mice.

Keywords: huangqi liuyi decoction, pharmacodynamics, HPLC- MS/MS, tissue distribution, active ingredients,
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1 INTRODUCTION

Diabetic nephropathy (DN) is an irreversible condition characterized by a continuous decline in
the glomerular filtration rate, proteinuria, microalbuminuria, and increased blood pressure
(Xiao et al., 2008; Nowak et al., 2018; Kopel et al., 2019). Most individuals with DN progress to
end-stage kidney disease (Noor et al., 2020). Prevention or early treatment of DN lowers
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treatment costs and improves the survival rate and quality of
life of patients (Correa-Rotter and Gonzalez-Michaca, 2005).
Traditional Chinese medicines (TCMs) have been applied in
the clinical treatment of various diseases (Peng et al., 2020).
TCMs offer unique advantages in the prevention of diabetic
complications because of their limited side effects and/or
reduced toxicity (Shi et al., 2011; Sun et al., 2016). Huangqi
Liuyi decoction has been used in China since the Song dynasty.
It is composed of Radix Astragali and Radix Glycyrrhizae.
Astragali inhibits the formation of kidney interstitial fibrosis
and retards the development of diabetic nephropathy.
Glycyrrhizae decreases fasting blood-glucose and kidney
oxidative stress (Lu and Wei, 2014; Ma et al., 2019).
Huangqi Liuyi decoction significantly decreased fasting
blood glucose levels and kidney damage in diabetic rats (Xu
et al., 2017; Wen et al., 2018). However, precise and reliable
dosing with TCMs remains challenging, which negatively
impacts the reproducibility of research and clinical results.
Identification of the active constituents of a given compound
and ensuring consistency in formulation may overcome the
problem with TCM variability (Zhang and Wang, 2005).
Relative to DN, our team found that the main active
constituents of Huangqi Liuyi decoction were astragalus
saponin, astragalus flavone, astragalus polysaccharide, and
glycyrrhizic acid (data unpublished). Herein, astragalus
saponin, astragalus flavone, astragalus polysaccharide, and
glycyrrhizic acid were recombined into mixed extract
(HQD), and its effect on DN was determined.

In recent years, ample research has shown that the
absorption, tissue distribution, and metabolism of drugs
can be affected by the disease state. The pharmacokinetic
characteristics in pathological conditions are different from
those in the normal condition in a manner directly related to
the efficacy and adverse reactions of drugs (Shang et al., 2017;
Yang and Liu, 2019; Zhang et al., 2020). Thus, it is necessary
to compare the tissue-distribution characteristics of drugs
under both normal and pathological conditions. In the
present study, a liquid chromatography–tandem mass-
spectrometry (HPLC-MS/MS) method was established to
investigate differences in the distribution of HQD in
tissues and organs under normal and pathological
conditions. This study provides additional insights into the
safe usage of HQD, and TCMs in general, in healthy mice and
those with diabetic nephropathy.

2 MATERIALS AND METHODS

2.1 Materials
The reference standards of astragaloside IV (purity >99.0%),
calycosin-7-O-β-D-glucoside (purity >98.0%), calycosin
glucuronide (purity >98.0%), formononetin (purity >98.0%),
ononin (purity >98.0%), and glycyrrhetinic acid (purity
>99.0%) were set. Internal standards (IS) were puerarin and
digoxin, both with a purity >98.0%, which were obtained from
the National Institute for the Control of Pharmaceutical and
Biological Products (Beijing, China).

Rosiglitazone (H20052465) was obtained from Shengjitang
Pharmaceutical Co., Ltd. (Guizhou, China). Valsartan
(H20090319) was obtained from Yijian Pharmaceutical Co.,
Ltd. (Shangdong, China). Detection kits for 24-h urinary
protein (U-Alb) (20180416), serum creatinine (Scr)
(20180108), blood urea nitrogen (BUN) (20171215), total
cholesterol (TC) (20181005), and triglycerides (TGs)
(20171203) were obtained from Nanjing Jiancheng Biological
Engineering Research Institute (Nanjing, China).
Anti–α–smooth muscle actin (SMA) (BM0002), anti–E
cadherin (PB0583), anti–collagen I (BA0325), and anti-
vimentin (PB9359) antibodies were obtained from Boster
Biological Technology Co., Ltd. (Wuhan, China). A 3,3′-
diaminobenzidine immunohistochemistry color-development
kit (ZIL-9018) and universal kit (PV-6000) were obtained
from Zhongshan Jinqiao Biotechnology Co., Ltd. (Beijing,
China).

A mixture of four active constituents (HQD) from Huangqi
Liuyi decoction was self-made. In the early stage, the research
group determined the preparation process of astragalus saponins,
astragalus flavones, astragalus polysaccharides, and glycyrrhizic
acid extract. Astragalus saponins and astragalus flavones extract
were prepared by macroporus resin column, astragalus
polysaccharides extract was prepared by water extraction and
alcohol precipitation, and glycyrrhizic acid extract was prepared
by acid precipitation. The extract content of each component
extracted from three batches of Astragalus and Glycyrrhiza is
shown in Table 1.

According to the ratio of Huagqi Liuyi decoction (Astragalus:
Glycyrrhiza, 6:1), we used 18 kg of Astragalus and 3 kg of
Glycyrrhiza, through processing, to obtain 121.59 g of
astragalus saponins (73.92%, including 2.65% of astragaloside
IV), 40.72 g of astragalus flavone (68.93%, including 1.71% of

TABLE 1 | The content of each component (x±SD, n = 3).

Extract Component Content (%)

Astragalus saponins extract Astragalus saponins 72.97 ± 1.06
Astragaloside IV 2.72 ± 0.10

Astragalus flavones extract Astragalus flavones 70.58 ± 2.16
Calycosin-7-O-β-D-glucoside 1.67 ± 0.08
Calycosin-glucuronide 1.45 ± 0.10
Ononin 0.91 ± 0.09
Formononetin 0.32 ± 0.02

Astragalus polysaccharides extract 67.12 ± 2.60
Glycyrrhizic acid extract 81.02 ± 1.04
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calycosin-7-O-β-D-glucoside, 1.53% of calycosin-glucuronide,
0.93% of ononin, and 0.31% of formononetin), 262.52 g of
astragalus polysaccharides (68.67%), and 31.72 g of
glycyrrhetinic acid (81.09%). By mixing astragalus saponins,
astragalus flavones, astragalus polysaccharides dry extract, and
glycyrrhizin extract together, the HQD samples needed for this
experiment were obtained.

2.2 Animals
Db/db mice can develop nephropathy at 12 weeks of age (Gerald,
2013; Ponchiardi et al., 2013). Ten-week-old db/dbmale mice and
db/m mice were obtained from the Model Animal Research
Center of Nanjing University [qualified no. SCXK (Su)
2018–0012] and raised for 2 weeks in a specific-pathogen free
laboratory (SPF) at the Experimental Animal Center of Guizhou
University of Traditional Chinese Medicine. All mice were
housed in polypropylene cages and maintained under standard
conditions (25 ± 20°C; relative humidity, 60% ± 5%). Animal
studies complied with the European Community guidelines (EEC
Directive of 1986; 86/609/EEC) and were approved by the Animal
Ethical Committee of Guizhou University of Traditional Chinese
Medicine (NO1902137).

2.3 Effect of Huangqi Liuyi Decoction on
Diabetic Nephropathy
2.3.1 Determination of Biochemical Indexes
Male db/db mice aged 12 weeks were randomly divided into 6
groups of 6 mice each. Twelve-week-old db/m mice served as a
control group. The clinical crude drug dosage of Huangqi Liuyi
decoction was Astragalus 60 g/d and Glycyrrhiza 10 g/d, with a
total dose of 70 g/d (Xv et al., 2017). Astragalus and
Glycyrrhiza were decocted 3 times, the extract was
concentrated and dried, and the dosage of db/db mice was
converted according to the above clinical dosage of the drug.
The dosage of Huangqi Liuyi decoction was 10.62 g/kg. Mice
treated with rosiglitazone (0.61 mg/kg) and valsartan
(12.13 mg/kg) served as a positive control group. The doses
of HQD in high-, medium-, and low-dose groups were
0.96 g/kg, 0.48 g/kg, and 0.24 g/kg, respectively, which were
4 times, 2 times, and 1 times the clinical dosage. Each group
was treated daily for 12 weeks. The control group was given the
same volume of distilled water. All mice were fasted for 12 h
before the experiment, the FBG level was measured. In
addition, 24-h urine was collected, and the 24-h U-Alb level

FIGURE 1 | The chemical structure of six analytes.
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FIGURE 2 | Results of biochemical indexes in each group (‾x±SD, n = 6). ps: vs. Model group, *P<0.05, **P<0.01; VS positive control group, ▲P<0.05, ▲▲P<0.01.
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FIGURE 3 | Kidneys pathological sectioning of various groups (Masson ×400). Control group (A); model group (B); high dosage (C); medium dosage (D); low
dosage (E); Huangqi Liuyi decoction (F).

FIGURE 4 | Kidneys pathological sectioning of various groups (HE ×400). Control group (A); model group (B); high dosage (C); medium dosage (D); low dosage
(E); Huangqi Liuyi decoction (F).
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was determined using a Coomassie brilliant blue quantitative
method (Nie et al., 2019). The BUN, Scr, TG, and TC values
were determined using a standard biochemical apparatus
(Roche, cobacc501, Switzerland). Subsequently, the mice
were humanely euthanized and their kidneys harvested.

2.3.2 Histopathology Analysis of Kidney Tissues
Paraffin-embedded kidney specimens were sectioned into
slices with a thickness of 3 μm using a microtome. After
deparaffinization and rehydration, the slices were stained
with hematoxylin and eosin for the assessment of kidney
injury and with Masson’s trichrome staining for a collagen-

deposition assessment. The slices were observed under a light
microscope, and images were captured at a magnification of
×400 using the objective lens of an Olympus microscope
(Olympus Corporation, Tokyo, Japan). The light
microscopy evaluation was conducted by experienced
pathologists in a blinded fashion.

2.3.3 Immunohistochemical Assay
Kidney tissue sections (3-μm thickness) were deparaffinized
with xylene and rehydrated in a gradient ethanol finishing in
phosphate-buffered saline. Endogenous peroxidases were
quenched by a few drops of H2O2. A citrate buffer solution

FIGURE 5 | Effect of HQD on the expressions of collagen I in kidney (×400). Control group (A); model group (B); high dosage (C); medium dosage (D); low dosage
(E); Huangqi Liuyi decoction (F). ps: vs. Model group, *P<0.05, **P<0.01; vs. control group, ▲P<0.05, ▲▲P<0.01 (x±SD, n=6).
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was used to restore the antigens, and the kidney tissues were
then sealed with goat serum. After the sections were
incubated with the primary antibody overnight, the
secondary antibody was applied. Then, the sections were
washed with phosphate-buffered saline, dminobenzidine
(DBA) was added for color rendering, and counterstaining
was completed with hematoxylin. A positive expression was
indicated by a brownish-yellow color. For
immunohistochemical staining, the average integrated
positive area from 6 randomly chosen regions was

calculated by using Image Pro Plus 6.0 image analysis
software.

2.3.4 Statistics
All data are presented as mean ± standard deviation values.
Statistical analysis between the 2 groups was performed using
the Statistical Package for the Social Sciences version 23
software program (IBM Corporation, Armonk, NY,
United States). p ≤ 0.01 and p ≤ 0.05 between the 2 groups
were considered statistically different.

FIGURE 6 | Effect of HQD on the expressions of E-cadherin in kidney (×400). Control group (A); model group (B); high dosage (C); medium dosage (D); low
dosage (E); Huangqi Liuyi decoction (F). ps: vs. Model group, *P<0.05, **P<0.01; vs. control group, ▲P<0.05, ▲▲P<0.01 (x±SD, n=6).
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2.4 Tissue Distribution of Huangqi Liuyi
Decoction in Control and Diabetic
Nephropathy Mice
2.4.1 Preparation of Standard Samples
Stock solutions were separately prepared by dissolving
astragaloside IV (5.34 mg), calycosin-7-O-β-D-glucoside
(5.05 mg), calycosin glucuronide (5.19 mg), ononin (5.07 mg),
formononetin (5.23 mg), glycyrrhizic acid (5.09 mg), puerarin
(IS, 5.08 mg), and digoxin (IS, 5.02 mg) in methanol to yield the
following concentrations: astragaloside IV, 0.534 mg/ml;
calycosin-7-O-β-D-glucoside, 0.505 mg/ml; calycosin

glucuronide, 0.519 mg/ml; ononin, 0.507 mg/ml; formononetin,
0.523 mg/ml; glycyrrhizic acid, 0.509 mg/ml; puerarin, 0.508 mg/
ml; and digoxin, 0.502 mg/ml. All solutions were stored at 4°C.

2.4.2 Tissue Sample Preparation
Tissues were accurately weighed and homogenized 4 times with
normal saline. Then, 200 μl of tissue homogenate and 20 μl of IS
solution (60.9 ng/ml of puerarin and 4.02 μg/ml of digoxin) were
added into 400 μl of methanol–acetic acid (40:1, v/v). Samples
were vortexed for 2 min and centrifuged at 6,000 r/min for
10 min. The supernatant was transferred and evaporated to
dryness with a nitrogen-blowing instrument (Organomation,

FIGURE 7 | Effect of HQD on the expressions of ɑ-SAM in kidney (×400). Control group (A); model group (B); high dosage (C); medium dosage (D); low dosage
(E); Huangqi Liuyi decoction (F). ps: vs. Model group, *P<0.05, **P<0.01; vs. control group, ▲P<0.05, ▲▲P<0.01 (x±SD, n=6).
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Berlin, MA, United States) at 37°C, and the residue was sonicated
with 200 μl of 50% methanol and centrifuged for 10 min at
10,000 rpm. One microliter of supernatant was injected into
the HPLC-MS/MS system for analysis. Quality control samples
were prepared separately in the same way.

2.4.3 Conditions of HPLC-MS/MS
An Acquity HPLC system (Shimadzu Corp., Kyoto, Japan)
equipped with a Q-Trap® 5500 triple quadrupole mass
spectrometer (AB Sciex, Framingham, MA, United States) was
employed for HPLC-MS/MS. The chromatographic conditions of
the six constituents of HQD were determined using an
Excel2C18-AR system (100 × 2.1 mm, 2 μm; Advanced

Chromatography Technologies Ltd., Aberdeen, Scotland)
maintained at 30°C. Analysis was completed with a gradient
elution of 0.1% formic acid (A) and acetonitrile (B) and a flow
rate of 0.4 ml/min. The gradient elution was as follows: 0–0.6 min
(90% A), 0.6–2 min (90%→70% A), 2–6 min (70%→35% A),
6–8 min (35%→10% A), 8–9 min (10%→10% A), 9–9.1 min
(10%→90% A), and 9.1–12 min (90% A). For MS/MS
detection, an electrospray ionization in a multi-reaction
monitoring mode was operated with polarity switching
between negative and positive ion modes. The mass
spectrometer parameters were set as follows: ion spray voltage
at 5.5 kV (+) and −4.5 kV (−), source temperature at 600°C,
nebulizer pressure at 55 psi, curtain gas at 30 psi, and auxiliary gas

FIGURE 8 | Effect of HQD on the expressions of vimentin in kidney (×400). Control group (A); model group (B); high dosage (C); medium dosage (D); low dosage
(E); Huangqi Liuyi decoction (F). ps: vs. Model group, *P<0.05, **P<0.01; vs control group, ▲P<0.05, ▲▲P<0.01 (x±SD, n=6).
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FIGURE 9 | The chromatogram of HPLC-MS/MS. (A) blank tissue homogenate sample; (B) blank tissue homogenate sample spiked with six compounds and IS;
(C) The tissue homogenate sample obtained at 30 min after oral HQD. (1. astragaloside IV, 2. calycosin-7-O-β-D-glucoside, 3. calycosin-glucuronide, 4. ononin, 5.
formononetin, 6. glycyrrhetinic acid, 7. puerarin, and 8. digoxin).
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at 55 psi. The multiple reaction monitoring (MRM) analysis was
conducted by monitoring the precursor ion to product ion
transitions of m/z 807.4→627.4 for astragaloside IV,
447.1→285.2 for calycosin-7-O-β-D-glucoside, 285.3→213.2

for calycosin glucuronide, 267.0→252.0 for formononetin,
431.3→269.1 for ononin, 824.4→309.4 for glycyrrhizic acid,
417.1→267.1 for puerarin, and 825.3→649.5 for digoxin.
Figure 1 shows the chemical structure of six analytes.

TABLE 2 | Calibration curve and LOQ of six ingredients in tissue homogenate samples.

Biological sample Analyte Calibration curve r Linear range LLOQ ng/g LOD ng/g

Kidney Astragaloside IV y = 0.4594x ± 1.0711 0.9990 5.34–1335 5.34 0.1
Calycosin-7-O-β-D-glucoside y = 0.1446x ± 0.1856 0.9992 0.25–50.5 0.25 0.04
Calycosin-glucuronide y = 0.1912x ± 0.0975 0.9991 2.60–519 2.60 0.06
Formononetin y = 0.0851x ± 0.2989 0.9992 1.05–104.6 1.05 0.02
Ononin y = 0.0968x ± 0.1290 0.9991 1.01–101.4 1.01 0.15
Glycyrrhizic acid y = 0.0974x ± 0.1794 0.9994 1.02–1018 1.02 0.34

Heart Astragaloside IV y = 0.1207x ± 0.2282 0.9991 5.34–1335 5.34 0.1
Calycosin-7-O-β-D-glucoside y = 0.0586x ± 0.1121 0.9992 0.25–50.5 0.25 0.04
Calycosin-glucuronide y = 0.5242x ± 0.2481 0.9993 2.60–519 2.60 0.06
Formononetin y = 0.1101x ± 0.1341 0.9990 1.05–104.6 1.05 0.02
Ononin y = 0.0899x ± 0.1431 0.9992 1.01–101.4 1.01 0.15
Glycyrrhizic acid y = 0.1445x ± 0.0502 0.9991 1.02–1018 1.02 0.34
Astragaloside IV y = 0.6027x ± 0.8407 0.9992 5.34–1335 5.34 0.1
Calycosin-7-O-β-D-glucoside y = 0.2430x ± 0.3439 0.9991 0.25–50.5 0.25 0.04

Lung Calycosin-glucuronide y = 0.0736x ± 0.0819 0.9991 2.60–519 2.60 0.06
Formononetin y = 0.1031x ± 0.3993 0.9990 1.05–104.6 1.05 0.02
Ononin y = 0.0855x ± 0.0551 0.9992 1.01–101.4 1.01 0.15
Glycyrrhizic acid y = 0.1740x ± 0.1234 0.9993 1.02–1018 1.02 0.34

FIGURE 10 | Content of astragaloside IV in different mouse tissue homogenate of the normal and DN models at four different time points after intragastric
administration of HQD (x±SD, n=8), (A) 30 min, (B) 2 h, (C) 4 h, (D) 8 h. Ps: *P < 0.05, **P < 0.01 vs. normal group.
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2.4.4 Method Validation
2.4.4.1 Specificity
The specificity of the method was evaluated by analyzing
homogenates of drug-free tissue, homogenates of drug-free
tissue containing standard solutions and IS, and homogenates

obtained following oral administration of HQD to check whether
the determination was interfered with by endogenous substances.
2.4.4.2 Calibration Curves and Linearity
The linearity of the calibration curve was constructed using
eight calibration points for tissue homogenate. Briefly, peak

TABLE 3 | Precision and accuracy of ingredients in tissue homogenate samples (‾x ± SD; n = 6).

Analyte Biological sample Concentration of
analyte (ng/g)

Mean ± SD
(ng/g)

Accuracy (%) Interday precision
RSD (%)

Intraday precision
RSD (%)

Astragaloside IV Heart 26.7 29.01 ± 3.22 108.6 ± 3.83 11.11 6.82
133.5 142.1 ± 12.68 106.5 ± 9.41 8.92 10.75
267 264.7 ± 41.44 99.12 ± 15.62 15.66 17.63

Lung 26.7 25.09 ± 3.27 106.8 ± 13.04 13.04 11.81
133.5 122.9 ± 14.03 105.2 ± 11.56 11.41 10.50
267 259.1 ± 19.35 97.10 ± 3.80 7.47 5.77

Kidney 26.7 27.8 ± 4.45 96.44 ± 16.28 16.00 15.38
133.5 136.6 ± 6.32 107.7 ± 11.21 4.63 11.97
267 276.8 ± 22.67 95.61 ± 10.75 8.19 6.90

Calycosin-7-O-β-D-glucoside Heart 2.53 2.53 ± 0.41 100.05 ± 9.76 16.15 7.53
12.63 10.92 ± 1.29 86.44 ± 5.42 11.81 12.36
25.25 24.45 ± 3.97 96.83 ± 15.82 16.23 14.14

Lung 2.53 2.56 ± 0.18 104.3 ± 8.18 7.04 10.53
12.63 13.54 ± 1.25 96.60 ± 16.84 9.20 9.66
25.25 22.93 ± 2.25 97.59 ± 7.69 9.79 7.89

Kidney 2.53 2.48 ± 0.21 98.50 ± 6.85 8.53 6.95
12.63 13.82 ± 0.51 106.3 ± 13.87 3.67 14.93
25.25 22.94 ± 0.32 97.23 ± 5.23 1.38 5.11

Calycosin-glucuronide Heart 5.19 5.88 ± 0.65 113.3 ± 4.60 11.07 11.87
51.9 46.24 ± 8.70 87.16 ± 4.78 18.79 11.26
259.5 262.9 ± 49.63 101.2 ± 9.84 18.87 9.73

Lung 5.19 4.77 ± 0.65 102.6 ± 7.80 13.60 11.30
51.9 58.32 ± 4.32 101.7 ± 8.60 7.40 17.58
259.5 272.1 ± 10.36 99.67 ± 16.15 3.81 16.20

Kidney 5.19 5.03 ± 0.69 101.3 ± 10.01 13.81 16.78
51.9 47.84 ± 7.72 104.8 ± 6.42 16.14 5.72
259.5 259.1 ± 22.77 108.8 ± 10.65 8.79 11.05

Ononin Heart 5.07 5.79 ± 0.59 114.24 ± 4.48 10.18 11.71
25.35 27.19 ± 5.07 109.1 ± 7.24 18.62 12.18
50.7 46.59 ± 6.07 91.90 ± 7.03 13.03 9.70

Lung 5.07 5.29 ± 0.27 89.60 ± 6.50 5.02 3.91
25.35 21.27 ± 0.95 116.3 ± 1.28 4.45 1.19
50.7 45.35 ± 3.69 98.95 ± 7.56 8.13 6.84

Kidney 5.07 4.35 ± 0.15 88.58 ± 4.94 3.48 7.70
25.35 22.59 ± 2.5 108.6 ± 5.53 11.09 6.41
50.7 48.85 ± 1.88 109.2 ± 3.61 3.85 1.60

Formononetin Heart 5.23 4.84 ± 0.29 92.54 ± 4.85 6.10 9.74
26.15 24.95 ± 3.45 95.40 ± 13.35 13.83 18.29
52.3 56.17 ± 8.9 107.4 ± 11.02 15.84 12.63

Lung 5.23 4.61 ± 0.21 101.9 ± 9.37 4.56 16.32
26.15 23.38 ± 1.79 105.1 ± 6.40 7.66 15.76
52.3 54.25 ± 6.31 110.1 ± 4.96 11.64 7.40

Kidney 5.23 4.52 ± 0.57 112.4 ± 5.94 12.56 11.49
26.15 22.37 ± 2.99 105.3 ± 11.75 13.36 5.24
52.3 47.26 ± 5.98 113.7 ± 4.49 12.65 6.48

Glycyrrhizic acid Heart 50.9 48.39 ± 4.82 95.06 ± 4.49 9.97 9.41
254.5 285.3 ± 33.65 112.1 ± 5.22 11.79 6.44
509 525.1 ± 55.03 103.1 ± 10.81 10.48 18.69

Lung 50.9 55.39 ± 3.4 102.3 ± 8.13 6.13 2.15
254.5 246.4 ± 22.15 109.3 ± 9.61 8.99 4.49
509 526.9 ± 86.3 99.56 ± 11.70 16.38 16.25

Kidney 50.9 53.85 ± 2.94 99.35 ± 7.67 5.46 6.08
254.5 256.1 ± 10.78 107.4 ± 11.69 4.21 5.76
509 540.9 ± 38.62 106.2 ± 7.29 7.14 15.89
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area analyte/IS ratios (Y) were tested against the theoretical
concentration of each analyte (X) using 1/X2 weighting of
the linear regression. The lowest concentration in the
calibration curve was defined as the lower limit of
quantification.

2.4.4.3 Accuracy and Precision
The quality control samples at three concentration levels of
analytes were prepared and operated in parallel according to
the above methods of sample preparation. Each
concentration was analyzed during six replications. Assay

TABLE 4 | The mean recoveries of ingredients in tissue homogenate samples (x ± SD; n = 6).

Analyte Concentration of
analyte (ng/ml)

Biological sample Extraction recovery
(%)

RSD% Matrix effect
(%)

RSD%

Astragaloside IV 133.5 Heart 99.59 ± 16.18 16.25 86.82 ± 5.15 5.14
Lung 112.4 ± 9.66 8.60 97.50 ± 8.32 8.53
Kidney 84.96 ± 3.76 4.43 106.9 ± 6.48 6.06

Calycosin-7-O-β-D-glucoside 12.63 Heart 95.27 ± 13.23 13.89 108.86 ± 10.8 12.68
Lung 95.24 ± 7.04 7.39 116.9 ± 2.06 1.76
Kidney 92.44 ± 5.99 6.48 115.2 ± 2.39 2.08

Calycosin-glucuronide 51.9 Heart 107.3 ± 9.56 8.90 99.45 ± 16.55 16.63
Lung 89.07 ± 8.11 9.12 108.4 ± 9.14 8.43
Kidney 90.30 ± 7.14 7.89 99.57 ± 6.12 6.15

Formononetin 26.15 Heart 114.3 ± 3.91 3.42 113.6 ± 5.31 4.67
Lung 108.0 ± 8.63 7.98 107.0 ± 4.82 4.51
Kidney 115.7 ± 4.64 4.02 98.60 ± 15.31 15.53

Ononin 25.35 Heart 112.7 ± 5.33 4.73 83.12 ± 2.86 3.44
Lung 97.71 ± 2.49 2.55 93.04 ± 12.25 13.16
Kidney 98.44 ± 2.39 2.43 86.87 ± 3.29 3.78

Glycyrrhizic acid 254.5 Heart 83.60 ± 2.25 2.69 102.7 ± 15.92 15.51
Lung 89.35 ± 2.08 2.33 102.8 ± 5.88 5.73
Kidney 96.60 ± 3.64 3.77 97.65 ± 4.60 4.71

FIGURE 11 | Content of calycosin-7-O-β-D-glucoside in different mouse tissue homogenate of the normal and DN models at four different time points after
intragastric administration of HQD (x±SD, n=8), (A) 30 min, (B) 2 h, (C) 4 h. Ps: *P < 0.05, **P < 0.01 vs. normal group.

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 93472013

Wang et al. Effects, Tissue Distribution

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


precision was calculated using relative standard deviation
(RSD, %) and variance, and accuracy is expressed as mean ±
standard deviation.

2.4.4.4 Extraction Efficiency and Matrix Effect
The recovery and matrix effect of the analytes were analyzed for
medium concentration quality control samples. The extraction

TABLE 5 | Stability of ingredients in tissue homogenate samples (x ± SD; n = 6).

Analyte Biological sample Concentration of
analyte (ng/g)

Sampler 4 h −20°C 48 h Three freeze-thaw

Mean ± SD
(ng/ml)

RSD% Mean ± SD
(ng/ml)

RSD% Mean ± SD
(ng/ml)

RSD%

Astragaloside IV Heart 26.7 28.02 ± 2.08 7.44 27.57 ± 2.51 9.12 26.63 ± 3.83 14.39
133.5 141.6 ± 5.76 4.07 121.0 ± 12.09 9.99 141.8 ± 15.94 11.24
267 276.3 ± 27.25 9.86 248.4 ± 42.35 17.05 263.3 ± 40.2 15.27

Lung 26.7 27.06 ± 1.74 6.43 27.7 ± 4.8 17.32 26.76 ± 2.54 9.50
133.5 136.7 ± 14.6 10.68 134.7 ± 23.05 17.11 136.8 ± 20.39 14.90
267 258.4 ± 22.45 8.69 257.0 ± 9.82 3.82 280.7 ± 17.52 6.24

Kidney 26.7 27.35 ± 1.46 5.34 27.83 ± 5.13 18.44 27.17 ± 1.81 6.65
133.5 150.1 ± 16.42 10.94 139.9 ± 8.52 6.09 137.8 ± 14.78 10.73
267 283.0 ± 21.23 7.5 260.0 ± 20.38 7.84 253.7 ± 27.29 10.76

Calycosin-7-O-β-D-glucoside Heart 2.53 2.29 ± 0.45 19.88 2.39 ± 0.22 9.33 2.67 ± 0.44 16.47
12.63 12.15 ± 0.95 7.8 12.43 ± 0.89 7.16 12.67 ± 0.9 7.07
25.25 26.25 ± 1.19 4.53 26.54 ± 2.66 10.01 23.84 ± 2.25 9.43

Lung 2.53 2.6 ± 0.1 3.68 2.71 ± 0.12 4.45 2.52 ± 0.23 9.01
12.63 13.29 ± 1.09 8.20 12.35 ± 0.6 4.85 12.23 ± 1.26 10.29
25.25 25.58 ± 1.85 7.24 24.85 ± 1.64 6.58 24.42 ± 2.3 9.41

Kidney 2.53 2.75 ± 0.24 8.87 2.39 ± 0.23 9.72 2.37 ± 0.37 15.73
12.63 12.76 ± 1.21 9.52 13.18 ± 0.78 5.89 12.47 ± 0.73 5.88
25.25 24.7 ± 1.22 4.94 24.32 ± 1.11 4.55 24.15 ± 1.16 4.81

Calycosin-glucuronide Heart 5.19 4.9 ± 0.71 14.33 4.72 ± 0.67 14.21 4.98 ± 0.38 7.59
51.9 53.51 ± 3.09 5.78 50.5 ± 3.89 7.70 52.31 ± 3.24 6.19
259.5 273.1 ± 21.63 7.92 248.1 ± 16.15 6.51 246.4 ± 21.17 8.59

Lung 5.19 5.14 ± 0.79 15.27 4.86 ± 1.15 23.54 4.77 ± 0.89 18.68
51.9 53.94 ± 2.69 4.98 51.6 ± 7.51 14.55 50.42 ± 7.7 15.28
259.5 254.4 ± 22.24 8.74 249.9 ± 22.29 8.92 253.7 ± 40.95 16.14

Kidney 5.19 4.87 ± 0.88 18.11 5.03 ± 0.59 11.65 4.77 ± 0.46 9.69
51.9 51.3 ± 1.58 3.08 51.28 ± 5.33 10.40 53.06 ± 5.75 10.84
259.5 241.6 ± 29.12 12.05 247.6 ± 23.25 9.39 250.3 ± 29.34 11.72

Ononin Heart 5.07 5.05 ± 0.88 17.48 5.10 ± 0.59 11.54 5.54 ± 0.31 5.58
25.35 23.75 ± 3.76 15.81 24.05 ± 4.17 17.35 24.17 ± 3.67 15.17
50.7 49.37 ± 2.58 5.22 50.61 ± 4.73 9.35 49.36 ± 2.62 5.31

Lung 5.07 5.32 ± 0.49 9.29 5.1 ± 0.19 3.68 5.03 ± 0.42 8.26
25.35 24.52 ± 0.27 1.12 23.22 ± 4.98 21.45 24.86 ± 1.1 4.44
50.7 49.15 ± 2.36 4.81 50.88 ± 2.08 4.08 48.89 ± 2.51 5.14

Kidney 5.07 5.19 ± 0.38 7.23 5.56 ± 0.36 6.48 4.95 ± 0.62 12.54
25.35 25.98 ± 2.88 11.08 23.37 ± 1.5 6.40 23.25 ± 1.03 4.43
50.7 49.97 ± 3.04 6.09 51.9 ± 3.07 5.92 49.96 ± 3.16 6.32

Formononetin Heart 5.23 4.99 ± 0.95 19.03 4.95 ± 0.66 13.31 5.32 ± 0.92 17.31
26.15 28.08 ± 3.88 13.83 25.2 ± 3.60 14.29 24.6 ± 2.94 11.94
52.3 47.88 ± 5.64 11.77 48.03 ± 3.61 7.52 49.59 ± 2.52 5.09

Lung 5.23 5.56 ± 0.73 13.13 5.03 ± 0.88 17.48 4.8 ± 0.82 17.09
26.15 28.13 ± 5.28 18.79 24.02 ± 4.72 19.67 26.46 ± 4.32 16.34
52.3 54.71 ± 5.32 9.73 54.9 ± 4.66 8.48 48.82 ± 8.6 17.62

Kidney 5.23 5.54 ± 0.74 13.32 5.06 ± 1.03 20.35 5.12 ± 0.65 12.63
26.15 26.81 ± 2.04 7.62 24.24 ± 2.42 10.00 24.55 ± 2.84 11.55
52.3 54.25 ± 7.07 13.04 48.03 ± 5.16 10.75 49.98 ± 9.62 19.24

Glycyrrhizic acid Heart 50.9 51.38 ± 0.82 1.60 54.32 ± 6.22 11.45 53.92 ± 4.38 8.13
254.5 276.9 ± 41.22 14.88 272.1 ± 37.85 13.91 267.5 ± 16.27 6.08
509 514.5 ± 34.16 6.64 516.6 ± 38.02 7.36 510.5 ± 38.03 7.45

Lung 50.9 47.41 ± 6.34 13.37 47.21 ± 3.6 7.63 48.9 ± 3.34 6.83
254.5 232.1 ± 16.92 7.29 236.4 ± 12.72 5.38 257.8 ± 23.04 8.94
509 502.3 ± 18.54 3.69 504.5 ± 23.51 4.66 501.9 ± 39.3 7.83

Kidney 50.9 49.16 ± 1.79 3.65 48.28 ± 3.7 7.67 49.34 ± 2.38 4.82
254.5 243.8 ± 13.46 5.52 234.8 ± 10.26 4.37 239.2 ± 11.75 4.91
509 504.3 ± 28.95 5.74 507.7 ± 33.35 6.57 499.9 ± 37.44 7.49
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recovery was determined by comparing the response ratio of
extracted samples with extracted blank matrix spiked with
corresponding concentrations. The matrix effect was evaluated
as the peak area ratio of analytes spiked with blank tissue extract
at medium concentrations to non-extracted QC standard
solutions at equivalent concentrations.

2.4.4.5 Stability
Quality control samples at three concentration levels of tissue
samples were prepared to investigate the stability of tissue
samples. First, we stored samples at room temperature
(approximately 25°C) for 24 h, and then froze (−20°C) them
for 48 h and repeated this freezing and thawing cycle three
times. The samples were processed based on the above-
mentioned sample processing method and then measured by
HPLC-MS/MS.

2.4.5 Tissue Distribution
Thirty-two db/db model mice and 32 normal db/m mice were
fasted for 12 h. Then, the diabetic and normal mice were
randomly divided into 4 groups of 8 mice each. One group of
mice served as a unique sampling time point. Mice were given a
single dose of HQD (high dosage in efficacy study). Blood was
collected by retro-orbital venous puncture at 30 min and 2, 4, and
8 h. Subsequently, the mice were humanely euthanized, and the
heart, liver, spleen, lungs, kidneys, stomach, small intestine, brain,

and skeletal muscle were collected. Samples were washed with
normal saline and stored at −20°C. Before the experiments, the
tissues were prepared according to the sample-preparation
methods and analyzed by HPLC-MS/MS.

3 RESULTS

3.1 Effect of Huangqi Liuyi Decoction on
Diabetic Nephropathy
After 12 weeks, the weight of the model group was significantly
decreased, the hair had lost its normal luster and was sparse, and
the animals appeared less active. Compared with before
administration, the weight of the HQD administration group
was not significantly decreased, their fur remained shiny, and the
animals were active (Figure 2).

Compared to those of the control group, 12-week-old diabetic
mice showed increased FBG, BUN, Scr, TG, TC, and 24 h U-Alb
levels (p < 0.05) (Figure 2). Diabetic mice treated with HQD showed
lower biochemical parameters compared to untreated (p < 0.05).
There was no significant difference in parameters betweenHQD and
Huangqi Liuyi decoction treated animals (p > 0.05).

Masson’s trichrome stained collagen fibers blue, while muscle
fibers, cytoplasm, cellulose, and keratin appeared red. Kidney
sections from of 12-week-old db/db diabetic mice showed
increased collagen fibers in the glomerular basement

FIGURE 12 | Content of calycosin-glucoside in different mouse tissue homogenate of the normal and DN models at four different time points after intragastric
administration of HQD (x±SD, n=8), (A) 30 min, (B) 2 h, (C) 4 h, (D) 8 h. Ps: *P < 0.05, **P < 0.01 vs. normal group.
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membrane (Figure 3). Animals treated with the HQD showed
less kidney collagen compared to the model group.

In non-diabetic control mice, the glomerular structure showed
no pathologic changes in the glomerular mesangial area
(Figure 4). Conversely, kidneys from diabetic mice showed
mesangial matrix deposition and thickening and nodular
sclerosis of the glomerular capillary basement membrane.
Diabetic mice treated with HQD showed less kidney damage
compared to untreated.

3.2 Protein Expression of Collagen I,
E-Cadherin, ɑ-Smooth Muscle Actin, and
Vimentin
The semi-quantitative analysis of collagen I, E-cadherin, ɑ-SMA,
and vimentin is showed in Figures 5–8. Expression of collagen I,
ɑ-SMA, and vimentin was significantly increased (p < 0.01) and
that of E-cadherin was significantly decreased (p < 0.01) in kidney
sections from diabetic mice compared to kidney samples from
non-diabetic mice. In contrast, diabetic animals treated with
HDQ or decoction showed less kidney collagen I, ɑ-SMA, and
vimentin (p < 0.05); and more E-cadherin (p < 0.01) versus
samples from untreated diabetic mice.

3.3 Tissue Distribution of the Active
Constituents of Huangqi Liuyi Decoction in
Control and Diabetic Nephropathy Mice
3.3.1 Method Validation of HPLC-MS/MS
3.3.1.1 Specificity
Chromatograms of the blank tissue homogenate (e.g., heart, lung,
and renal); blank tissue homogenate spiked with astragaloside IV,
calycosin-7-O-β-D-glucoside, calycosin-glucuronide, ononin,
formononetin, glycyrrhizic acid, and IS; and tissue
homogenate obtained after oral administration of HQD are
displayed in Figure 9. Good separation was observed among
the ingredients, and there was no interference from the
endogenous substances in the determination of the six
ingredients and IS.

3.3.1.2 Calibration Curves and Linearity
The typical equation of linearity ranges and calibration curves for
the six ingredients are shown in Table 2 (e.g., heart, lungs, and
kidneys). The lowest concentration in the calibration curve was
defined as the lower limit of quantification. The results show that
all correlation coefficients are higher than 0.999, indicating that
the concentrations of the six ingredients in mouse tissues
correlated well within the linearity ranges.

FIGURE 13 | Content of ononin in different mouse tissue homogenate of the normal and DN models at four different time points after intragastric administration of
HQD (x±SD, n=8), (A) 30 min, (B) 2 h, (C) 4 h, (D) 8 h. Ps: *P < 0.05, **P < 0.01 vs. normal group.
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3.3.1.3 Accuracy and Precision
Intraday and interday precision and accuracy (e.g., heart, lungs,
and kidneys) are summarized in Table 3. The intraday and
interday RSDs were below 20.0%. Thus, the accuracy and
precision results met the requirements of biological sample
detection.

3.3.1.4 Extraction Efficiency and Matrix Effect
Results of the extraction efficiency and matrix effect analyses
are shown in Table 4 (e.g., heart, lungs, and kidneys). As noted,
the recoveries of the six ingredients were precise, consistent,
and reproducible at different concentration levels in various
tissue samples, and there was no significant matrix
interference.

3.3.1.5 Stability
Results of the stability analysis are shown in Table 5 (e.g.,
heart, lungs, and kidneys). The stability test results indicated
that the mouse tissue samples showed good stability under the
three different conditions with a 10% concentration variation
compared to the initial values.

3.3.2 Tissue Distribution Study
Following a single oral administration of HQD, the
distribution of the six ingredients (astragaloside IV,
calycosin-7-O-β-D-glucoside, calycosin glucuronide, ononin,
formononetin, and glycyrrhizic acid) between the normal and

DN mouse groups were analyzed at different time points
(30 min and 2, 4, and 8 h). The six ingredients were
detected in all tissue samples from diabetic and non-
diabetic mice (Figures 10–(15). Astragaloside IV, calycosin-
7-O-β-D- glucoside, calycosin glucuronide, ononin,
formononetin, and glycyrrhizic acid were found highest in
the lungs and kidneys. However, the six active ingredients were
minimally found in the brain. As expected, tissue distribution
of all ingredients decreased with time.

Compared with the normal group, astragaloside IV levels in
the hearts, kidney, and brains of mice with DN were higher at
30 min; levels of astragaloside IV in the livers, lungs, intestines,
and muscles of mice with DNwere higher at 2 h. Astragaloside IV
levels in the hearts, kidneys, intestines and brains of mice with
DN were higher at 4 h. Levels of astragaloside IV in the hearts,
livers and kidneys of mice with DN were higher at 8 h
(Figure 10).

Compared with the normal group, DN mice had higher levels
of calycosin-7-O-β-D-glucoside in their hearts, spleens and
intestines at 30 min. Calycosin-7-O-β-D-glucoside levels in the
lungs and kidneys of DN mice were higher at 2 h. Levels of
calycosin-7-O-β-D-glucoside in the hearts, livers, spleen, and
kidneys of DN mice were higher at 4 h (Figure 11).

DN mice had higher levels of calycosin-glucoside in their
livers, kidneys, and stomachs than the normal group at 30 min.
Levels of calycosin-glucoside in the hearts, spleens, lungs, and
kidneys of mice with DN were higher at 2 h (Figure 12).

FIGURE 14 | Content of formononetin in different mouse tissue homogenate of the normal and DN models at four different time points after intragastric
administration of HQD (x±SD, n=8), (A) 30 min, (B) 2 h, (C) 4 h, (D) 8 h. Ps: *P < 0.05, **P < 0.01 vs. normal group.
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Ononin levelswerehigher in the spleens, lungs, kidneys, and intestines
of DNmice at 30min, compared with the normal group. DNmice had
higher levels of ononin in their hearts at 2 h. Levels of ononin in their
hearts, lungs, stomachs, andmuscles were higher at 4 h. Ononin levels in
the kidneys and stomachs were higher at 8 h (Figure 13).

Compared with the normal group, DN mice had higher levels
of formononetin in their hearts, livers, spleens, lungs, and kidneys
at 30 min. Formononetin levels were also higher in their stomachs
and intestines at 2 h. Levels of formononetin in the hearts, livers,
kidneys and intestines of DNmice were higher at 4 h (Figure 14).

Compared with the normal group, glycyrrhetinic acid levels were
higher in the heart, spleens, and lungs of mice with DN at 30 min.
DNs had higher levels of glycyrrhetinic acid in their hearts and
kidneys at 4 h. Levels of glycyrrhetinic acid in the hearts, kidneys,
and intestines of mice with DN were higher at 8 h (Figure 15).

4 DISCUSSION

In this study, we used 12-week-old db/db mice as a diabetic
nephropathy mouse model and 12-week-old db/m mice as a
normal comparison group. The db/db mouse was a mutant type,
with the line of leptin receptor gene defect picked from C57BL/6J
mice by the Jackson Laboratory of the United States. The db/db
mouse spontaneously develops type 2 diabetes and is similar to
clinical type 2 diabetes. db/db mice display obesity,
hyperlipidemia, and hyperglycemia after 4 weeks of age.

Diabetic nephropathy is found after 8–12 weeks of age (Gerald
et al., 2013; Ponchiardi et al., 2013). The experimental results
showed that the FBG, Scr, BUN, TC, TG, and 24 h U-Alb of 12-
week db/db mice were significantly higher than those of the
normal control group (p < 0.05). The kidneys of 12-week db/db
mice also showed obvious glomerular lesions.

Some researchers have investigated in vivo content analysis
methods for Huangqi Liuyi decoction (Zeng et al., 2018), but a
method for simultaneously quantifying various ingredients in
multiple organs has not yet been reported. In this research,
HPLC-MS/MS was used to analyze the tissue distribution of the
six active ingredients of HQD in normal andDNmice. Furthermore,
the methodology, including specificity, linearity, accuracy, precision,
extraction efficiency, matrix effect, and stability, was verified. The
content of drugs in tissues and organs is usually difficult to measure,
in part because there aremany factors that interfere with the process.
Triple quadrupole mass spectrometry is often used to determine
trace components in biological samples, such as blood, urine, and
tissue, in pharmacokinetic studies. In its multi-reaction monitoring
scanning mode, the precursor ions of the tested component are
prescreened in the first quadrupole (Q1), separated in the second
quadrupole (Q2), and identified and quantified in the third
quadrupole (Q3). In comparison with the traditional triple
quadrupole mass spectrometry approach, the QTRAP® LC-MS/
MS system (Sciex, Framingham, MA, United States) is equipped
with an additional linear ion trap at the third quadrupole (Q3). This
new generation of HPLC-MS/MS system, which is equipped with a

FIGURE 15 | Content of glycyrrhetinic acid in different mouse tissue homogenate of the normal and DN models at four different time points after intragastric
administration of HQD (x±SD, n=8), (A) 30 min, (B) 2 h, (C) 4 h, (D) 8 h. Ps: *P < 0.05, **P < 0.01 vs normal group.
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unique scanning mode (incorporating multi-reaction ion
monitoring, information-dependent acquisition, and enhanced
ion scanning), can obtain the most abundant information of the
tested components in a single operation, including ion pair retention
time, relative peak strength, and mass spectrum. This greatly
improves the detection sensitivity. After oral administration of
HQD, six ingredients in various tissues of mice were determined
by triple quadrupole linear ion trap mass spectrometry. At the same
time, the precipitation of protein in mouse tissues by protein
precipitants, such as methanol, acetonitrile, and ethyl acetate, was
investigated. When methanol was used as a protein precipitant, the
sample preparation was time-saving and stable, and the six active
ingredients in the measured HQD were least disturbed by
endogenous substances. As a consequence, methanol was selected
as the precipitation solvent for sample pretreatment. Through
methodological investigation, it was found that the established
analytical methods of various components in mouse tissue
samples met the requirements of biological sample determination.

The phenomenon by which a drug is transported between blood
and tissues is called distribution. In oral administration, the drug is
first absorbed into blood and then distributed to various tissues and
cells throughout the body. The distribution process is usually
completed quickly (Chen and Li, 2013). If the main tissue to
which the drug is distributed happens to be the drug’s site of
action, there is a close relationship between drug distribution and
efficacy. Drug distribution to a non-active site is often closely related to
drug toxicity and accumulation of the drug in the body. Therefore,
investigating the in vivo distribution characteristics of drugs is useful in
forecasting its pharmacological effects as well as the degree of in vivo
retention and toxic effects (Wei and Zhang, 2004; Hu et al., 2020). In
this study, the anti-DN effect of HQD was determined. After oral
administration ofHQD, six ingredients (astragaloside IV, calycosin-7-
O-β-glucoside, calycosin glucuronide, ononin, formononetin, and
glycyrrhizic acid) were detected in murine tissues regardless of the
presence of diabetes. These six active ingredients were rapidly and
widely distributed in multiple organs, albeit mainly in the lungs,
kidneys, liver, spleen, and heart, and especially in the kidneys and
lungs. Confirmation of the greatest distribution occurring in lung and
kidney tissue samples indicates that HQD distribution is targeted at
the lungs and kidneys, demonstrating positive significance for the
prevention and treatment of nephropathy.

The major audience of drugs are diseased patients. Whether or
not the body is in a pathological state has important measures of
impact on the pharmacokinetics of the drug. In comparison with
the normal condition, the distribution of these six ingredients in
the lung, kidney, spleen, and heart increased in mice with DN,
and especially in the kidney. The increase in the distribution of
kidneys under pathological conditions can effectively guarantee
the development of a prescription effect. In short, tissue
distribution of the six index ingredients of HQD in the DN
model was quite different from that in normal mice, but the
reasons for this are still unclear. The concentrations of six active
ingredients in the blood can affect their distribution in the tissues.
Moreover, the excretion of drugs in the kidneys mainly includes
glomerular filtration and renal tubular secretion and
reabsorption. Glomerulonephritis and renal tubular lesions in
DN mice are obvious compared to those in normal mice (Rick

et al., 1987; Kudo et al., 2009; Liu, 2016). Diabetes and renal
insufficiency in these mice will lead to a reduction in plasma
protein content. As a consequence, the free drug concentration
will increase, making more of the drug penetrate into tissues. At
the same time, the permeability of blood vessels may change
under different pathological conditions, which makes it easier for
drugs to penetrate into tissues through capillary vessels, resulting
in a change in the drug concentration accordingly. Therefore, the
different characteristics of the distribution of six active
ingredients may have been caused by the pathological state.
However, the underlying mechanism of these differences
remains to be further studied. In subsequent studies, we will
further explore the mechanism by which the pathological state of
diabetic nephropathy changes the tissue distribution of the six
active ingredients in HQD.

5 CONCLUSION

HQD could effectively improve diabetes nephropathy. Moreover,
a rapid, reliable, and sensitive HPLC/MS-MS method for
simultaneous determination of six ingredients in the tissues of
DN and normal mice after oral administration of HQD was
established and validated. The tissue distribution characteristics
of six ingredients in normal and DN model mice after oral
administration of HQD were significantly different, but the
overall trend was similar. The results might provide a
reference for further research on HQD.
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